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We prove here that e is not the root of a non-zero quadratic equation with integer coefficients.! We begin
with the well known series
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1 e is irrational

We'll first use (2) to give the familiar proof that e is irrational. Assume, by way of contradiction, that e = ¢

b
with ¢ and b positive integers. Using b to determine a cut-off, (2) gives
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Clearly SMALL is positive, and cancelling out the b! with the denominators, we have
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The latter sum is an infinite geometric series, which sums to H%/ (1 — b%) = %. So,

(4) 0<SMALL < - < 1.
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Now, multiplying (3) by b!, we have

INTEGER = INTEGER 4+ SMALL

But by (4), SMALL is strictly between 0 and 1, which is a contradiction.

IWe’re fleshing out here the details of Conway’s and Guy’s sketch-proof in The Book of Numbers, p 253 (Copernicus, 1998).
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We’ll now show that e cannot solve the equation
(5) a—be+ce’=0
with a, b, ¢ integers, not all 0. Rearranging, (5) implies

a
6 - =b.
(6) e+ce

To show (6) is impossible, we’ll write e and % as almost-fractions. For a positive integer m to be chosen
later, we first use (3) and (4) to write
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Next, we need a similar expression for %7 though in this case the small error will alternate in sign. This

expression comes from first setting © = —1 in (1), giving
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Below we use a standard alternating series calculation to prove that (8) gives
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Substituting (7) and (9) into (6), multiplying by m! we find
(10) INTEGER + [¢- SMALL + (—1)™*'q - small] = INTEGER .

Clearly we can make the magnitude of the small stuff less than 1 by choosing m large. So, as long as all the
small stuff doesn’t cancel to 0, (10) gives a contradiction. But the non-cancellation is easy to ensure. First,
if one of a = 0 or ¢ = 0 then the small stuff is automatically non-zero. Otherwise, we simply choose m odd
if @ and ¢ have the same sign, and m even if a and ¢ have opposite signs.

Finally, we show how (8) leads to (9). Stopping the series at the mth term, (8) gives
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Now we just have to note that the alternating terms in small are strictly decreasing in size. So, grouping in
pairs,
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Similarly, splitting off the first term and then grouping in pairs,
small < L { L L ] [k — sornkx] + < 1
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Done.



