Strike-me-out: a proof

Anthony Harradine Anita Ponsaing

December 2, 2016

Problem 1. Take the sequence of positive integers starting from 1. Then strike out every third element, and make a cumulative sum of the remaining sequence:

	1	2	Ż	4	5	ø	7	8	ø	10	
\sum :	1	3		7	12		19	27		37	

Now strike out every second element of the new sequence, and make a cumulative sum of the remaining sequence:

	1	Z	7	12	19	27	37	••
\sum :	1		8		27		64	•••

The result is the cubes.

Proof. In the second step we struck out every second element of the cumulative sum. Looking back at the original sequence, the sequence $\{1, 7, 19, 37\}$ is actually

$$1 = 1$$

$$7 = 1 + (2 + 4)$$

$$19 = 1 + (2 + 4) + (5 + 7)$$

$$37 = 1 + (2 + 4) + (5 + 7) + (8 + 10)$$

...

Ignoring the initial 1, each new term that is added is a sum of numbers either side of a multiple of 3, so 2 times that multiple of 3. In other words,

$$1 = 1$$

$$7 = 1 + 3 \times 2 \times (1)$$

$$19 = 1 + 3 \times 2 \times (1 + 2)$$

$$37 = 1 + 3 \times 2 \times (1 + 2 + 3)$$

...

In the brackets we have the triangular numbers, which when multiplied by 2 give a rectangle:

$$1 = 1 7 = 1 + 3 \times (2 \times 1) 19 = 1 + 3 \times (3 \times 2) 37 = 1 + 3 \times (4 \times 3) ...$$

Now each of these numbers is 1 plus 3 rectangles, which can be thought of as small cubes arranged in the following way (the 1 is in the hidden corner):

Thus, summing these numbers is constructing a cube as follows:

