Strike-me-out: a proof

Anthony Harradine Anita Ponsaing

December 2, 2016

Problem 1. Take the sequence of positive integers starting from 1. Then strike out every third element, and make a cumulative sum of the remaining sequence:

$$
\begin{array}{rllllrrrrrrl}
& 1 & 2 & \not \supset & 4 & 5 & \not 6 & 7 & 8 & \not \emptyset & 10 & \ldots \\
\sum: & 1 & 3 & & 7 & 12 & & 19 & 27 & & 37 & \ldots
\end{array}
$$

Now strike out every second element of the new sequence, and make a cumulative sum of the remaining sequence:

$$
\begin{array}{lllllllll}
& 1 & \not \beta & 7 & \not 22 & 19 & 27 & 37 & \ldots \\
\sum: & 1 & & 8 & & 27 & & 64 & \ldots
\end{array}
$$

The result is the cubes.
Proof. In the second step we struck out every second element of the cumulative sum. Looking back at the original sequence, the sequence $\{1,7,19,37\}$ is actually

$$
\begin{aligned}
1 & =1 \\
7 & =1+(2+4) \\
19 & =1+(2+4)+(5+7) \\
37 & =1+(2+4)+(5+7)+(8+10)
\end{aligned}
$$

Ignoring the initial 1, each new term that is added is a sum of numbers either side of a multiple of 3 , so 2 times that multiple of 3 . In other words,

$$
\begin{aligned}
1 & =1 \\
7 & =1+3 \times 2 \times(1) \\
19 & =1+3 \times 2 \times(1+2) \\
37 & =1+3 \times 2 \times(1+2+3)
\end{aligned}
$$

In the brackets we have the triangular numbers, which when multiplied by 2 give a rectangle:

$$
\begin{aligned}
1 & =1 \\
7 & =1+3 \times(2 \times 1) \\
19 & =1+3 \times(3 \times 2) \\
37 & =1+3 \times(4 \times 3)
\end{aligned}
$$

Now each of these numbers is 1 plus 3 rectangles, which can be thought of as small cubes arranged in the following way (the 1 is in the hidden corner):

Thus, summing these numbers is constructing a cube as follows:

