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INTRODUCTION

We now consider µ a Borel measure on a topological spaceX. We are interested in whether
measurable functions on X can be approximated by continuous functions. Since measurable
functions can be naturally expressed as sums of characteristic functions, this leads naturally
to the question of approximating arbitrary subsets of X with open and closed sets. Some
approximation results hold for arbitrary Borel measures, but we shall see that the strongest
results hold for what are called Radon measures. Our main concern is the case where X is
a metric space, but we will also consider the topological setting. We shall also give some
special attention to the case where µ = L m is Lebesgue measure on some X ⊆ Rm.

APPROXIMATION OF SETS

We begin with an interesting and non-obvious manner of capturing the collection B of
Borel subsets of X.

43 LEMMA 32: Suppose X is a topological space, and suppose F ⊆ ℘(X) is a
collection of subsets of X such that:

(i) F contains all closed and all open subsets of X;

(ii) F is closed under countable intersections;

(iii) F is closed under countable unions.

Then F ⊇ B. That is, F contains all Borel subsets of X.
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REMARK: If X is a metric space then any closed set C can be written as a countable
intersection of open sets:

C =
∞�

j=1

�
x : dist(x, C) < 1

j

�
.

Similarly, or by De Morgan, every open subset of X can be written as the countable union
of closed sets. Consequently, in applying Lemma 32 in a metric space, one need only show
that F contains either the closed sets or the open sets.

THEOREM 33: Suppose µ is a Borel measure on a metric space X and that µ(X) < ∞.
Then for any Borel set B ⊆ X, and for any � > 0, we can find a closed set C and an open
set W in X, with C ⊆ B ⊆ W and with

µ(B∼C) < � ,(♣)

µ(W ∼B) < � .(♥)

C B
W

REMARKS:

(a) The Theorem is not generally true for Borel measures on general topological spaces.
For example, let X = {a, b}, and consider the topology T = {∅, {a}, {a, b}} on X. So
the closed sets are exactly ∅, {b} and {a, b}, and so all subsets of X are Borel; and,
counting measure µ0 is Borel on (X, T ), since all sets are µ0-measurable. But the open
set {a} cannot be approximated from the inside by a closed set, and the closed set {b}
cannot be approximated from the outside by an open set.

(b) The Theorem is also not generally true if µ(X) = ∞, even if µ is σ-finite. For example,
let X = R and let µ =

�
µj, where µj is the delta measure at 1

j for j ∈ N. Then
(0,∞) cannot be approximated from the inside by closed sets, and the singleton set {0}
cannot be approximated from the outside by open sets. However, as the next remarks
indicate, the Theorem will hold more generally, under suitable finiteness hypotheses,
noting in particular the relevance of Lemma 9.
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(c) If µ(X) = ∞ but µ(B) < ∞, we can obtain closed C ⊆ B satisfying (♣) by applying
Theorem 33 to the measure µwB. The result continues to hold if B is locally finite:
if µ( �B) < ∞ for every bounded �B ⊆ B. To see this, fix a ∈ X, and for j ∈ N let
Bj = B ∩ {x ∈ X : j − 1 � d(x, a) < j}. Bj is bounded and Borel, and so by
assumption we can find closed Cj ⊆ Bj with µ(Bj ∼ Cj) <

�
2j . It is then easy to see

that C = ∪Cj is closed and satisfies (♣).

(d) Suppose B ⊂
∞�

j=1

Vj with each Vj open and µ(Vj) < ∞. Then, applying (♥) to each

µwVj, we can obtain open Wj ⊇ B ∩ Vj with µ ((Wj ∩ Vj) ∼ (B ∩ Vj)) < �
2j . Since

each Vj is open, so is W = ∪(Wj ∩ Vj) ⊇ B, and clearly W satisfies (♥).

(e) It follows from (c) and (d) that (♣) and (♥) hold for Lebesgue measure for any Borel
set B ⊆ Rm.

PROOF OF THEOREM 33: The hard work is showing the existence of closed sets satis-
fying (♣). For a given B, we then obtain an open set W satisfying (♥) by choosing a closed
C ⊆∼B with µ((∼B)∼C) < �; since (∼B)∼C =∼C ∩∼B, we can then set W =∼C.

To show the existence of the desired closed sets C, consider

F = {A ⊆ X : For any � > 0 there is a closed C ⊆ A with µ(A∼C) < �} .

We shall apply Lemma 32 to show F ⊇ B. To this end, first note that obviously all closed
sets are in F ; and, since X is a metric space, the Remark following Lemma 31 shows that
we needn’t worry about open sets.

We now have to show F is closed under countable intersections and countable unions. So,
suppose {Aj}∞j=1 ⊆ F , fix � > 0, and for each j let Cj ⊆ Aj be a closed set with

µ(Aj∼Cj) <
�

2j
.

Note that

� ∞�

j=1

Aj

�
∼
� ∞�

j=1

Cj

�
⊆

∞�

j=1

(Aj∼Cj) .

(If x is in the set on the LHS, then x is in all of the Aj and x /∈ Cj for at least one j: then
x ∈ Aj∼Cj for that particular j, and thus x is in the RHS union). So, by monotonicity and
subadditivity,

µ

�� ∞�

j=1

Aj

�
∼
� ∞�

j=1

Cj

��
�

∞�

j=1

µ (Aj∼Cj) < � .
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Since
∞�

j=1

Cj is closed, this shows that F is closed under countable intersections.

To show that F is closed under countable unions, we calculate similarly:

� ∞�

j=1

Aj

�
∼
� ∞�

j=1

Cj

�
⊆

∞�

j=1

(Aj∼Cj)

=⇒ µ

�� ∞�

j=1

Aj

�
∼
� ∞�

j=1

Cj

��
�

∞�

j=1

µ (Aj∼Cj) < � .

Now,
∞�

j=1

Cj may not be closed, but we can approximate the infinite union from below by

the finite union
n�

j=1

Cj, which will be closed. Note that any set in F can be written as a

countable union of closed sets together with a null set, and thus will be measurable by the
Borelness of µ.1 Thus, since µ(X) < ∞, we can apply Theorem 8(b) to conclude

lim
n→∞

µ

�� ∞�

j=1

Aj

�
∼
�

n�

j=1

Cj

��
= µ

�� ∞�

j=1

Aj

�
∼
� ∞�

j=1

Cj

��
< � .

So,
∞�

j=1

Aj can be approximated from the inside by closed sets, establishing that F is closed

under countable unions, and completing the proof.

To obtain approximations of non-Borel sets, we hypothesise a further property of Borel
measures.

Definition: µ is a Borel regular measure on a topological space X if µ is Borel and if, for
every A ⊆ X, there is a Borel B ⊇ A with µ(B) = µ(A).

REMARK: If A is measurable and µ(A) < ∞ then it follows that µ(B ∼ A) = 0.
However, if either hypothesis fails to hold, then it is possible that no such B exists.

1Alternatively, since we’re only interested in showing F ⊇ B, we can define F to specifically include only
the Borel sets which can be approximated. Then, since µ is Borel, sets in F will automatically be measurable.
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PROPOSITION 34: L m is Borel regular.

PROOF: Consider A ⊆ Rm, and for each n ∈ N let {Pjn}∞j=1 be a covering of A by open
m-boxes for which

∞�

j=1

L m(Pjn) =
∞�

j=1

v(Pjn) � L m(A) +
1

n
.

Let Bn =
∞�

j=1

Pjn ⊇ A. Then Bn is open, and thus Borel, and

L m(Bn) �
∞�

j=1

L m(Pjn) � L m(A) +
1

n
.

Taking B =
∞�

n=1

Bn, it is clear that B ⊇ A is Borel with L m(B) = L m(A), as desired.

THEOREM 35: Suppose µ is a Borel regular measure on a topological space X.

(a) Theorem 8(a) holds for an arbitrary increasing sequence {Aj}∞j=1 of subsets of X:

Aj � A =⇒ µ(Aj) � µ(A) .

(b) 45 If A ⊆ X is measurable with µ(A) < ∞ then there are Borel sets B and D
with D ⊆ A ⊆ B and

(�)

�
µ(B∼A) = 0 ,

µ(A∼D) = 0 .

(c) If A ⊆ X and if either

(i) A is Borel,

(ii) or A is measurable and µ(A) < ∞,

then µwA is Borel regular.

(d) If X is a metric space then Theorem 33, and the subsequent remarks, hold for any

measurable A ⊆ X. In particular, suppose X =
∞�

j=1

Vj with each Vj open and with
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µ(Vj) < ∞. Then for any measurable A ⊆ X with µ(A) < ∞, and for any � > 0, there
is a closed C ⊆ A and an open W ⊇ A for which

µ(A∼C) < � ,(♣)

µ(W ∼A) < � .(♥)

PROOF OF THEOREM 35:

To prove (a), for each j we choose a Borel Bj ⊇ Aj with µ(Bj) = µ(Aj). We would like
to apply Theorem 8(a) to the sequence {Bj}∞j=1 but this sequence may not be increasing.
Instead, we note that

k � j =⇒ Bk ⊇ Ak ⊇ Aj .

Thus Bj ⊇ Dj ⊇ Aj, where Dj =
∞�

k=j

Bk; in particular µ(Dj) = µ(Aj) for each j. Each Dj

is Borel, and {Dj}∞j=1 is increasing. So, we can apply Theorem 8(a) to conclude

lim
j→∞

µ(Aj) = lim
j→∞

µ(Dj) = µ

� ∞�

j=1

Dj

�
� µ

� ∞�

j=1

Aj

�
.

The inequality in the other direction is trivial, and thus (a) is proved.

To prove (c)(i), we assume A is Borel. Then µwA is Borel, by Lemma 9. To show µwA
is regular, we consider E ⊆ X and we show that there is a Borel B ⊇ E with

µwA(B) = µwA(E) .

Since µ is regular, there is a Borel D ⊇ E ∩ A with µ(D) = µ(E ∩ A). We then let

B = D∪ ∼A .
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Clearly B ⊇ E, and since A is Borel, so is B. And,

µwA(B) = µ(A ∩ B) = µ(A ∩D) � µ(D) = µ(E ∩ A) = µwA(E) .

The reverse inequality is trivial, and thus (c)(i) is proved.

Finally, (d) follows immediately from (b) together with Theorem 33.

REMARKS:

• A (not necessarily Borel) measure µ is called regular if, for every A ⊆ X, there is a
measurable B ⊇ A with µ(B) = µ(A). So, of course any Borel regular measure is
regular. Examining the proof, it is easy to see that (a) above holds for any regular
measure.

• The condition in (d) obviously applies to Lebesgue measure, and see Remark (e) after
Theorem 33. Thus (♣) and (♥) will hold for any L m-measurable A ⊆ Rm, whether
or not L m(A) is finite.

APPROXIMATION OF FUNCTIONS

We now want to consider the approximation of measurable functions by continuous func-
tions. We begin with the simple and general result that we can approximate functions in Lp

by finite-valued functions.

LEMMA 36: Suppose µ is a (not necessarily Borel) measure on a set X, and suppose
1 � p � ∞. Then for any f ∈ Lp and for any � > 0 there is a real-valued φ ∈ Lp with finite
range for which �f − φ�p < �.

PROOF: First consider p = ∞, and set M = �f�∞ = ess sup |f |. Choose N ∈ N with
M
N < �, and set 





Dj =
�
x : jM

N � f(x) < (j+1)M
N

�
,

φ =
N�

j=−N

jM
N
χDj .
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Since f is measurable, each Dj is measurable, and thus φ is as well. And, since |f | � M
a.e., it easily follows that �f − φ�∞ � M

N < �, as desired.

Now suppose p < ∞. We’ll assume that f � 0: the result for general f then follows easily
by writing f = f+ − f−, approximating f+ and f−, and applying the triangle inequality.

By Lemma 20, we can write

f =
∞�

j=1

ajχAj aj > 0 .

Now let

φn =
n�

j=1

ajχAj .

Then 0 � φn � f and φn→f a.e. By assumption f ∈ Lp, and so we can apply the Dominated
Convergence Theorem (Theorem 22) to give

lim
n→∞

�f − φn�pp = lim
n→∞

�
|f − φn|p = 0 .

Thus, for n large we have �f − φn�p < �, as desired.

So, quite generally, a function f ∈ Lp can be approximated by a finite sum φ =
�

ajχAj

of characteristic functions. We now ask: if µ is a Borel measure on a topological space,
can f be approximated by continuous functions? Of course, it is enough to approximate φ
as given by Lemma 36. So, by the triangle inequality on Lp, it is enough to consider the
approximation of a characteristic function χA of a measurable A ⊆ X with µ(A) < ∞.
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We first consider L∞, where in general there is no hope of approximating by continuous
functions. For example, consider Lebesgue measure L on R and let A = [0, 1]. Since any
continuous g : R → R∗ cannot instantaneously leap from 1 to 0, it is clear that we have
�χA − g�∞ � 1

2 .

This is quite generally the case, since for X a compact topological space, the space C(X)
of continuous functions on X is complete with respect to the sup norm. Thus, as long as
µ(V ) > 0 for every non-empty open V ⊆ X, C(X) will be a closed subspace of L∞. This
implies that no discontinuous functions in L∞ can be approximated by continuous functions.2

Now what about approximating by continuous functions in Lp for p < ∞? Here, we
certainly have more hope. For example, it is clear that χ[0,1] can be approximated in Lp(L )
by a continuous g, by setting g = 1 on [0, 1], and then ensuring g decays to 0 sufficiently
quickly. This is the key idea, and we shall show it works in broad generality, but one has
to be careful. For example if A is not a closed set, then setting a continuous g to be 1 on
A still means that g will be 1 on all of the closureA of A, which could result in an awful
approximation: if A = Q, the continuous extension g of χQ cannot take into account the
measure-triviality of χQ. This problem is not always solvable:

There is a Borel regular measure µ on R (usual metric) and a µ-measurable A ⊆ R
with µ(A) < ∞, such that χA cannot be approximated by continuous functions in Lp for
any p < ∞.

2If the measure µ trivialises the topology, then discontinuous functions can be approximated in an anal-

ogously trivial sense. For example, let X = R and consider the measure µ =
�

j∈Z
µj , where µj is the Dirac

measure at j. Then µ ignores everything between the integers, which means we can approximate any f ∈ L∞

by a continuous g ∈ L∞, simply by setting g(j) = f(j) and then joining the dots by straight lines. But this
is not a true approximation, because g ≡ f in L∞. That is, f and g are simply different representatives of
the same equivalence class �f = �g ∈ L∞.
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To obtain the desired continuous approximations, the first step is to try to replace A by
a closed set C ⊆ A with

µ(A∼C) < � .

Then �χC − χA�p < �
1
p , and it is thus sufficient to approximate χC . So, we want to set g = 1

on C and then have g quickly descend to 0. The second step is to ensure that the region
where g dies out has small measure. This will be possible as long as:

• We can find an open W ⊇ C with µ(W ∼C) < �;

• Given such C and W , we can find a continuous g :X→ [0, 1] such that

g(x) =

�
1 x ∈ C ,

0 x ∈∼W .

C

A

W

∼W

Any such continuous g will give the desired approximation to χA, since

�g − χA�p � �g − χC�p + �χC − χA�p � �χW − χC�p + �χC − χA�p < 2�
1
p .

For X a metric space, Theorems 33 and 35(d) are exactly designed to give us the needed
approximating sets C and W . What about g? It is not obvious, once we have defined g on
C and W , how we can extend g to a continuous function on all of X. However, in a metric
space, this turns out to be easy: we can simply define

(�) g(x) =
dist(x,∼W )

dist(x,∼W ) + dist(x, C)
.

(If W = X this formula makes no sense, but in that case we can just set g ≡ 1 everywhere).
It is easy to check that g has the desired properties. Thus, putting all of the above discussion
together, we have

THEOREM 37: Suppose µ is a Borel regular measure on a metric space X, and suppose

that X =
∞�

j=1

Vj with each Vj open and µ(Vj) < ∞. Then C(X) is dense in Lp for 1 � p < ∞.
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Theorem 37 in particular applies to Lebesgue measure on Euclidean space (see the discus-
sion below). For general metric spaces, it is not quite clear what are the natural hypotheses to
make. The following (not immediately obvious) Lemma motivates the subsequent definition:

48 LEMMA 38: Suppose X is a locally compact and separable metric space. Then

we can write X =
∞�

j=1

Vj with Vj open and V j compact.

Definition: Suppose µ is a Borel regular measure on a locally compact and separable metric
space. We say µ is a Radon measure if µ(K) < ∞ for every compact K ⊆ X.

Lebesgue measure is the obvious example of a Radon measure. And, the purpose of
Lemma 38 is that it implies Theorem 37 applies for all Radon measures. However, in the
Radon setting we can actually prove more.

If X is a separable and locally compact metric space then, with the notation of Lemma
38, any closed C ⊆ X is the countable union of the compact sets C ∩ V j. Then, if µ is
Radon, we can apply Theorem 8(b) to obtain a refinement of Theorem 35(d): If A ⊆ X is
measurable with µ(A) < ∞ then there is a compact K ⊆ A with µ(A∼K) < � . As before,
we can then find open W ⊇ K with µ(W ∼K) < �. But the compactness of K, ensuring
that finitely many Vj are sufficient to cover W , means that we can also demand that W be
compact. Then the continuous function g defined by (�) will be 0 outside of W , and so will
have compact support.3 We thus have proved:

THEOREM 39: Suppose that X is a separable and locally compact metric space, and
suppose that µ is a Radon measure on X. Then, for 1 � p < ∞, the space C0(X) of
compactly supported continuous functions on X is dense in Lp.

We shall close with some brief remarks on the special case of Lebesgue measure on Eu-
clidean space, and on the more general case of Radon measures on topological spaces. Again,
we consider Lp(X) for 1 � p � ∞.

LEBESGUE MEASURE

Suppose X ⊆ Rm is L m-measurable. Measurable functions on X can be thought as
measurable functions on Rm by extending them to be 0 off of X. So, by our previous
remarks, C(Rm) is dense in Lp(X), and thus C(X) is dense in Lp(X). Theorem 39 also

3The support of a continuous function g is defined to be the closure of {x : g(x) = 0}.
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promises us that C0(Rm) is dense in Lp(X), but is it the case that C0(X) is dense in Lp(X)?
That is, can we take the approximating continuous functions to have support within X? By
Theorem 39, this will be true if X is locally compact; so for example, it is true if X is either
closed or open.4

Even if X is not locally compact, we can be more precise. Given � > 0, we can always
find an open W ⊇ X with L m(W ∼X) < �. Then C0(W ) will be dense in Lp(X).

Suppose now that X is bounded. Then we can place X and W ⊇ X in an open and
bounded m-box P : extending any g ∈ C0(W ) to be 0 outside W , we can then regard g a
function on P . But then the Stone-Weierstrass Approximation Theorem (Handout 0) says
that any such g can be approximated uniformly, and thus in Lp, on P by polynomials.5 The
polynomials themselves can be approximated by polynomials with rational coefficients: since
there are only countably many such polynomials, this proves that Lp(X) is separable.

Suppose now that X is not necessarily bounded. A given g ∈ C0(W ) on an open W ⊇ X
can still be uniformly approximated by polynomials with rational coefficients within any
box P containing the support of g. We can then cut off any such polynomial so that it has
support only slightly larger than P : with these cut-off polynomials, we can then approximate
anything in Lp(X). Thus, whether or not X is bounded, Lp(X) is separable, and a countable
dense subset can be chosen from C0(Rn).6

RADON MEASURES ON GENERAL TOPOLOGICAL SPACES

On a general topological space X, we effectively define Radon measures to be those for
which Theorem 39 holds. We consider X locally compact and Hausdorff. Then a measure µ
on X is defined to be Radon if µ is Borel, and if:

(a) µ(K) < ∞ for every compact K ⊆ X;

(b) µ(V ) = sup{µ(K) : K ⊆ V,K compact} for every open V ⊆ X;

(c) µ(A) = inf{µ(W ) : W ⊇ A,W open} for every A ⊆ X.

4Of course, if X is compact then C0(X) = C(X).
5The Stone-Weierstrass Approximation Theorem is very general: see, for example, Ch 9 of Real Analysis

by H. Royden (Prentice Hall, 3rd ed., 1988). So, in fact the discussion here applies to many settings beyond
Euclidean space.

6If X ⊆ Rm is L m-measurable with L m(X) > 0, then it is easy to show that L∞(X) is not separable.
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It is immediate that a Radon measure is Borel regular, and the discussion before Theorem
39 shows that this definition agrees with our previous definition of a Radon measure on a
separable metric space. It is not obvious that (b) holds for all measurable A ⊆ X: with a
little work one can show this is true if µ(A) < ∞.7

More easily, if A is measurable and if µ(A) < ∞ then A can be approximated from the
outside by an open W with W compact; then, by (c), W can be approximated from the
inside by a compact K. This is exactly the type of set-up we created to prove Theorem 37
and Theorem 39. The remaining question is, can we find a continuous g :X → [0, 1] with
g = 1 on K and g = 0 on ∼W? In the topological setting this is not so obvious: we cannot
simply write down a formula such as (�). However, if X is normal and second countable
then X is metrizable by the Urysohn Metrization Theorem (Handout 0), and we can use
(�) as above. In fact, if X is locally compact and Hausdorff then such a g still exists, by
Urysohn’s Lemma.8 We can therefore still conclude

Theorem 40: Suppose µ is a Radon measure on a locally compact and Hausdorff topo-
logical space. Then C0(X) is dense in Lp for 1 � p < ∞.

7See §2.2.5 of Geometric Measure Theory by H. Federer (Springer, 1991).
8See Handout 0 and, for example, §§8.3,9.5 of Real Analysis by H. Royden ( 3rd ed., Prentice Hall, 1988).

Note that it is critical here that one of the closed sets, K or ∼W , be compact: that is, a locally compact
Hausdorff space need not be normal. One counterexample is a creature called the Deleted Tychonof Plank:
see Counterexamples in Topology by L. Steen and J. Seebach (Dover, 1995).
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SOLUTIONS

45 Suppose µ is a Borel regular measure on a topological space X. We want to show that
if A ⊆ X is measurable with µ(A) < ∞ then there are Borel sets B and D with D ⊆ A ⊆ B
and �

µ(B∼A) = 0 ,

µ(A∼D) = 0 .

The existence of B ⊇ A follows from the previous exercise. Then, we can also find a Borel
C ⊇ B∼A with µ(C∼(B∼A)) = 0. We now let D = B∼C.

Then D is Borel and
∼C ⊆∼(B∼A)

=⇒ D = B∼C ⊆ B∼(B∼A) = A .

Also, since A ⊆ B,

A∼D = A∩ ∼(B∼C) = A ∩ (∼B ∪ C) = C ∩ A ⊆ C∼(B∼A) .

Thus µ(A∼D) = 0.

Let X = R with the usual topology, and define µ = µ0wQ be counting measure
restricted to the rationals. From Theorem 35, it is immediate that µ is Borel regular. It is
also clear that if f is continuous and f ∈ Lp for some 1 � p < ∞, then f ≡ 0: otherwise,
we would have |f | > δ for some δ > 0 and on some open interval, and since the interval
contains infinitely many rationals, we would immediately have

�
|f |p = ∞. Thus, we cannot

approximate anything non-trivial in Lp with continuous functions. For example, χ{0} is Lp

but cannot be approximated by continuous functions.

Note that µ is a σ-finite measure, since R =∼Q∪
�

qn∈Q

{qn}. However, we cannot write R

as a countable union of open sets of finite µ-measure.
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