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INTRODUCTION

Given a measure µ on X and a function f :X → R∗, we now want to define the integral

�
f dµ .

The key properties we aim for are: the area-of-a-rectangle behaviour on characteristic func-
tions, �

χ
A dµ = µ(A) ;

and linearity, 




�
f + g dµ =

�
f dµ +

�
g dµ ,

�
cf dµ = c

�
f dµ

The integrals of characteristic functions will be built into the definition at the first step, but
additivity will be much less obvious. With our approach,1 the integral of a measurable func-
tion is automatically defined, subject to concerns about ∞. However, the proof of additivity
comes quite late, as a consequence of the key convergence theorems. Not surprisingly, there
are other roads to Rome: we’ll point out some of these along the way.

1We’ll largely follow the approach in §11 of Real Analysis by H. Royden (Prentice Hall, 3rd ed., 1988),
and §2 of Real Analysis by G. Folland (Wiley, 1984).
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SIMPLE FUNCTIONS

Definition: Suppose µ is a measure on X. A function φ :X→R∗ is simple (more precisely,
µ-simple) if φ is measurable, φ � 0 a.e., and if φ has countable range Y = {h1, h2, . . . } off
of a null set N⊆X: that is, φ−1(Y ) = X∼N .

This definition is slightly cumbersome, but it has the advantage of being measure-theoretic:
a simple function φ remains simple when changed (or is undefined) on a null set. Eliminat-
ing the null set, we then have the canonical representation of φ as a sum of characteristic
functions: 





φ =
∞�

j=1

hj · χAj hj > 0 ,

Aj = φ
−1({hj}) = {x ∈ X : φ(x) = hj} .

We have specified that each hj is positive in this representation, which is legitimate since the
possible existence of a term hj = 0 adds nothing to the sum. Note also that the measurability
of φ implies the measurability of each Aj. We also emphasise, what characterises such a
representation as being canonical is that each Aj is non-empty, and

j �= k =⇒
�
hj �= hk ,

Aj ∩ Ak = ∅ .

Given such a representation of φ, it is clear that we want to define

(�)

�
φ dµ =

∞�

j=1

hjµ(Aj)
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We make some simple remarks.

• It is clear that
�
φ is independent of the null set N . In particular, if φ is simple and

ψ = φ a.e. then ψ is simple and
�
φ =

�
ψ.

• It is more standard to define simple functions to have finite rather than countable range,
and to not necessarily be nonnegative. Also, one can restrict simple functions to be
real-valued. None of these variations makes a substantial difference to the arguments
that follow.

• In the definition of the integral, we use the convention 0 ·∞ = 0 if need be. That is,
the integral on a null set will be 0, even for an infinite valued function.

• We write
�
φ if the context is clear.

•
�
φ dµ � 0, with equality iff φ = 0 almost everywhere.

The definition of
�
φ dµ for a simple function φ is clear and unambiguous, but it is

important to realise that we only know the value of
�
φ if φ is written in canonical form. For

example, suppose φ =
�

hj
χ
Aj and ψ =

�
mk

χ
Bk

are simple functions in canonical form.
Then ψ + φ is simple, since there are at most countably many possible outputs hj + mk.
However, we do not automatically have the canonical representation of φ+ψ. Consequently,
the proof of the following lemma is a bit fiddly.

25 LEMMA 16: Suppose φ and ψ are simple functions on X. Then φ + ψ is simple
and �

φ+ ψ dµ =

�
φ dµ +

�
ψ dµ (additivity).

If φ and ψ are simple with φ � ψ < ∞ a.e., then ψ − φ is also simple. Writing ψ =
φ+ (ψ − φ), it is then immediate from the previous lemma that

φ � ψ a.e. =⇒
�

φ dµ �
�

ψ dµ (monotonicity).

For this argument we assumed ψ < ∞ a.e., but if this is not the case then the monotonicity
conclusion is trivial.
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INTEGRABLE AND SUMMABLE FUNCTIONS

Definition: Suppose µ is a measure on X and that f :X→R∗ is measurable.

(a) If f � 0 we define

�
f dµ = sup

��
φ dµ : φ simple and φ � f a.e.

�

where
�
φ is defined by (�).

(b) For general f we write
f = f

+ − f
−
,

where f
+ = max(f, 0) and f

− = −min(f, 0). If either
�
f
+ dµ or

�
f
− dµ is finite we

say f is µ-integrable and we define

�
f dµ =

�
f
+ dµ −

�
f
− dµ

If
�
f dµ exists and is finite, we say f is µ-summable.2

We make some easy remarks:

• We use the terms integrable and summable, and we write
�
f , when the context is clear.

Also, when we need to identify the variable of integration, we’ll write
�

f(x) dµ(x) .

• If f is simple then, by the monotonicity conclusion following Lemma 16, this definition
of

�
f is consistent with the definition provided by (�).

• Any nonnegative measurable function is automatically integrable.

• We have defined
�
f in terms of what could be called a lower integral. Analogous

to the case of Riemann sums, one could analogously define an upper integral, as an
inf obtained over simple functions φ � f . One approach, then, is to define f to be
integrable if the lower and upper integrals agree.3 It is then a fundamental theorem
that, subject to ∞ concerns, measurable functions are integrable; see Proposition 24.

2Many texts do not directly consider what we refer to as integrable functions, and they use the term
“integrable” to refer to what we are calling summable.

3See, for example, Measure Theory and Fine properties of Functions, by L. C. Evans and R. Gariepy
(CRC, 1991).
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The obvious property that we desire of the integral is linearity. Scaling is easy:

c ∈ R∗ =⇒
�

cf dµ = c

�
f dµ as long as both sides make sense.

However, additivity is not so simple. As a first step, we have

LEMMA 17: Suppose µ is a measure on X.

(a) If f, g � 0 are measurable functions on X then
�

f + g dµ �
�

f dµ +

�
g dµ .

(b) If {fj � 0}∞
j=1 is a sequence of nonnegative measurable functions on X then

� � ∞�

j=1

fj

�
dµ �

∞�

j=1

�
fj dµ

The reverse inequalities, and then additivity in general, will be established in the next
section. For now, we note two useful consequences of Lemma 17, which hold for all (not
necessarily nonnegative) integrable functions:

27 If f and g are integrable, and if f � g a.e., then

�
f dµ �

�
g dµ .

If f and g are summable then equality occurs iff f = g a.e..

If f is integrable then
����
�

f dµ

���� �
�

|f | dµ .

Notice that a further consequence of Lemma 17(a) is, if A ⊆ X is measurable and f is
integrable (summable) then so is fχA. Consequently, we can define

�

A

f dµ =

�
f · χA dµ
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With this notation, we now emphasise a particular consequence of Lemma 17(b) and mono-
tonicity. Suppose that f � 0 is measurable and that {Aj}∞j=1 is a sequence of pairwise
disjoint measurable sets. The pairwise disjointness implies χ∪Aj =

�
χ
Aj . Then

�
fdµ �

�
f · χ∪Aj dµ =

� ∞�

j=1

f · χAj dµ �
∞�

j=1

�
f · χAj dµ =

∞�

j=1

�

Aj

f dµ .

CONVERGENCE THEOREMS

Suppose µ is a measure on X and {fj}∞j=1 is a sequence of integrable functions on X. If
fj converges (pointwise) to some function f we can then ask

�
f

?
= lim

j→∞

�
fj dµ .

We know that f will be measurable (Proposition 15), and so if each fj is nonnegative then f

will be integrable. In this setting, the RHS at least makes sense, but we still may not have
equality.4 For example, let µ = L on R, and let

fj = j · χ(0, 1j )
.

Then fj→f = 0 pointwise, but

�
fj dL → 1 �= 0 =

�
f dL .

In the Fundamental “Lebesgue is better than Riemann” Theorem (Handout 1), we promised
that equality would hold for Lebesgue measure in case the fj were uniformly bounded on
the domain [a, b]. The danger is ∞, in either the range or the domain, but the danger can
be controlled without being so restrictive. We shall prove this result, but as a special case
of the more general Dominated Convergence Theorem (Theorem 22) for general measures.

4The equality is very easy to prove if µ(X) < ∞ and if fj →f uniformly off of a null set. However, this
is a very strong hypothesis to impose.
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The first step, and the main work, is

THEOREM 18 (Fatou’s Lemma): Suppose µ is a measure on X, and suppose that
{fj � 0}∞

j=1 is a sequence of nonnegative measurable functions on X, and that fj→f almost
everywhere. Then �

fdµ � lim inf
j→∞

�
fjdµ .

Fatou’s Lemma is not obvious. We prove it below, but we first make some comments and
establish various consequences.

The example above shows that we may have strict inequality in Fatou’s Lemma. Also,
the lim inf is necessary, as the limit of the integrals need not exist.5 As well, we don’t need
to hypothesise that the the sequence {fj} has a limit: it follows from Theorem 18 that

For any sequence {fj}∞j=1 of nonnegative measurable functions,

�
lim inf
j→∞

fjdµ � lim inf
j→∞

�
fjdµ .

THEOREM 19 (Monotone Convergence Theorem): Suppose µ is a measure on X,
and suppose 0 � f1 � f2 � . . . is an almost everywhere increasing sequence of nonnegative
measurable functions. Let f = lim fj. Then

�
fdµ = lim

j→∞

�
fjdµ .

PROOF: f is defined a.e. (since the sequence fj(x) is increasing except for possibly a null
set of x), and for each j we have f � fj a.e.. Thus

�
f �

�
fj. Taking the limit, we have

�
fdµ � lim

j→∞

�
fjdµ .

(Note that the RHS limit clearly exists in R∗). The reverse inequality is exactly the conclusion
of Fatou’s Lemma.

Since we have additivity for simple functions (Lemma 16), The Monotone Convergence
Theorem implies that we can integrate a series of such functions term by term:

� ∞�

j=1

φj dµ =

�
lim
n→∞

n�

j=1

φj dµ = lim
n→∞

� n�

j=1

φj dµ = lim
n→∞

n�

j=1

�
φj dµ =

∞�

j=1

�
φj dµ .

5As an example, for j odd let fj = j · χ(0, 1j )
as above, and for j even let fj = 0.
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This leads to a practical characterization of the integral.

LEMMA 20: Suppose µ is a measure on X, and suppose f :X→ [0,∞] is nonnegative.

(a) We can write

f =
∞�

j=1

ajχAj .

for some aj � 0 and some Aj ⊆ X. If f is measurable then we can arrange for the Aj

to be measurable.

(b) If f is measurable then, given any such representation of f , we have
�

f dµ =
∞�

j=1

ajµ(Aj) .

PROOF: (b) follows immediately from (a), Lemma 16 and the remark above. To prove (a),
set

a1 = 1 and A1 = {x : f(x) � 1}.
Then set

a2 =
1
2 and A2 =

�
x : f(x)− 1 · χA1(x) � 1

2

�
.

In general, define

aj =
1
j
and Aj =

�
x : f(x)− 1 · χA1(x)− 1

2 · χA2(x)− . . .
1

j−1 · χAj−1(x) � 1
j

�
.

Clearly,

f(x) �
n�

j=1

ajχAj(x) for all n ∈ N and x ∈ X

=⇒ f(x) �
∞�

j=1

ajχAj(x) for all x ∈ X.
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To prove the reverse inequality, we consider two cases.

Case (i): x ∈ Aj for all but finitely many j.

In this case,

�

x∈Aj

aj =
�

x∈Aj

1

j
= ∞ (since only finitely many terms are missing)

=⇒
∞�

j=1

ajχAj(x) = ∞ � f(x) .

Case (ii): x /∈ An for infinitely many n.

In this case, for any such n,

f(x) <
n−1�

j=1

ajχAj(x) +
1

n
�

∞�

j=1

ajχAj(x) +
1

n
.

Since this is true for infinitely many n, we have the desired inequality by the Thrilling
�-Lemma.

Lemma 20 provides us with the desired flexibility in evaluating integrals. In particular,
it finally allows us to prove additivity:

30 THEOREM 21: Suppose that µ is a measure on X and that f and g are integrable
functions on X. Then �

f + g dµ =

�
f dµ +

�
g dµ

as long as the RHS is well-defined. In particular, the sum of two summable functions is
summable.

With additivity in hand we now have a version of the Monotone Convegence Theorem for
infinite series: if {fj} is a sequence of nonnegative measurable functions then

� ∞�

j=1

fj dµ =
∞�

j=1

�
fj dµ (fj � 0).

The proof is exactly as for simple functions above.
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Finally, we have a very general convergence theorem:

THEOREM 22 (Dominated Convergence Theorem): Suppose that µ is a measure
on X and that {fj} is a sequence of measurable functions on X, with fj →f a.e.. Suppose
that there is a summable function g such that |fj| � g a.e. for each j. Then

lim
j→∞

�
|f − fj| dµ = 0 .

In particular, �
fj →

�
f .

REMARK: Setting µ = L w[a, b] and g = M = sup
j,x

{|fj(x)|}, the Dominated Convergence

Theorem gives the long-promised convergence theorem for the integrals of uniformly bounded
functions.6

PROOF: Clearly, |f | � g a.e., and so |f − fj| � |f |+ |fj| � 2|g| a.e.. So, by Fatou’s Lemma,

�
2g =

�
lim
j→∞

(2g − |f − fj|) � lim inf
j→∞

�
(2g − |f − fj|) =

�
2g − lim sup

j→∞

�
|f − fj| .

Subtracting
�
2g from both sides, we see

lim sup
j→∞

�
|f − fj| � 0 ,

which clearly implies the first claim. The second claim follows, since
��� (f − fj)

�� �
�
|f−fj|.

We note that the Dominated Convergence Theorem (and similarly, each of the other con-
vergence theorems) has an obvious generalization to a family {fh} of functions parametrized
by a real variable h ∈ (0, 1): here, we hypothesise that fh → f a.e. as h→ 0+, with each
|fh| � g. Supposing that

�
|fh − f | � 0, we would then have a sequence hn → 0+ with�

|fhn − f |�0, contradicting Theorem 22. We also have:

6In the Riemann context, our W (x) example proved that the limiting function may not be integrable.
However, in fact this is all that can really go wrong. See “Arzela’s dominated convergence theorem for the
Riemann integral” by W. A. J. Luxemburg, American Mathematical Monthly, 78 (1971), 970-979.
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THEOREM 23 (Generalized Dominated Convergence Theorem): Suppose
that µ is a measure on X and that {fj} is a sequence of measurable functions on X, with
fj→f a.e.. Suppose that for each j there is a summable function gj such that |fj| � gj a.e.,
and suppose that there is a summable function g such that gj→g a.e. and

�
gj→

�
g. Then

lim
j→∞

�
|f − fj| dµ = 0 .

Finally, we provide the promised

PROOF OF FATOU’S LEMMA: With 0 � fj→f a.e., we want to show lim inf
j→∞

�
fj �

�
f .

It suffices to fix t with 0 < t < 1, to fix a simple function φ � f a.e., and to show

(∗) lim inf
j→∞

�
fj � t

�
φ .

Further, to simplify notation, we can assume φ < ∞ everywhere. (If f = ∞ on a set A of
positive measure, we can set φ = N · χA for N ∈ N, and it suffices to prove (∗) for such φ).

Write φ in canonical form:

φ =
∞�

j=1

hj · χAj Aj = φ
−1({hj}) 0 < hj < ∞ .

So �
φ dµ =

∞�

j=1

hjµ(Aj)

Changing each Aj by a null set, we can assume fj→f and f � φ on all of ∪jAj. Then

x ∈ Aj =⇒ f(x) � φ(x) = hj

=⇒ for some n, if k � n then fk(x) � thj (since fk(x)→f(x)).

Thus, as n→∞,
Bjn � Aj

where
Bjn = Aj ∩ {x : fk(x) � thj for all k � n} .
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The collection {Bjn}j is pairwise disjoint, so

fn �
∞�

j=1

fnχBnj .

Then, since the {Bjn} are measurable, Lemma 17 (see the subsequent discussion) implies

�
fn �

� � ∞�

j=1

fnχBjn

�
�

∞�

j=1

�

Bjn

fn �
∞�

j=1

thjµ(Bjn) .

The sum on the right increases with n (since Bjn increases), giving at least as good a bound
for

�
fk for k � n. Thus,

(∗) inf
k�n

�
fk � t

∞�

j=1

hjµ(Bjn) .

Next, by continuity of µ (Theorem 8), we have µ(Bjn) � µ(Aj) as n→∞. So, taking the
limit in (∗) as n→∞, we obtain

lim inf
n→∞

�
fn = lim

n→∞
inf
k�n

�
fk � t

∞�

j=1

hjµ(Anj) = t

�
φ ,

as desired.
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LEBESGUE, RIEMANN AND THE FUNDAMENTAL THEOREM

Suppose f is a bounded function on [a, b]. We want to compare the Lebesgue integrability
and Riemann integrability of f . For this, we briefly recall the theory of Riemann integration.7

We consider a partition α = {a = t0 < t1 < · · · < tn = b} of [a, b]. Given such a partition,
we consider the sup and inf of f on each subinterval:

�
uj = sup{f(x) : tj−1 � x � tj} ,

lj = inf{f(x) : tj−1 � x � tj} .

This gives us the upper and lower sums associated with α:






Uα =
n�

j=1

uj(tj − tj−1) ,

Lα =
n�

j=1

lj(tj − tj−1) .

If the supremum of the lower sums (over all partitions α) equals the infimum of the upper
sums, we say that f is Riemann integrable, and we define the Riemann integral to be this
common value:8

sup
α

Lα =

b�

a

f(x) dx = inf
α

Uα .

The definition of our measure-theoretic integral involves no upper sums, but we do have
such a characterization as a lemma:

7For more details, see, for example, §32 of Elementary Analysis by K. Ross (Springer, 1980).
8This is Darboux’s formulation of the Riemann integral. The Riemann formulation (actually due to

Cauchy) is to consider sums of the form
�

f(tj)(tj − tj−1). If, as the maximum subinterval of the partition
converges to 0, these sums converge to one value I, then we call I the Riemann integral of f . One can
show that the Darboux formualtion is equivalent to the Cauchy-Riemann version. See §2.4 of Theories of

Integration by D. Kurtz and C. Swartz, (World Scientific, 2004).
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32 LEMMA 24: Suppose µ is a measure on X, and f :X→R∗ is measurable. Then

(a) If f � 0 then �
f dµ = inf

��
ψ dµ : ψ � f a.e.,ψ simple

�
.

(b) If f is integrable then

�
f dµ = sup

��
φ dµ : φ � f a.e.,φ(X) countable

�

= inf

��
ψ dµ : ψ � f a.e.,ψ(X) countable

�
.

A natural comparison of Riemann and Lebesgue integrals easily follows: if f : [a, b]→R is
continuous on the bounded interval [a, b] then f is both Lebesgue summable and Riemann
integrable, and the two integrals are equal:

�

[a,b]

f dL =

b�

a

f(x) dx .

Generalizing, the definitive result comparing Riemann and Lebesgue is:9

33 THEOREM 25: Suppose f : [a, b]→R is bounded.

(a) Suppose f is Riemann integrable. Then f is Lebesgue measurable, and thus Lebesgue
summable, and the Riemann and Lebesgue integrals are equal.

(b) f is Riemann integrable iff the set of points where f is discontinuous is a null set.

Thus, measure theory tells us exactly the limits of Riemann integration. For example, if
C is the Cantor set then χ

C : [0, 1]→R is discontinuous at exactly the points of the Cantor
set; by Theorem 25, χC must be Riemann integrable, but anything “worse” will not be. In

particular, if D is a Cantorlike set of positive Lebesgue measure (see 10 ), then χ
D will not

be Riemann integrable. Note also that, unlike the Weird function W (x) = χQ∩[0,1], χD is not

9See, for example §2.3 Real Analysis by G. Folland (Wiley, 1984).
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even equivalent in the a.e. sense to a Riemann integrable function: we cannot adjust χD on
a null set to make it Riemann integrable.

An important corollary of Theorem 25 (and in practice the consideration of continuous
functions usually suffices) is that we can now apply any established (or accepted) Riemann
theorems. In particular, we now have the Fundamental Theorem of Calculus:10 If F : [a, b]→
R is differentiable on (a, b) and continuous on [a, b], and if F � is Riemann integrable then

�

[a,b]

F
� dL =

b�

a

F
�(x) dx = F (b)− F (a) .

However, this is being lazy. In fact, with a little work we can directly prove a Lebsgue
version:

34 THEOREM 26 (Fundamental Theorem of Calculus - Easy Version): If

F : [a, b]→R is differentiable on (a, b) and continuous on [a, b], and if F � is bounded, then

�

[a,b]

F
� dL = F (b)− F (a) .

Note that Theorem 26 is not the optimal result: rather than assuming F
� is bounded,

the result still holds if F � is merely summable.11 However, the immediate consequences of
Theorem 26 – integration by parts, substitution and so on – give us practical methods for
evaluating the (Riemann = Lebesgue) integrals of concrete, everyday functions.12

It will also come as no great surprise that there is also a very general measure theory
version of the Fundamental Theorem of Calculus, which includes the Lebesgue version as a
special case. This is the theory of differentiation of measures, which we’ll consider later.13

10See, for example, §34 of Ross, referenced above.
11See, for example, §6 of An Introduction to Measure and Integration by I. Rana (2nd ed., AMS, 2002).
12See §34 of Ross, referenced above. Note that none of the theorems we proved on Lebesgue integration

were concerned with questions of practical computation.
13See, for example, Theorem 1.6.2 of Evans and Gariepy.
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Finally, we make some quick observations about improper Riemann integrals.14 Here one
has to be more careful. For example, consider the function f : [0,∞)→R where

f(x) =
∞�

j=1

(−1)j+11

j
χ[j−1,j)

f is not Lebesgue summable, since





�
f
+ dL =

�

k odd

1

k
= ∞ ,

�
f
− dL =

�

k even

1

k
= ∞ .

By contrast, f is improperly Riemann integrable, since

∞�

0

f(x) dx = lim
A→∞

A�

0

f(x) dx = lim
n→∞

n�

j=1

(−1)j+11

j
=

∞�

j=1

(−1)j+11

j
is well-defined and finite.

However, subject to summability issues, Theorem 26 still applies in the improper setting.
For example if f � 0 is improperly Riemann integrable then f is Lebesgue integrable and the
two integrals are equal. Of course, to give a precise statement and proof of this, one needs to
be clear about the permitted asymptotic behaviour of f ; in any standard setting, Theorem
26 together with either the Monotone Convergence Theorem or the Dominated Convergence
Theorem is the basis of the proof.

14It is natural to consider defining directly the Riemann integrals of unbounded functions. However, this
turns out to trivialize: with either the Darboux or Riemann formulation an unbounded function will have an
infinite Riemann integral. See §2.2 of Kurtz and Swartz, referenced above. The Henstock-Kurzweil integral

is a modern variation of the Riemann integral which allows unbounded functions to be treated directly. See
§4 of Kurtz and Swartz.
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DIFFERENTIATING UNDER THE INTEGRAL SIGN

We end with an application of the Dominated Convergence Theorem. Suppose µ is a
measure on X, I ⊆ R is an open interval, and F : X × I → R. Assume x �→ F (x, t) is
summable for each t ∈ I and define

f(t) =

�
F (x, t) dµ(x) .

We can then ask whether

(∗) f
�(t)

?
=

�
D2F (x, t) dµ(x) ,

where

D2F (x, t) =
∂F

∂t
= lim

h→0

F (x, t+ h)− F (x, t)

h
.

That is, can we evaluate the derivative f
�(t) by differentiating under the integral sign?

This is a very common step in mathematical analysis, but it is not always legal, even if
both sides of (∗) are well-defined.15

For example, if we take X = R, µ = L w[0,∞) and F (x, t) = t
3
e
−t

2
x, then (∗) fails

to hold.16

However, we can establish quite general conditions under which (∗) will hold:

THEOREM 27: With the notation above, suppose

• For each t ∈ I, the function x �→ F (x, t) is µ-summable;

• For each t ∈ I, D2F (x, t) exists for µ-a.e. x ∈ X;

• There is a summable function M :X→R with

sup
t∈I

|D2F (x, t)| � M(x) for µ-a.e. x ∈ X.

Then f is differentiable, and (∗) holds for all t ∈ I.

15For an example of such an error made 190 years ago – and which still appears – see Some Divergent

Trigonometric Integrals by Erik Talvila, American Mathematical Monthly 108 (2001), 432-436.
16This example is improper if thought of as a Riemann integral, but that’s not the source of the problem.

A proper example can be obtained by making the integral substitution y = 1
x on the interval x ∈ (1,∞).
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SOLUTIONS

25 We want to prove that if φ and ψ are simple then
�
φ + ψ =

�
φ +

�
ψ. Changing

φ and ψ on null sets, we can write






φ =
∞�

j=1

ajχAj {Aj} pairwise disjoint, {aj} distinct

ψ =
∞�

k=1

bkχBk
{Bk} pairwise disjoint, {bk} distinct

Include A0 = φ
−1(0) and B0 = ψ

−1(0) to ensure ∪Aj = ∪Bk = X. Now let

�
Cjk = Aj ∩Bk

djk = aj + bk .

Then

φ+ ψ =
∞�

j,k=0

djkχCjk
.

This is not canonical, but we can write hl for the (countably many) distinct positive values
of djk, and write

Hl =
�

djk=hl

Cjk = {x : φ(x) + ψ(x) = l} .

Then we have the canonical expression

φ+ ψ =
∞�

l=1

hl
χ
Hl

=⇒
�

φ+ ψ =
∞�

l=1

hlµ(Hl) =
∞�

l=1

hl




�

djk=hl

µ(Cjk)



 =
∞�

j,k=0

(aj + bk)µ(Aj ∩ Bk) ,

(using additivity on the disjoint sets Cjk, and rearranged the nonnegative series). So,

�
φ+ ψ =

∞�

j=1

aj

� ∞�

k=0

µ(Aj ∩Bk)

�
+

∞�

k=0

bk

� ∞�

j=0

µ(Aj ∩Bk)

�

=
∞�

j=0

ajµ(Aj) +
∞�

k=0

bkµ(Bk) =

�
φ+

�
ψ .
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27 Suppose f and g are integrable, and f � g a.e. We want to show
�
f �

�
g, with

equality iff f = g a.e.

First assume 0 � f � g a.e. If φ � f a.e. then φ � g a.e.. So, by the definition of
�
g,

we have
�
φ �

�
g. Taking the sup over such φ, we see

�
f �

�
g. For general f, g, write

f = f
+ − f

− and g = g
+ − g

−. Noting that f+ � g
+ and f

− � g
−, it easily follows from the

nonnegative case that
�
f �

�
g .

Next, if
�
f =

�
g we want to show f = g a.e. (the converse implication is trivial). Now,

again, by splitting into positive and negative parts, we can assume 0 � f � g. Suppose we
don’t have

�
f =

�
g. Then for some δ > 0 and some measurable A ⊆ X, we have g � f + δ

on A, and µ(A) > 0. But let φ = δχA. Then, by Lemma 17(a),

�
g =

�
f + (g − f) �

�
f +

�
g − f �

�
f + φ =

�
f + δµ(A) >

�
f .

This contradicts our hypothesis, and thus we conclude
�
f =

�
g.

Given nonnegative measurable functions fj on X, we want to prove

�
lim inf
j→∞

fjdµ � lim inf
j→∞

�
fjdµ .

To do this, define
gj = inf

k�j

fk .

Then {gj} is a monotonic sequence of functions, and thus pointwise convergent. So, we can
apply Fatou’s Lemma (Theorem 18). Noting gj � fj we conclude

�
lim
j→∞

gjdµ � lim inf
j→∞

�
gjdµ � lim inf

j→∞

�
fjdµ .

By definition lim inf fj = lim gj, and thus we’re done.
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30 

We want to prove

(∗)
�

f + g =

�
f +

�
g ,

as long as the RHS is well-defined. First, note that if f, g � 0 then the result is immediate
from Lemma 20. Next, note that if the RHS makes sense then either

�
f
+ and

�
g
+ are both

finite, or
�
f
− and

�
g
− are both finite; in the former case

�
(f + g)+ �

�
f
+ + g

+ =

�
f
+ +

�
g
+
< ∞ ,

and the LHS is well-defined. A similar argument holds in the latter case.

Now, for general f and g, we use additivity for nonnegative functions to decompose
�

f + g

=

�
(f + g)+ −

�
(f + g)−

=

�






f + g > 0

f > 0

g > 0






(f + g) +

�






f + g > 0

f > 0

g � 0






(f + g) +

�






f + g > 0

f � 0

g > 0






(f + g) +

�






f + g � 0

f � 0

g � 0






(f + g) +

�






f + g � 0

f � 0

g > 0






(f + g) +

�






f + g � 0

f > 0

g � 0






(f + g)

On each of these six sets A, we can use additivity on nonnegative functions to prove
�
A
f+g =�

A
f +

�
A
g. Then, we can use additivity on the various integrals separately to prove (∗).

We assume {fj} are measurable functions, fj → f , {gj} are summable functions,
|fj| � gj a.e., gj→g a summable function, and

�
gj→

�
g. We note that

|f | = lim
j→∞

|fj| � lim
j→∞

|gj| = |g| a.e .

Therefore
|f − fj| � |f |+ |fj| � |g|+ |gj| .
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Thus, we can apply Fatou’s Lemma to give

2

�
g =

�
lim
j→∞

g + gj − |f − fj| � lim inf
j→∞

�
g + gj − |f − fj|

= 2

�
g − lim sup

j→∞

�
|f − fj| .

Subtracting 2
�
g, we see lim sup

j→∞
�
|f − fj| � 0, which implies

�
|f − fj| → 0 .

33 These proofs are adapted from Real Analysis by Gerald Folland (Wiley, 1984), and
An Introduction to Measure and Integration by Inder Rana (Narosa, 2005).

(a) Suppose f :R→R is Riemann integrable. Then for any n ∈ N we can find a partition
such that the corresponding upper and lower sums satisfy

Un � Ln +
1

n
.

Further, as n increases, we can assume that the partition chosen is a finer partition than
for previous n. (Combining any two partitions only raises L and lowers U). Thinking
of the lower and upper sums as (obviously measurable) functions un and ln, we then
have {un} is an increasing sequence and ln is a decreasing sequence. Let u = lim un

and l = lim ln. Then l and u are measurable, and

l � f � u .

Everything is bounded (since f is bounded by definition of Riemann integration), and
so we can apply the Dominated Convergence Theorem, to conclude

�
l dL = lim

n→∞
Ln = lim

n→∞
Un =

�
u dL =

b�

a

f(x)dx .

It then follows from that u = l = f a.e., and that
�
fdL equals the Riemann

integral of f .

(b) Given f : [a, b]→R bounded, suppose f is Riemann integrable. Then, as in (a), we have
u = l = f a.e. for u and l suitable limits of upper and lower sums. But suppose x is
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such that u(x) = l(x) and x is not a point used in defining any of the partitions (note
that only countably many such points are excluded by this). Then un− ln will be small
on a whole interval around x, as long as we stay within the same partition containing
x. It follows easily that f is continuous at any such x, and thus that f is continuous
a.e..

Conversely, suppose f is continuous a.e.. Let l and u be defined as in (a), with l the
limit of a sequence of lower sums converging to the sup, and similarly for u. We also
ensure that the size of the partition intervals converges to 0. Then it is easy to see
that l = u at any point where f is continuous. But then it easily follows that

�
u =

�
l

(both Riemann and Lebesgue), and thus that f is Riemann integrable.
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