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NOTE: This introduction is intended to be a quick, general and gentle overview, and neces-

sarily the definitions and details are vague. We’ll be much more careful when we begin the

formal study of measures, beginning with Handout 2.

The standard form of integration one sees in high school, and in early undergraduate
courses, is Riemann Integration. Here, the intuitive “area” under the graph of a function
f : [a, b]→R is approximated by the sums of areas of rectangles.

If we consider a “lower sum” and an “upper sum” then

Lα =
�

area(lower rectangles) � area under graph(f) �
�

area(upper rectangles) = Uα .

1



Here, α denotes some partition of the interval [a, b], and then Lα and Uα are the corre-
sponding lower and upper sums. Of course, we’re also applying here the fundamental notion
of the area of a rectangle:

Area







 = w · h .

The idea, then, is to consider finer and finer partitions of [a, b], giving (hopefully) better
and better approximations to the precise area. If, as we take the (suitable) limit of finer
partitions, we find that

lim
α

Lα = lim
α

Uα ,

then we define the Riemann integral of f on [a, b] to be that common limit:

lim
α

Lα =

b�

a

f = lim
α

Uα .

We then say that f is Riemann integrable, meaning the integral – intuitively the area under
the graph – makes sense. (Of course, this is an entirely different question to the practical
calculation of

�
f for any specific f). We then have

Fundamental Riemann Theorem:

If f is continuous on [a, b] then f is Riemann Integrable on [a, b].

Of course, more than just continuous functions are Riemann integrable. The obvious
generalization is to functions with a finite number of (suitably benign) discontinuities. An-
other important class is that of improper integrals, where the functions under consideration
may have one or more vertical or horizontal asymptotes.

For example, for the function pictured on the right, we would define (as long as it exists)

b�

a

f = lim
c→b−

c�

a

f .
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So, though such a function cannot technically be Riemann integrable,1 if f is sufficiently
well behaved then we can still use Riemann integration to make sense of the entire integral.

So, what are the shortcomings of Riemann integration? The first thing to realise is:

Problem with Riemann, Version 1: Not all functions are Riemann integrable.

For example, consider the Weird function W : [0, 1]→R, defined by

W (x) =

�
1 x ∈ Q ,

0 x ∈∼Q .

The function W is not Riemann integrable: since Q and ∼Q are both dense in [0, 1], any
lower sum satisfies Lα � 0, and any upper sum satisfies Uα � 1.

This may not seem like much of an issue: the function W is seemingly cooked up, and
a natural reaction is to remark that the area under the graph of such a Weird function
shouldn’t make sense. However, we also have:

1
Clearly, a function f must be bounded in order for the upper and lower sums of f to make sense, and it

is not hard to show that we also need the domain (i.e. the support) of f to be bounded. This upper-lower

approach is due to Darboux, but also with Riemann’s original approach, the same boundedness hypotheses

are required on f . However, modern generalisations of the Riemann integral can apply directly to unbounded

functions. See Handout 5.
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Problem with Riemann, Version 2: There is a sequence {fj}∞j=1 of uniformly bounded
functions on [a, b],2 and a function f , such that:






each fj is Riemann integrable;

fj→f pointwise (that is, for any fixed x ∈ [a, b], we have fj(x)→f(x));

f is not Riemann integrable.

We’ll give an example in a moment, but notice that this really is an issue. In both pure
and applied mathematics, we are constantly taking limits of sequences of functions, and it
is definitely of concern if the integral of the limiting function needn’t make sense. To make
it more concrete, consider the question

lim
j→∞

b�

a

fj
?
=

b�

a

lim
j→∞

fj .

This kind of manipulation, effectively the interchanging of limits, is something one does all
the time. For the promised example, much less than the two sides being equal, the right
hand side (i.e.

�
f) is not even defined.

So what is an example of such a badly behaved limit? Since Q is a countable set, we can
list the rationals in [0, 1] as a sequence:

Q ∩ [0, 1] = {q1, q2, . . . } .

We then define

fj(x) =

�
1 x = q1, q2, . . . , qj,

0 otherwise.

That is, one by one, we raise the value of the rationals to 1. Now, each fj has a finite number
of harmless discontinuities, and thus is Riemann integrable. And one can (and should) check
that fj→W pointwise for each x ∈ [0, 1],3 where W is the function defined previously. And,
we have already noted that W is not Riemann integrable.

This may seem like a contrived example, but here is an alternative, less contrived way of
defining W as double limit of very nice functions:

W (x) = lim
j→∞

lim
k→∞

(cos(j!πx))2k .

The point is, Riemann integration is premised upon the functions integrated being relatively
nice, and it is very easy for the limit of nice functions to be not-nice. True, such problems

2
That is, there is an M ∈ R such that |fj(x)| � M for all j ∈ N and all x ∈ [a, b].

3
Consider separately the two cases: when x is irrational; and, when x is rational.
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don’t arise if the sequence of functions converges uniformly,4 but uniform convergence is a
very strong, and often unsatisfied, hypothesis.

There are in fact ways to deal directly with these problems of Riemann integration:
firstly, one can give general hypotheses that guarantee the problems above do not arise;
secondly, there are modern generalisations of the Riemann integral which do not suffer the
same drawbacks. We’ll briefly discuss both of these approaches in Handout 5. Nonetheless,
as we shall see, the measure theory approach avoids the Riemann problems entirely, and also
provide an excellent framework for integration in much more general contexts.

Lebesgue integration, which was discovered/invented early in the 20th Century is a largely
successful attempt to avoid the problems of Riemann integration. The formal definitions will
come later, but the idea is to assign, to any A⊆R the Lebesgue measure L (A) of A. L (A)
is supposed to somehow measure the “size” or “length” of A. If A is a crazy set, it is not at
all obvious what L (A) should be, but it is at least clear that we want

(∗) L ([a, b]) = b− a .

As well, L should behave in a way which reasonably reflects some notion of size. In
particular, we want

(∗∗) L (A ∪ B) � L (A) + L (B) (and hopefully = L (A) + L (B) if A ∩ B = ∅) .

We’ll be precise later, but (i) and (ii) give us some sense of how we want Lebesgue
measure to behave.5

How do we then use Lebesgue measure to define integrals? The idea is to begin with
what are called characteristic functions. Given A⊆R, the characteristic function χA : R→R
is defined by

χA(x) =

�
1 x ∈ A ,

0 x ∈∼A .

So, for example, the Weird function W is the characteristic function χQ∩[0,1].

4
Fix j and suppose |fj−f | < � everywhere on [a, b]. Then f is within a band around fj of width b−a and

height �. This means upper and lower sums for f are within � · (b− a) of the corresponding upper and lower

sums for fj . The uniform convergence of {fj} to f then makes it easy to to show f is Riemann integrable,

with the desired limit integral.
5
The main further issue is that we’ll want a countable version of (∗∗). This is motivated by the fact that

an integral, however defined, amounts to a countable sum, or a limit.
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Then we define the Lebesgue integral of χA to be�
χA dL = L (A) · 1 = L (A) .

This is just the Lebesgue version of the area of a rectangle :

Area







 = L (A) · h .

For a general function f , we attempt to approximate f by linear combinations of charac-
teristic functions (so-called simple functions), and then f is Lebesgue integrable if a suitable
limit of the integrals converges: this is the Lebesgue analogue of the Riemann process of
approximating by lower and upper sums. Not surprisingly, the details are technical, but the
underlying ideas are very natural.

Now, how does Lebesgue integration compare to Riemann? We have

Fundamental “Lebesgue is better than Riemann” Theorem:

(a) Any Riemann integrable function is Lebesgue integrable, with the same integral value.
6

(b) Suppose {fj}∞j=1 is a sequence of uniformly bounded Lebesgue integrable functions on

[a, b], and suppose fj→f pointwise. Then f is Lebesgue integrable and

lim
j→∞

�
fj dL =

�
lim
j→∞

fj dL =

�
f dL .

6
There do exist functions which fail to be Lebesgue integrable but are improperly Riemann integrable.

We’ll discuss this later.
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As a simple example, this theorem tells us that the Weird function W is Lebesgue in-

tegrable, and that

�
W dL = 0. However, we are not suggesting that Lebesgue solves all

our problems: there are still functions which are not Lebesgue integrable; and, we still need
to be careful when taking limits (note the hypothesis of uniform boundedness). But there
is a fundamental manner in which Lebesgue is more robust than Riemann in the taking of
limits. In fact, in a certain sense we can consider the space of Lebesgue integrable functions
as the completion of the space of continuous functions, in the same manner as the set R of
real numbers is the completion Q of the set of rationals. This leads to the very important
theory of Lp

spaces, which we shall consider in Handout 6.

Once we have the notion of Lebesgue measure, various generalizations are possible. The
immediate thought is of m-dimensional Lebesgue measure, L m on Rm. Here, the ideas is to
capture the notion of m-dimensional volume of subsets of Rm. So, similar to considering the
length of an interval in R, the fundamental property we want is:

L
m ([a1, b1]× [a2, b2]× · · · × [am, bm]) = (b1 − a1) · (b2 − a2)· · · (bm − am)

= the m-volume of an m-box.

Then, for suitable A ⊆ Rm and f : A → Rm, we can define

�

A

f dL
m, representing the

(m + 1)-volume under the graph of f . So, note that we have two methods of calculating
(m + 1)-volumes; by the L m-integral of functions over Rm; and by the L m+1-measure of
subsets of Rm+1.

One can go on to consider a general measure µ on an arbitrary set X: so, for each A ⊆ X,
µ(A) is some notion of the size of A. As for Lebesgue measure, we would want

(∗∗) µ(A ∪ B) � µ(A) + µ(B) (and hopefully = µ(A) + µ(B) if A ∩ B = ∅) .

Then, by first considering characteristic functions, we can define the integral

�

A

f dµ for

suitable A ⊆ X and f : A→R.
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There are three broad approaches to general measure theory (with lots of room for over-
lap):

Functional-analytic

One notes that a measure µ can be thought of as a linear operator Tµ on a suitable class
of functions f : X→R:

Tµ(f) =

�

X

f dµ .

Conversely, given a linear operator T on functions on X, we may hope to find a measure µ
for which T = Tµ. Thus, measure theory fits very naturally into the world of (Banach and
Hilbert) spaces of functions.

Probabilistic

Here X is a space of possible outcomes, with µ(X) = 1 (meaning the probability is certain
that something will happen). Then, for A ⊆ X, µ(A) is the probability that the event A will
occur. The machinery of probabilistic measure theory is much the same, but the language
tends to be very different.

Geometric

Our approach in these notes will be largely geometric. Here, the concern is to focus
upon specific measures that reflect the underlying geometry of Euclidean space Rm or, more
generally, a metric space X. Lebesgue measure is a clear example of this. Another very
important example is m-dimensional Hausdorff measure, H m, which gives the notion of
m-dimensional volume of subsets of Euclidean space Rn, or in fact of any metric space.

The focus upon specific and geometrically motivated measures allows us to correspond-
ingly prove strongly geometric theorems. These theorems are not only beautiful in them-
selves, they are also central to the modern study of PDEs and differential geometry.
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