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Turning the tables: feasting
from a mathsnack
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Burkard.Polster@sci.monash.edu.au
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The old wobbly four-
legged restaurant table
trick — proved!

In MathSnacks (Vinculum vol. 42 no. 2), we
made the following claim, the Intuitive Table
“Theorem”:

By rotating a square table over uneven ground,
you can ensure that all four legs touch the
ground.

This elicited an email response from a reader,
James Kershaw, which began:

I question the completeness of the “table
turning” proof... The problem of fitting
coplanar points to an arbitrary surface, from
memory, can only be generally solved for three
poinlts... i.e., a three pointed stool can always
be made stable and the fourth leg on a chair or
table requires an extra degree of freedom to
match.

James has raised some interesting issues, which
we’ll address as part of a general discussion of
continuity theorems. We’ll attempt to keep the
discussion uncluttered and intuitive; a couple of
details will be relegated to endnotes, and please
contact the authors if you have any further
thoughts or questions.

Leaps of faith: risible or rigorisible?
Underlying any idea of a theorem is some notion
of rigor, an infallibility in the argument, and
some claim to universality: a theorem is, by
definition, always true. Our goal in Mathsnacks
is to present not proofs but beautiful ideas: we
don’t pretend that what we have written is
rigorous, but we hope that it is rigorisable.
Having said that, the Table (Theorem) is not so
easy to nail down. Here, we shall state and
outline a proof of a Precise Table Theorem.

Leaps of functions: the limits of
plausibility

Underlying the problem we’ll consider is the
notion of a continuous function. Continuity is a
natural and extremely important concept in
mathematical analysis. In school mathematics it
is (too briefly) presented as the intuitive notion
of a continuous function being one whose graph
can be drawn without your pen leaving the paper.

More rigorously, this idea is captured by the

Intermediate Value Theorem (IVT):

If f:[a,b]>R is a continuous function, and if
f(a)<0<f(b), then there is a real number c in
(a,b) with f(c) = 0.

Figure 1: The Intermediate Value Theorem in
action.

This effectively characterises continuous
functions of one variable, and is the key
ingredient in the 7o Be or Not to Be arguments in
several of our Mathsnacks. The idea is to come
up with an appropriate function, and to argue
that the function is, or is reasonably assumed,
continuous.!

Continuous functions of two or more variables
are not so easily handled. There is no
characterisation as simple as IVT, and the
corresponding theorems tend to be harder to
understand and much harder to prove.

Turning the tables

Now consider the table-turning problem, noting
that it is the four endpoints of the legs that we
are actually trying to make touch the ground. So,
we consider the square ABCD formed by these
endpoints, where we let the diagonals AC and BD
have length 27. We then want to rotate the
square so that the four corners touch the ground
simultaneously. The surface of the table, which
we temporarily ignore, will be a parallel square.

Next, we have to consider exactly what we mean
by arotation of the square, the issue being to
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preclude a simultaneous translation of the table.
To do this, imagine the z-axis, as shown in Figure
2, 1s a spike, and that there is a hole in the centre
O of the square. We then place the square on this
spike: so, at every stage, O is on the z-axis. We
then think of the square rotating around O, but O
is free to move up and down the z-axis, and the
square can tilt as it rotates.

Figure 2: The table set-up

We next consider the ground, which we take to
be defined by a function g:R2—R. Our task is to
determine conditions on g that guarantee the
four corners can simultaneously touch the
ground. As James pointed out, it is not true that
we can balance the table on any ground function.

For example (a variation of James’s suggestion),
consider g(1), a rotationally symmetric function
of the angle ¥ about the z-axis, with

3
2 if0<o<Z ormr<o<>2,
2 2

g0 =
1 otherwise.

So, as shown in Figure 3, the ground consists of
four quadrants, two at height 2 and two at height
1. Note that g is a discontinuous function. It is

Cliffs (discontinuities) in the floor may

prevent a stable table!

easy to prove that a table cannot be balanced on
such a cliff-like region.

Figure 3: A discontinuous ground, upon
which the table cannot be balanced.

What if we assume g is continuous?

We don’t know! We know of no continuous
counter-example, but there are difficulties with
filling in the details of the argument indicated in
our Mathsnacks. We’'ll go through the proof,
indicating the difficulties, and showing how a
further assumption, a gradient hypothesis,
guarantees the successful balancing of the table.

The ground g is a function of two variables, and
the square is free to elevate, tilt and rotate. Thus,
on its face, we have a multi-dimensional problem
in continuity, which is likely to be difficult. Our
approach treats the problem as a succession of
IVT arguments, taking one “dimension” at a time.
This puts into effect James’s intuition that to
successfully place the four corners, we need four
degrees of freedom, four separate motions of the
table.

The first corner A: easy!

Consider the first corner A. Initially, as shown in
Figure 2, we take the square to be horizontal,
high above the ground, with A hovering directly
above the positive z-axis. We then simply
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The Intermediate Value Theorem
(IVT) smooths the way ...

Figure 4: Both A and C touch the ground.

translate the square vertically downward until A
touches the ground. Done!

The second corner C: easy, but ...
With A always lying above the x-axis, we now try
to tilt AC so that C also touches the ground, as
shown in Figure 4. (In the process, we slide A
along the ground, closer to the z-axis, with O
sliding up or down the z-axis). Can we do this?
Yes! Since the ground is continuous, this process
is continuous, and the claim follows from IVT.2

However, there is a problem: if the ground is too
steep, there may be more than one tilt angle for
which C touches the ground. Usually, we
wouldn’t care, with the more solutions the
merrier. But here, when we consider the last two
corners, B and D, we need to have kept careful
track of the manner in which A and C have been
made to touch the ground: we want there to be a
unique way to make C touch. By its nature, IVT
alone (and thus continuity alone) can never
provide us with this uniqueness.

In order to establish this uniqueness, we shall
assume that the ground function g satisfies a
gradient hypothesis: there is a positive real
constant k such that, for any two points P and @
in the plane,

|8(P) - 8(Q)|
|P-¢l

The gradient hypothesis is exactly what it sounds
like: in any direction, between any two points,
the gradient of the ground is at most k. Note that
the gradient hypothesis guarantees that g is
continuous, but a function may be continuous
and still fail the gradient hypothesis.? It is not
obvious, but if the ground satisfies the gradient

<k

condition with k = 1, then there is a unique way
to slide A so that C touches the ground.4

The third and fourth corners: equal
hovering

So, A and C are fixed and touching the ground. We
could now tilt the square around the diagonal AC
so that B also touches the ground. However, it turns
out to be better to tilt so that B and D are the same
height above the ground. By another I[VT argument,
we can show that this is possible; see Figure 5.

Figure 5: Both A and C touch the ground,
while B and D are hovering the same
distance above the ground.

However, as for the argument above for C, we want there

to be aunique tilt for which B and D are hovering at

the same height. It takes some calculation, but it

turns out that this can be guaranteed, if we assume a
gradient hypothesis with

=L

5|
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... and rectangular tables? or
five-legged tables? ...

The third and fourth corners:
touchdown!

We now have two corners, A and C, touching the
ground, with the other corners, B and D,
hovering the same distance above (or below) the
ground. We want B and D to actually touch the
ground. To arrange this, we apply one last degree
of freedom: the rotation of the table around the z-
axis! We can arrange for B and D to touch with
one last application of IVT.

Initially, we started with the square horizontal,
and with OA lying in the xz-plane. We now
consider the square having first been rotated
counter-clockwise an angle ¥ about the z-axis (so
that OA projects to an angle 9 with the positive -
axis). For any such U, we can (uniquely) arrange
for the corners A and C to touch the ground, with
B and D hovering the same height above (or
below) the ground. Furthermore (because of the
uniqueness), the positions of the corners are
continuous functions of 0.

Now, suppose that when 9 = 0, B and D are

above the ground, as in Figure 5 (a similar
argument will work if they are below the ground).
Consider the angle 9" (approximatelyg) for

which OB lies in the xz-plane. Then, for this

angle O, B and D are now below the ground! 1

Why? Whether above or below the ground, we
can translate the square vertically until B and D
are touching the ground. But this means that B
and D are now exactly in the original (¢ = 0)
positions of A and C; and, symmetrically, A and C
have taken the original positions of B and D, and
thus are above the ground. This means we must
have translated upwards, and so the positions of
B and D for 9" must be below the ground.

We now have the easy finish. For 9 = 0,BandD 3
are above the ground, and for & = 0%, Band D are
below the ground. So by IVT, there is some angle 4
U between 0 and 9" for which B and D, and thus

all four corners, are touching the ground. Done!

To summarise, we have sketched a proof of the
Precise Table Theorem:

Suppose the ground is described by a
(continuous) function g:RP—R which satisfies
the gradient hypothesis

l2(P)-2@)] _ 1
lP-o] "2

Then, given any square, there is a way to place
the square so that the centre of the square is on
the z-axis, and the four corners of the square
touch the ground.

On our last legs: final remarks

We emphasise that the gradient condition is
essential to make the proof of our Precise Table
Theorem work, but we don’t know whether the
theorem is true in other contexts. It is possible
that a cleverer, completely different proof will
work more for more general ground functions.

Finally, we consider how long the legs must be to
ensure that, for the solution we have found, the
surface of the table is not cutting through the
ground. We have assumed the diagonal of the
table surface is of length 27, so that every point
on the table is at most a distance 7 from its
centre. On the other hand, with our gradient
hypothesis, the most the ground can rise over a
distance 7 is % Thus, if the table happens to be
horizontal, legs of length 'f will suffice to ensure
that the surface of the table is above the ground.
A messy but straight-forward calculation then
shows that legs of length % will suffice, at no
matter which angle the table is tilted.

For example, consider the Mathematical Monk (Vinculum,
last issue). However he travels, we can consider his
distance up the mountain d(t) on the first day, and D(?) on
the second day, as functions of time. Failing miraculous
intervention, the monk’s journeys will be continuous. Now
define a new continuous function f(t) = d(t) — D(t). Note
that f(0) < 0 and f(12) > 0.

If A touches the ground at coordinates (¢, 0 g(¢,0)), then for
C to also touch the ground it will have to have coordinates
(-t, 0 g(-t,0)). So, we consider the distance-squared:

D) = [|,0,9(6,00) ~ (=£,0,9(~,00) |2 = 422 + (9(1,0) — 9(,0))2.
Since |AC |2 > 472, we are looking for a t between 0 and »

for which D(t) = 472. But D(0) = 0 and D(r) > 472, and so
the existence of ¢ follows from IVT.

For example, the functionf(x) = Yz is continuous, butfdoesn’t
satisfy the gradient hypothesis, no matter how we choose k.

The gradient hypothesis with k£ = 1 guarantees that the
function D(¢) defined in note 2 is an increasing function of ¢
for ¢t > 0. Thus, there is exactly one value of ¢ for which D(t)
= 472,




