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Jtl"nction is a refere·ed Inathematics journal produced by the·
School of l\'1athematical Sciences at ~fonash U'niversity. It ,vas
founded in 1977 by 'ProfG B Preston, and is addressed. principally to
students in the upper years of secondary schools, but also more
generally to anyone \:vho is interested in mathematics.

]'u'nction deals \vith mathematics in all its aspects: pure'
mathematics~ statistics" mathematics in computing~ applications of
mathematics to the natural and social sciences, history of
mathematics, mathematical games, careers in mathematics" and
matbem~tics in society. The ite'ms that appear in each issue of
Junction include articles on a broad range of mathematical
topics~ ne\\ts. items on recent mathematical advances, book reviews,
problems, letters"! anecdolesand cartoons.

*****

Articles, correspondenc.e, problems (with or \vithout solutions)
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The Editors, 5lLnction
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l\tfonash University VIC .3 800; AUSlRALlA
Fax: +6] 3 9905 4403
e-mail: mich:ael.deakin@sci.monash.edu~au

Junction is published five times a year; appearing in February~

April~ Jlme,August, and October. Price for five issues (including
postage and GST): $33* ; single issues $7. Pa~ments should be sent
to: The Business Manager, Function, School of Mathematical
Sciences, PO Box 28M~ Monash University VIC 3800,
AUSTRAL1A;cheques and money orders should be made payable
to Monash University.

------,....._-
• $17 for hon(J fide secondary or tertiary students.
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EDITORIAL

This issue of Function marks a sad day in the history of our
magazine, for it is to be our last. From its inception in 1977 until now;
we have published 141 issues under 5 chief editors and have had 31
editors in total. Over 4500 pages have appeared, but now it is time to call
a halt to our activities.

Spiralling costs and a dwindling subscriber base have been the
reasons for this decision, which was not taken lightly. Moreover, new
costing protocols have made it increasingly difficult for Monash to
sustain our endeavours, although they have always been most supportive.

After 20 years of Function, a specialissue was published and in an
article in that I listed some of what I thought of as Function's very
greatest achiev~ments up to that time. To these I would certainly now
add Klaus Treitz' article "Apfelmannchen at Konigstein" (October 2001)
and Jim Cleary's "The Power Triangle and Sums of Powers" (June 2002).
But perhaps I am using an unfair criterion in highlighting articles of this
typ~, where the emphasis is on coming up with something truly original.
Our main role has been to explain, clearly and accessibly, Mathematics
which, while it goes beyond the secondary classroom, can be accessed by
students in the final years of High School. As I said in the Special Issue,
the mission was to publish "quality exposition of genuine Mathematics".

We have always been especially eager to put into print contri­
butions from members of our target audience and, from the two student
feature articles in our very rust issue to Anson Huang's solution to
Problem 28.1.1 in our August 2004 issue, we have been most pleased to
showcase such material.

Our thanks to all those who, in one way or another, have supported
Function over the years. To those. who have subscribed, to those who
have written articles for us or sent us other material, and, especially to the
loyal hand of problem-solvers, we express our heartfelt gratitude. And to
all those who have been my colleagues on the Editorial Board, my own
deep appreciation.

Our cover story is chosen to reflect the occasion of this issue.

Michael A B Deakin
Chief Editor
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THE FRONT COVER; The Last Function

If you look up the index in the standard reference work, Handbook
ofMathematical Functions by Milton Abramowitz and Irene Stegun, you
will find the last entry as shown below.

Z
Zeta function

Jacobi's____________________________________ 578
Riemann's ~ 256

t
807

The Riemann Zeta function is a function with especial importance
in Number Theory. Something of the basis for this was explained in the
History Column for June 2001.

The starting point for work on the Zeta Function (~-function in
what follows) is the definition

1 1 1 1
q(s)=-+-+-+- + ...

IS 2s 3s 4s

where the series is an infinite one.

However, this simple definition alone does not suffice. The
variable s is taken to be complex, but if the real part of s is 1 or less, the
series fails to converge. This is to say that, as we add more and more
terms to the sum, it does not approach a well-defined number which we
could take to be the sum of infinitely many terms.

But this is not the end of the story. To get a feel for what
mathematicians do to get around this problem, consider a simpler and
more familiar case.

Take the geometric series
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where z is complex. That is to say, Z = x + iy. If Izi =~x 2 + y2, < 1, then

this series converges and the sum is _1_ . But now notice a somewhat
l-z

subtle point: wherever the series does converge, we can assign to it the

s~m _1_ . But this latter function is well-defined for all z (apart from
. 1- z .

the single value z =1). The function _1_ is said to be an extension of
l-z .

that defined by the series. Where both expressions make sense, they
agree completely, but the domain of one is larger than that of the other.

Something of the same thing happens. with the r;-function. This
~y be extended in a variety of ways, apparently different, but actually
equivalent, but all rather too technical to detail fully here. However, the
upshot is much the same. The extension is well-defined everywhere
except at s = 1. What is. possibly the simplest extension goes:

r(s)=_l_ +Y -y (s-l) + Y2 (s-I)2 _ Y3 (s-I)3+ ...
=' S - 1 0 1 2! . 3! '

but the formulas for the coefficients Yo' Yl' Y2' ... are rather formidable.

[For readers seeking more technical. information, H M Edwards'
Riemann's Zeta Function (New York: Academic Press, 1969) or the
website

http://mathworld.woffram.com/RiemannZetaFunction.html

will do very well.]

The importance of the r;-function in Number Theory stems from a
result first propounded (for real s) by Euler, and discussed in the June
2001 History Column. It says that'

where the denominators on the right are the primes.

It was Bernhard Riemann (1826-1866) who first extended the
definition of s(s) to the case of complex s. His 1859 paper on the
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subject still forms the basis of all that follows, although there have of
course been developments since.

But" the early versions of the theory were sufficient to tell is that
~(s) has a number of special values and properties. In particular,

f"(-2) = f"(-4) = f"(-6) = f"(-8) = ... =0,

The first line of this table is relatively easily proved, and it gives an
infinity of zeroes of the function q(s). These are now referred to as the
trivial zeroes. Riemann also looked for other zeroes and was able to
prove that these others must all be complex. Indeed he was able to prove
more: if q(s) = 0, then the real part a of s had to lie in the region
o~ a ~ 1. This region is now called the critical strip. A further
simplification may be achieved by noting that if a + it is a zero, then so
is a - it. So only positive-values of t need be considered.

Now comes the difficult part. Riemann had evidence to suggest
that all the zeroes in the critical strip (the "non-trivial zeroes")· were in

fact of the form ! ± it , and he put forward the conjecture that all these
2

zeroes were· indeed of this form. This is the· proposition known as the
Riemann Hypothesis. It is now regarded as the most important
outstanding unsolved problem in the whole of Mathematics. (Especially
now that Fermat's Last Theorem has at last been laid to rest.)

In 1914,Hardy (whose story was the subject of our History.
Column in June 1995) proved that there are infinitely many zeroes to be
found in the critical strip, and'it has also been established, as a result of
further theory and by means of absolutely heroic calculations, that the
first 250, 000, 000, 000 of these lie on the critical line. In other words, if
there is a counterexample to the Riemann Hypothesis, then it refers to a
zero further from the point s =0 than all of these. Other, more esoteric,
results have also been established.

The famous Hilbert problems, posed at the beginning of the
twentieth century, listed the Riemann Hypothesis as part of a more
general eighth (of a total of 23). At the start of our own century, the Clay
Challenge problems included it as the fourth of seven. For a correct



133

proof, the Clay Mathematics Instit.ute (affiliated with Harvard University)
will pay a reward of $USl, 000, 000. [However, although it is most
unlikely ever to be found, a disproof would ~amnothing!]

The cover picture shows only a minute part of this· story. If we
were to try to graph ;(s), we would run into trouble, as there are not
enough dimensions on the page to put both a real and an imaginary axis
for each of the values of s and of ;(s). We have put ;(s) = u + iv, and

s =-!. + it . We used t as the horizontal axis. The vertical axis is
2

.Ju2 + v2
, which has the value 0 if and only if both u and v are zero.

Thus the· graph on our cover displays the first five zeroes on the critical
line. It was produced using MAPLE, which contains subroutines dealing
with the Riemann Zeta Function.

There are also other puzzles connected with this function.
Although the Riema~n Hypothesis is the most studied and the most
important, it is by no means the only one. Readers will note that the table
at the top of p 132 is silent on the matter of odd integral values of S, when
s > 1. The number ;(3) was shown in 1978 to be irrational. The proof
was the result of work by a mathematician called Apery and this number
is now called Apery's Constant in his honour. . There are still other
unsolved questions concerning it and even its computation is far from
simple. When we come to ;(5), ;(7), and indeed all ;(2n +1) for which

n > ·1, even the question of rationality is still open.

This article would not be complete if it omitted reference to the
persistent and continuing efforts of Louis de Branges (the surname is
pronounced "duh BRONZH") to prove. the Riemann Hypothesis. Several
times he has ann'Ounced that he had a proof, and a number of alleged
proofs have been put, in whole or in part, on the web. In every case, there
has either been insufficient detail or else a flaw has been discovered in
the reasoning. Readers may check the latest claims at websites linked to
that given on p 131, which are updated regularly.

Indeed, by now any other mathematician with such a record of
unsubstantiated claim would have lost almost all credibility. But de
Branges is not so easily dismissed. In 1984, he proved. the long­
outstanding "Bieberbach Conjecture", a technical statement about
complex functions of complex variables. (See Function, February 1985,
pp 7,32.) So de Branges has some runs on the board; nonetheless, one
senses in the tone of recent postings on the internet a certain impatience
with his latest claims !
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THREE CIRCLES AND A POINT

Ken Evans, Dromana, Vic .

Circles have many interesting properties. Familiar examples are:

(1) Angles in a segment of a circle have the same
magnitude - Figure l(a),

(2) The magnitude of an exterior' angle of a cyclic
quadrilateral is equal to the magnitude of the opposite
interior angle - Figure l(b).

Figure l(a) Figure l(b)

Another less familiar property is needed to help prove the main
theorem of this article by Euclidean methods. Such a preliminary
theorem is sometimes called a lemma.

Lemma 1: If the lines containing two chords, AB and CD of a circle,
intersect at K, then KA.KB =KC.KD.

Figure 2(a) Figure 2(b) Figure 2(c)



135

Proof for the case, Figure 2(a), wh~re K is inside the circle.

First draw AC and BD.
Then in the triangles AKC and DKB,

magLACK = magLDBK (angles in a segment)
magLCAK =magLBDK (angles in a segment)

Ther~fore the triangles AKC and DKB are similar.
. KA _ KC
··KD-KB

:. KA.KB = KC.KD.

The proof for the case, Figure 2(b), where K is outside the circle is
the tsame as the above except for the reasons why the angle magnitudes
are equal. IfK belongs to the circle, Figure 2(c), the lemma is trivially
true because in that case KB = KD = 0, and hence both sides of the
equation KA.KB = KC.KD are zero.

Additional Investigations

1. In Figure 2(b), rotate the line ABK about K. Four positions are
shown in Figure 3, the fourth being the limiting case where the
chord-line becomes a tangent. What does the intersecting chords

. lemma suggest in this limiting case? Your conjecture (if true)
needs a separate proof which is not given here.

Figure 3

2. After studying the properties of a single circle, a mathematician
might look at properties involving two circles, and then three or
more circles. For two circles, you might wish to investigate
symmetry properties of the common chord (if the two circles
intersect) and of common tangents.
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3. The property now to be investigated concerns three circles each
intersecting the other two. If you have access to Cabri Geometry
(or a similar program), it is suggested that you use it for. the
following. Draw three circles whose radii have different lengths,
and such that each circle intersects the other two. Then draw the ,
lines containing the common chords of the three pairs of circles.
Make a conjecture about the common chord-lines. Now vary the
size and position of the circles and see if your conjecture still
appears to be true. Consider also limiting cases where one or two
or three pairs of the circles intersect at one point only, i.e. where
one or more of the common chords becomes a tangent.

A possible conjecture for Investiga~ion 3 above is:

If three circles are such that each intersects the other two, then the three
.common chord-lines are either concurrent or parallel.

Two proofs of this conjecture are to be given: the first uses
Euclidean methods, in particular Lemma 1, and the second uses Cartesian
(co-ordinate) methods. .

(a) First Proof

Let C1, C2 , C3 be the intersecting circles (Figure 4).

(i) If no two of the common chord-lines
intersect, then the three common chord­
lines are parallel.

Additional Investigation

4. Find a condition regarding the centres of
the three circles which is sufficient to
make the common chord-lines parallel.

(ii) If it is not true that the cornmon chord­
lines are parallel, then two (at least)

intersect. Suppose these two are AB, the
common chord-line of C1 and C3 , and

CD , the common chord-line of
C2 and C3 •

Figure 4
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Let K be the point of intersection of AB and CD. It remains to prove

that EK is the connnon chord-line of C1 and C2 • So as not to assume

what is to be proved, let EK intersect CJ at F;. and C2 at F2 • (Figure 4

has been slightly distorted to show this.)

Now KA.KB = KE.KF] (intersecting chord-lines of C1, Lemma 1)

Also KC.KD =KE.KF2 (intersecting chord-lines of C2 )

But KA.KB =KC.KD (intersecting chord-lines of C3 )

:. KE.KFJ =KE.KF2

.·.KFj =KF2

:. F; =F2 =F (say).

Because F =~ E C1 and F = F2 E C2 , FECI (l C2 .

Hence EKF is the common chord-line of C1 and C2 .---Hence AB, CD, EF intersect at K, Le. are concurrent.
From (i) and (ii), the common chord-lines are con~urrent or
parallel.

For the co-ordinate proof some preliminary notions are introduced.
Firstly, a point is identified with an ordered pair (x, y) of real numbers,
and a curve is identified with a relation {(x,y): t(x,y)=o} where t(x,y)
is an appropriately chosen expression in x, y. This means that a point
(X ,Y) belongs to a curve {(~,y): t(x,y)= O} if its co-ordinates satisfy the

defining equation f(x,y) =0; and conversely, if a point (X,Y) belongs
to a curve {(x, y): t(x, y)= O}, then f(X ,Y)= O.

E.g. Because 22 +(_1)2 -5=0, (2,-I)e {(x,y):x2+ y2 -5=0}.
Because 2x2+(-1)x(-lJ-S=O, (2,-1)E{(x,y):2x- y-5=O}.
If (X ,Y)E {(x,y): x2+ y2 - 5 = o}, then X 2+ y2 - 5 =0, and

conversely if X 2 +y2 - 5 = 0, then

(X,Y)E {(x,y):x2 + y2 -5=O}

Secondly, two further lemmas, the fITst of which applies to curves
in general and the second to circles, are now proved.
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Lemma 2

If (X ,Y)e {(x, y): 11 (X, y) =o}= Cl ' and also
If (X ,Y)e {(x, y): Iz(x,y)= o}= Cz' i.e. if (X,Y) is a point of
intersection of Ct and Cz, then
(X ,Y)E {(x, y): afl (x,y)+ fJfz(x, y)= O}= C for real
numbers- a, pnot both zero.
(If a, p are both zero, C is not a curve.)

Proof Because (X,Y)e-CI , fl(X,y)=O.
Because (X,Y)E Cz' fz(x,y)=O.

···afl(X,y)·+ fJf2(x,y)=axO+ {3xO=O.
:. (X ,Y) E{(X, y): aft (x, y) + fJfz(x, y) =O}= C.
i.e. if the two curves Ct , Cz intersect at a point,
then curve C passes through that _point.
The above argument applies to each point Y of the
intersection of C1 and C2 • Hence C passes through all
points of intersection of C1 and Cz. -

Lemma 3 If C1 and Cz are intersecting circles with equations

fl(X,y)=x z + yZ +a1x+bty+c1 =0

fz(x,y)=x2+ yZ +azx+bzy+cz =0,
then (a l - az)x + (bI - bz)y + (cI - cz )=0
is the equation of the common chord line.

Proof Consider the equation

lifl(X'Y)+!fZ(X,y)=O, (a, fJ not both zero). (1)

After simplifying the left side, (1) becomes

By Lemma 2, (2) defmes a curve through both points of
intersection of C1 and Cz. Furthermore (2) has the
required form (in general) to be the equation of a circle. So
(2) can be thought of as defining a set of circles (one circle
for each choice of a, fJ) through the points of intersection
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of Cl and C2 • T~ere is· however a special case which

stands out, viz. if f3 = -a. In this case (1) .becomes

Gifl (x, y) =-Gif2 (x, y) =0

¢::> !.(x'Y)=-!2(X,y)=O (a;t: 0 so f3 =1= 0)

(3)

. (Multiplying both sides by -1 shows that (3) is equivalent
to

Because (3) is a frrst-degree equation, it defines a line, and,
from the above, the line passes through both points of
intersection ofCl and C2 • Furthermore there is only one

line through two distinct points, so (3) defines the common
chord-line of C1 and C2 •

Note that for Equation (3) we cannot have both al - a2 = 0

and bi - b2 =O. Show that if both at =a2 and bi = b2 ' then

CI and C2 are concentric and so do not intersect.

(b) Second Proof of the Theorem of Three Intersecting Circles

Let

C1 ={(x,y):x2 + y2 +atx+bty+c1 =o}
C2 ={(x,y):x2 + y2 +a2x+b2y+cZ =o}
C3 = {(x,y):x2 + y2.,+a3x+b3Y+C3 =o}

be the intersecting circles.

From Lemma 3, the common chord-lines of C1 and C2 ,

C2 and C3 , C3 and C1 respectively are:
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{(x,y):(a1 -a2)x+(b1 -b2)Y+(Cl -C2)=O}=~

{(x,y):(a2 -a3)x+(b2 -b3 )Y+(C2-C3)=O}=L2

{(x,y):(a3-a1)x+(b3·-bt )y+(c3-Cl)=O}=~.

If no two of the chord,-lines intersect, the lines are parallel. If this
is not the case, at least two of the lines, say 4 and ~, must intersect.

Let (X, Y) be the point of intersection of ~ and ~.

Because (X,Y)E~, (al-a2)X+(bl-b2)Y,+(CI-C2)=O (4)
Because (X,Y)E~, (a21 - a3)X + (b21 - b3)Y + (c2- c3)= 0 (5)
From (4) and (5), by addition,

(al-a3)X+(bl-b3)Y+(CI-C3)=O
~ (a3 - al)X + (b31 - bI)Y + (c3 - c1)= 0 (6)

Hence ~, ~, ~ are concurrent.

Further Investigations

5 Make a conjecture about 4, L2 , ~ if (i) one pair, (ii) two pairs,

(iii) all three pairs, of circles have single points of intersection, i.e.
touch.

6 Show that whether C1 intersects C2 or not, ~ is perpendicular to

the line containing the centres of C1 and C2 •

7 Find the centre and radius-length of Ct. Use these results and the

Theorem of Pythagoras to find an expression for the length of a
tangent from an exterior point· (X, Y) to the' point of contact of
circle Ct. Show that, if the tangents to C1 and C2 (whether

C1 and C2 intersect or not), from an exterior point (X, Y) are equal

in length, then (X, Y) E 4. By reversing your argument, prove the

converse: if a point (X, Y) exterior to C1 and C2 belongs to ~, the

lengths of the tangents from (X, Y) to C1 and C2 are equal.
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OLYMPIAD NEWS

Hans Lausch, Monash University

The 2004 International Mathematical Olympiad

This year's International Mathenlatical Olympiad (IMO) took
place in Athens. On 12 and 13 July, 486 secondary-school students from
85 countries sat the contest, which consisted oftwo sets ofthree problems
each. China came first, with a total of 220 out ofpossible 252 points,
USA (212 points) finished second and Russia (205) third. Australia (125
points) took the 27th position, just behind the host country Greece (126)
points). Australian students were successful in winning a total of1 gold
medal, 1 silver medal, 2 bronze medals arid 1 Honourable Mention, as
follows:

Ivan GUO, Sydney Boys High School, NSW, year 12
Laurence FIELD, Sydney Grammar School, NSW, year 12
Alex HUA, Scotch College ,VIC, year 12
Daniel NADASI, Cranbrook School, NSW, year 12,
Graham WHITE, James Ruse Agricultural High School, NSW,
year 10

Congratulations to all!

Here are this year's IMO problems:

Day 1

-GOLD
-SILVER
-BRONZE
-BRONZE

-HM

1. ABC is acute angled triangle withAB;{: AC. The circle with
diameter BC intersects the lines AB and AC respectively 'at M and N. 0 is
the midpoint of BC. The bisectors of LBAC and LMON intersect at R.

Prove that the circumcircles of the triangles BMR and CNR have a
common point lying on the line Be.
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2. Find all polynomials P with real coefficients such that, for all
reals a, b, C such that ab + be + ea = 0, we have the relation

pea - b) + PCb - e) + P(e - a) = 2P(a + b + e).

3. Define a "hook" to· be a figure made up of six unit squares as
shown in the figure below, or any of the figures obtained by rotati9ns and
reflections to this figure.

Detennine all m x n rectangles that can be covered without gaps and
without overlaps with hooks such that no point of a hook covers area
outside the rectangle.

, Day 2

4. Let n ~ 3 be an integer. Let t1, t2 , ••• , t
11

be positive real numbers

2 . {Ill)such that n + 1> (II + 12 + ... + In - +- + ... + -
t1 12 In .

Show that, for all distinct i, j, k, Ii' Ij' tk are the side-lengths of a triangle.

5. In a convex quadrilateral ABCD, the diagonal BD bisects
neither LABC nor LCDA. A point P lies inside ABCD an4 satisfies
L.PBC =LDBA and L.PDC =L.BDA. Prove that ABCD are concyclic if
and only ifAP=CP.
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6. A positive integer is alternating if every two consecutive digits in

its decimal representation are of different .parity. Find all positive
integers n such that 11 has a multiple which is alternating.

The 2004 Senior Contest
of the Australian Mathematical Olympiad Committee (AMOC)

The AMOC Seniqr Contest is the first hurdle for mathematically
talented Australian students who wish to qualify for membership of the
iealn that represents Australia in the following year's International
Mathematical Olympiad. This year that/our-hour competition took place
on 10 August.

These are the questions:

1. Consider 8 points in a plane consisting of the 4 vertices of a square
and the 4 mid-points of its edges. Each point is randomly coloured red,
green, or blue with equal probability. Show that there is a more than a
50% chance of obtaining a triangle whose vertices are 3 of these points
coloured red.

2. Let al , a2 , ••• , aZ004 be any non-negative re.al numbers such that

a1 2 a2 2 · . · 2 a2004 and al +a2 + ... + a2004 = 1·

h 23 2 5 2 2" 4 2 .Prove t at al + a2 + a3 +7a4 +... + 007a2004 ~ 1..

3. Let f (11) be the integer closest to.j;;. Determine

111
--+--+ ... +--..,....-
J(l) /(2) 1(10000)
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4 L" b'" h 'f 1 1 1, et x, y, z e pOSItive Integers t at satls y -2 + 2 =2 '
x y z

Prove that·20 divides .xy,

5, Let AB be the diameter of semicircle S, and let C and D be points
on S other than A or B, with B closer to C than to D. Further, let AC and
BD intersect in E and let AD (extended) and BC (extended) intersect in F.
We let G and H be the midpoints of AE and BE, respectively, and 0 the
circumcentre of triangle ABE. Suppose that DG is parallel to CH.

Prove that DG is parallel also to FO,

00000000000000000000000000000000

',!he contemplation of the various steps by which mankind has
come into possession of the vast stock of mathematical knowledge can .
hardly fail to interest the mathematician. He takes pride in the fact that
his science, more than any other, is an exact science, and that hardly
anything ever done in mathematics has proved to be useless. The chemist
smiles at the childish efforts of alchemists, but the mathematician finds
the geometry of the Greeks and the arithmetic of the Hindus as useful and
admirable as any research of to-day. He is pleased to notice that though,
in the course of its development,mathematics has had periods ·of slow
growth, yet in the main it has been pre-eminently a progressive science."

Florian Cajori
A History ofMathelnatics
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SOLUTIONS TO P~OBLEMS

We here give the solutions to the problems set in our last three
issues. We regret that it has not been possible to allow the usual time­
lapse in all cases.

SOLUTION TO PROBLEM 28.2.1

This problem, submitted jointly by Willie Yong (Singapore),
Jim Boyd (USA) and Richard Palmaccio (USA) asked for a

fi
,AMxBM PM

proof that in the diagrammed 19ure -'
ANxBN PN

where MN is the diameter of a semi-circle MABN and P is
the intersection ofMN and AB (extended in both cases).

I3

o

·We received solutions from Sefket Arslangic (Bosnia), John
Barton, David Shaw and the proposers. They were all essentially the
same and we here print a composite.

The diagram already displays construction lines MC and ND, both
perpendicular to AB. In the trIangles AMB, ANB, the angl~s AMB, ,ANB
are equal as they stand on the same chord AB. Then the area of the
triangle AMB is ~ AM.BMsinLAMB =~ AB.MC. Similarly, the area of
the triangle AND is ~ AN.BNsin LANE =~ AB.ND~ Hence

AM.BM

AN.BN

MC

ND
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But the triangles PMC, PND are similar, and so this ratio equals
PM . d-'- as requIre .
PN

SOLUTION TO PROBLEM 28•.2.2

This problem has'an interesting history. The j,?umal School
Science and Mathematics posed the problem of simplifying
the expression

They received three different answers:

A=!~[V1+$+V1-$»
2

B=~N14+6$ +V14-6./5 -V6+2./5 -V6-2./5}

C=~~3+./5 -§.13-$"YJ3+$ +·b-$}.J5,
10

all of which. are correct,' and so equal, to one .another. They
wondered if a more direct proof was po·ssible.

We received solutions from Sefket Arslangi6 (Bosnia), John
Barton, Julius Guest and David Shaw. Shaw's came closest to providing
a direct proof, although it may not strike readers as being simpler than the
proof via the original problem. But here it is.

Begin by considering A.

Note that (1 +./5y = 6 +2./5 ,from which it follows that

1+./5 =~6 +2./5 and that VI +./5 = V6 +2./5.

Similarly, VI-./5 =-V6-2./5.
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Therefore

and so

Next consider C.

(~3 +J5 + ~3 - J5 r= 6 + 2..[4 =10,

so ~3+J5+~3-J5 =-JW . Likewise ~3+J5-~3-J5 =.fi .

Therefore

c =J..- {~3 +J5 - ~3 - J5 )J5.-JW10\ .

=.1 (~3 +J5 - ~3 -J5 ) = A.

Now ~3+J5+~3-J5=J5V3+J5 -~3-J5 ), so C may be
rewritten:

Now, by expanding, we obtain B because, for example,
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and

~3 +../5.~3 -../5 = (3 +../5)'6.(3 - ../5),6(3 - ../5),3
= 41/6(3 ~ ../5),3 = 21/3(3 +..[5),3 ="V6 +2..[5

Thus A =B =C.

Mr Shaw remarks that the index notation helps to keep track of the
multiplications.

Readers may also like to check the derivations of the three different
answers. The details are to be found in the October 2003 issue of School
Science and Mathematics on pp 309 and 310.

SOLUTION TO PROBLEM 28.2.3

This problem, from Angela ,Dunn's Mathematical Bafflers,
2

asked for the integral solutions of the equation x 2 =_Y- .
y+4

We received solutions from Sefk:et ,Arslangic (Bosnia), John
Barton, Julius Guest and David Shaw. Here is Barton's.

Substitute y = 1] - 4 , and rewrite the equation as x2 -1] + 8 = 16· .
17

The left-hand side of this new equation is integral, while the right
is integral if 1] = ±1, ± 2, ± 4, ± 8 or ±16. Check these ten possibilities

against the rewritten equation to find' five solutions:

(x, 1]) = (3,1), (-3,1), (0,4), (8,16) or (-3, 16)

and so

(x,y)=(3,-3), (-3,-3), (0,0), (8,12) or (-3,12).
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SOLUTION TO PROBLEM 28.2.4

This problem came from the same source, and asked for
integers A and B such that both solutions of both the

equations x2 + Ax + B = 0 and x 2 + Bx + A = 0 were also
integral.

Solutions were received from Bernard Anderson, John Barton,
Julius Guest and David Shaw. Here is Anderson's.

There are three cases:' (1) A (or B) is zero, (2) Both A and B are
positive, (3) B (or A) is negative.

In Case (1), either B = 0 or B =_n2 (not counting imaginary
numbers as integers). Or we could have B =0 and A =-n2

•

In Case (2), suppose without loss of generality-that A ~ B, and
consider the two subcases (2a) A < Band (2b) A = B.

Note that in both these subcases, both the roots of both quadratics
must be negative. Call the roots of the first quadratic -r and ...:-s, and those
of the second quadratic -t and -u, where r, s, t, u are all positive. Then
r +s = A =tu and rs = B =t + u.

Now in Case (2a) we must have tu < t + u. But now if both t and u
exceed 1, then A =tu ~ 2max(t, u) ~ t +u =B, contrary to hypothesis.

Thus either U or t equals 1. Suppose without loss of generality that U =1.
Then A =t =r + s =B-1 =rs - 1. I.e. rs = r + s + 1. In this equation,
neither r nor scan· equal 1. Nor can both exceed 2, for if this were the
case we would have rs ~ 3max(r,s) > r + s + 1, which again is not
possible. Thus one or other, r say, must equal 2. In this case, s =3, and
so we have A =5, B = 6. (Had we assumed that B was the smaller of the
two, then we would have found A =6, B =5.)

Turning now to Case (2b), and using a similar analysis, we find

A =rs =r + s, from which it follows that !- =r -1, and so !... must be
s s

integral. This shows that r =ks for some integer k, and k + 1 =ks. But

then· s = 1+.! and this must be integral. Hence k = 1. So s = r, and
k

r2 = 2r , and thus r =2. This gives us another solution: A =B =4.
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Tum now to Case 3, and, withoutloss of generality, set B < O. The
roots of the .fust quadratic are therefore opposite in sign. Call them -r

and s, where rand s are positive. Then A =r - sand B = -r s. We now
consider two subcases (3a) A < 0, and (3b) A >0.

In Case (3a), the roots of the second quadratic must be of opposite
sign. Call them -t andu. As both A and B are negative in this subcase,
we may without loss of generality suppose that - A ~ -B. But - A =ut
and - B = u - t. This implies that u(t + 1) ~ t , which is impossible. Thus
Case (3a) yields no solutions.

Case (3b) now tells us that the second quadratic has roots of·the
same sign, indeed both positive. Call them t and u. Then B = -(t + u)

and A = tu. But we found above that A = r - sand B = -rs. So
r - s =ut > 0 and rs =u + t . If now t ~ 2, tp.en tit ~ t + u, and thus

r - s ~ rs, or s(r +1) ~. r, which is impossible. Thus t = 1. It follows

that B'= -(A + 1). The first quadratic becomes x 2 + Ax - (A + 1) =0,

with roots 1 and- A -1. The second becomes x2
- (A + l)x +A = 0 ,

with roots 1 andA. Had we assumed that A was negative (rather than B),
we would have reached the solution A =-(1+ B). Represent the integers
A and B in these last expressions by n.

Collecting all our different solutions gives the following list:

(A, B) =(0, 0), (O,-n2~ (-n2,O~ (5,6), (6,5), (4,4), (n,-l-n) or (-l-n,n).

SOL.UTION TO PROBLEM 28.3.1

This problem was badly misprinted when fIrst posted. A
correction was published in our last issue. What the problem
should have asked for was a proof that all the inflection

points of the curve y = sin(.!.) lie on the curve l = 4x
2

2
X 1+4x

Three correspondents (Sefket Arslangic, Derek Garson and Joseph
Kupka) pointed out the existence of an error. John Barton tactfully did
not, but sent us nonetheless a solution of the correctly stated problem.
We follow it here.
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It is a necessary condition for the existence of an inflection point is

that d
2

;, = 0 at the point in question. Now if y = sin(.!.) then
~ x

dy -2 (1)dx =-x cos~

and

The zeroes of this expression occur where

2x-
3
co{;) - x-

4
sin(;) = 0, (1)

that is to say where tan( .;) =2x, an equation with infinitely many

solutions, all having magnitude less than 1. Put sin(;) =y, so

thatcos(;) = ±(1 - y 2 )"2 and from Equation (1)

( 2)112 2 2( 2\Y =±2x 1-y, ., y =4x 1- y ;,
2 4x2

Y = .
1+4x2

This is the answer (that should have been) sought, but Barton went

on to point out that as sin( .;) (for all non-zero x) is an odd function, then

so is its second derivative, and thus the locus of the points of inflection
may be more exactly stated as .
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2x
y =( 2 )112

1+4x

for X:t O.

For completeness, it should be recorded that the proposer (who, 'of
course, was not spooked by Function's misprints) also sent in a correct
answer.

SOLUTION TO PROBLEM 28.3.2

The problem (proposed by Keith Anker) sought the maximal
area ofa rectangle contained entirely between the x axis and
the parabola y =1- 4x2

•

No complete solution was received, although the proposer noted
that the problem is surprisingly difficult. S.ee the diagram below.

It is easy to show that the points
A, B, D must lie on the boundaries of
the region, as illustrated. Now let

A=(xl ,Yt)=(x1,1- 4xt),
B= (x2 • yJ= (x2 • 1-4x;).

The slope of the line AB is then readily
shown to be 4(x1 + x2 )= tana, say.

Then the length of AB is (Xl - x2 )seca .
Similarly, the length of AD is YI seca .
So the area of the rectangleABCD is

\
\
\

\,

\
\
\

\\
\

04

This is -the function that needs to be maximised. There are

constraints on the values of XI' x2 in that XI ~1.. and we may assume
2
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without loss of generality that Xl :::: 0 and Xl :::: X2 :::: _1.. . More subtly we
2

may use synnnetry considerations to restrict consideration to the region in
which Xl ~ -x2 •

A contour map of the area function was produced using MAPLE.
Here it is.

\
\.

··~-O.4

------_.._--......~,~
......

-0.2 .

-0.4

0.6 4

·x~::_ ~~
~'/'- . .--_.-.'

.0.6

The absence of closed contours shows that no maximum occurs
inside the region of interest. It follows that the required maximum is to

be found on a boundary. The boundaries are XI =1.., X2 = ±XI • On two
2

of these boundaries, the area works out to be zero. The other is the
boundary X2 = -Xl. Substituting this into the expression for the area

gives

Area =2xI (1 - 4x; )

This may be analysed by means of simple calculus. The maximum

h I ... f2r:;3occurs w en Xl = r::;' gIvIng an area 0 -'\jj.

2~3 9

It may be remarked that the condition x2 =-Xl corresponds to the

case in which the vertex C lies on the x-axis. Many people would assume
that this would give the required maximum but, as the proposer remarked,
proving it is quite hard (unless someone can come up with a simpler
proof).
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SOLUTION TO PROBLEM 28.3.3

This problem was sent by Paul Grossman. Let us define a
Domino set of rank n as a set of tiles, the rectangularfaces of
which are ,separated into two squares, each marked with dots
representing numbers from zero to n, such that no two tiles
contain the same pair of numbers' and all combinations of
pairs are represented.

• ' (9

•

~ :

; ,

" 4&

The figure shows a set of rank 2 laid out in a closed chain.
The contacting squares on adjoining tiles have matching
numbers and each tile was placed in the clockwise direction
at the end of the previous tile, either in the same direction or
at right angles. Now:

1. Prove that a closed chain with the above
conditions can be established with a set of rank
6 (the standard domino set) but not with sets of
rank 3, 4 or 5.

2. Show what ranks will allow a continuous chain
to be formed' with matching numbers .on
adjoining squares and tiles placed at the end of
the previous tile.
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We received solutions from Derek Garson and the proposer. Here
is th~ proposer's.

The . solution to Question 2 will answer Question 1. Two
conditions must be fulfilled:

(a) The numbers on the adjoining squares on the last and
first tiles must match.
(b) The last tile placed must run into the end or side of the
first.

Condition (a)

For this purpose let us consider the tiles to be lines joining
numbered points. Tiles with repeated numbers are of no interest; they
represent lines that start and finish at the same point. We are thus left

with n(n + 1) lines with all the combinations of pairs of points at their
2 .

ends. The problem may be envisaged as choosing n + 1 .points on a
circle, constructing a polygon by consecutively joining neighbouring
points and then drawing all the diagonals without lifting the pencil.

For every line entering a point another line must be leaving. Each
corner of our polygon is joined to n other points; therefore n must be even
and the polygon has an odd number of corners. It remains to show that
for every such polygon we can find at least one path to get back to the
starting point after visiting all points repeatedly. If n + 1 is a prime
number, we can join successive points until we reach the starting point
again, then go round twice in steps of 2 and proceed until we have
returned after steps of n12. If n + 1 is not prime, we proceed in the same
manner until we come to a factor q of n + 1, then use steps of n + 1 - q
and resume with q + 1.

Thus the condition is fulfilled if and only if the rank n is even.
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c Condition (b)

This condition can be fulfilled only if the number of tiles N is even.
To demonstrate this, consider the Cartesian co-ordinates of the centre of
each tile's [lIst square. Let the origin be the centre of the first tile's first
square and let the length of a tile be two units. As each successive tile is
added to the end of the previous one, one co-ordinate remains constant
while the other increases or decreases by 2. After N such steps, we must
reach (0, 0) again, which means that there must be as many steps
resulting in positive changes in x as in negative changes. Thus the total
number of tiles oriented in the x-direction is even and so is the number
oriented in the y-direction.

An even number is necessary but not sufficient. Two tiles cannot
fonn a chain. However, four can and it is readily seen that if the
condition is fulfilled for N, it must be fulfilled for N + 2. Any tile maybe
severed from its neighbour and rotated by 90°; two' new tiles may then be
added leading ·back to the original neighbour.

,A set of rank n has N n tiles where

n(n +1) ( n)N n = 2 + (n + 1) =(n + 1) 1+ "2

The reader may now verify that, to obtain an even N
11

when n is
even as required by Condition (a), n must not be a multiple of 4.

SOLUTION TO PROBLEM 28.3.4

This problem, posed by Sefket Arslangic (Bosnia),
considered three non-negative numbers x, y, z for which
x2 + y2 + Z2 + 2xyz = 1, and sought a proof that

We received proofs from John Barton (2 proofs), Julius Guest,
Joseph Kupka, David Shaw (2 proofs) and the proposer, who also sent
two. Here is the first of these two, which is the same as Barton's second.
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Let A =X
2 + y2 + Z2 and B =2xyz. By the inequality connecting

the arithmetic and the geometric me~ns1

This tells us that 4A 3 ~27B2. But the data tell us that A + B = 1,

so that 4A3 ~27(1-AY. This means that 4A3 -27A2 +54A-272:0.
We can factorise the left-hand side of this equation and so obtain

so that A ~ l as required.
4

Professor Arslangic notes that equality holds if x == y == z ==! and
2

indeed it may be shown that this i~ the only case of equality.

SOLUTION TO PROBLEM 28.4.1

The problem (from Australian Senior Mathenlatics ]ounlal)

asked for all solutions of the equation

(
2 _ 5 S)X 2

-9X+20 =I'x .. x+ .

Despite the very short time available, our regular correspondent
Julius Guest sent us a solution. There are two very obvious ways in
which the desired equality may be achieved. The first is to set

x 2
- 9x + 20 =0 .

1 See Function, Vol 8, Part 1, p 15.
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This entails (x-4Xx-5)=0, sothatx=40r5. Then x 2 -5x+5=10r5

and, as both SO and 1° are equal to 1, we have two soiutions.

Alternatively, we could set x 2
- 5x +5 = 1, which implies that

x2 -5x+4=0.

This entails (x-4Xx-l)=0, so that x = 4 or 1. So x = 1 is also a

solution.

More subtly, we could set x2
- 5x +5 =-1, which implies that

x 2 -5x+6=0.

This entails (x - 2Xx - 3) =0, so that x = 2 or 3. Then

x 2 -9x+20=6 or 2

and both (_1)6 and (~1)2 are equal to 1 and so we have two more

solutions. The question arises as to whether there might not be yet others.
This could perhaps be achieved if both

x2
- 5x +5 =(JJ,

and x 2
- 9x + 20 = 11,

where (]Jis a complex number, and n an integer, such that run =1. There
are in fact no further solutions ofthis type, although we leave the proof to
the reader. So the complete list of solutions is 1,2,3,4,5.

We may remark in passing that the source offered no solution
although it implied that it is easy to miss possibilities. They also 'claimed
that the solution was easier than it looked. It isn't quite clear what they
meant by this!
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PARTIAL SOLUTION TO PROBLEM 280402

The source (Mathematical Bafflers, Ed Angela Dunn) asked

for all pairs of rational numbers (x,.y) such that x Y = yX .

The following partial solution follows that given in the source.

Set y = xr, where r is necessarily rational. Then xxr = (xr)X, so

that xx(r-l) =r X and x r
-

1 =r. Therefore either r = 1 or else x =r ll
(r-l) .

The first possibility yields the trivial solutions x = y, the other is Inore
subtle. To be sure to have x rational when r is rational, set l/(r - 1)

(
1Jrl .( 1J11+1integral. Call it n say. Then x =,1 +;; and y = 1+;; ,where

n:/:. 0 or -1. In fact the negative values of n are unnecessary, as they

merely regen~rate the same set of solutions as the positive values, but
with x and y interchanged. [The restriction to positive n corresponds to
making the convention that y > x.] Notice that as n -) 00, both x and y
tend to the irrational number e.

[While this gives an infinite set of solutions, it does not hOlvever
prove that these are the only ones! Eds]

SOLUTION TO PROBLEM 28.4.3

Vasile Berinde (in Exploring, Investigating and Disco'vering
Mathematics) asked for all prin1e numbers n such that n + 4
and n + 8 are both also prime.

The following solution is based on that given in the source.

Clearly n must be odd. So put n = 2k + 1 (k ~ 0). Then k must
have one or another of the forms: k =3p, k = 3p + 1 or k = 3p -1. If
k = 3p, then n ~ 8 = 6p + 9, which is not prime. If k =.3p + 1, then

n = 6p +3, which is prime only if p~= O.. This yields the triple 3, 7, 11, as

a solution to our problem. If k =3p - 1, then n +4 =6 p - 3, \vhich is

prime only if p =1, but in this case n = -1, which is not pnme. There is
thus only one possible case: 3, 7 and 11.
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