Func tiomn

A School Mathematics Journal

Volume 28 Part 2 April 2004

=

School of Mathematical Sciences — Monash University

Reg. by Aust. Post Publ. No. PP338685/0015


bpolster
Rectangle


Function is a refereed mathematics journal produced by the
School of Mathematical Sciences at Monash University. It was
founded in 1977 by Prof G B Preston, and is addressed principally to
students in the upper years of secondary schools, but also more
generally to anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to the natural and social sciences, history of
mathematics, mathematical games, careers in mathematics, and
mathematics in society. The items that appear in each issue of
JFunction include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.
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and other material for publication are invited. Address them to:

The Editors, Function

School of Mathematical Sciences

PO BOX 28M

Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403

e-mail: michael.deakin@sci.monash.edu.au

Function is published five times a year, appearing in February,
April, June, August, and October. Price for five issues (including
postage and GST): $33"; single issues $7. Payments should be sent
to: The Business Manager, Function, School of Mathematical
Sciences, PO Box 28M, Monash University VIC 3800,
AUSTRALIA,; cheques and money orders should be made payable
to Monash University. '

" $17 for bona fide secondary or tertiary students.
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THE FRONT COVER

Our cover picture for this issue shows one of the standard forms of
a curve known as the trisectrix of Maclaurin. It relates to-several
important themes in the development of Mathematics.

First, the name “trisectrix” relates to the classical problem of
finding a ruler and compass method by which to trisect an arbitrary angle.
There have been several articles on this topic in Function, most recently
the history column for August 1999. That article included an account of
the proof that the task is impossible. Even before -this proof was
discovered, however, there was a widespread suspicion that ruler and
compass methods alone were not able to perform the operation. Thus
other approaches were mooted, and this curve embodies one of them.

The curve was first studied by Colin Maclaurin (1698-1746), a
Scottish mathematician most remembered as an early champion of the
Calculus against the attacks mounted upon it by Bishop Berkeley. His
Treatise of Fluxions, the first systematic exposition of the subject, was
much praised at the time, although later opinion is less flattering. One
recent author, Clifford Truesdell, has described it as “so dense, torve
[grim of aspect] and ugsome as scarcely to have been read by anyone but
its author and would plunge any beginner into the slough of despond”.
Possibly this is a little harsh! Maclaurin is also commemorated in the
name given to a form of Taylor’s Theorem, a standard result in Calculus.

The other body of theory that the curve represents is the topic of
cubic equations. Again, these have featured in Function on several
occasions, most recently in a brief news item in the issue for August
2003. We here discuss the connection between cubic equations and the
problem of angle trisection. The connection appeared in the earlier 1999
article, but there only a specific cubic and angle were considered.

There are several standard equations for the curve we exhibit on
this number’s cover. Different authors use different orientations and
different choices of origin. Most include a parameter a, which may
however, without any loss of generality, be set equal to one, which is
done here. With these understandings, the equation is
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The effect of the * sign is seen very clearly in the symmetry that the
curve displays about the x-axis.

The curve has several other properties that are straightforward to
prove. There is a vertical asymptote at x = -3, and the curve is defined
for all x in the domain —3< x<1. Apart from the axes, any straight line
through the origin cuts the curve in three points. The point (-2, 0) is a
point of self-intersection, where there are two distinct values of the slope
and thus two distinct tangents. Beyond these obvious features, there are
others of interest to mathematicians, but they will not concern us here.

Equation (1) is by no means the only mathematical approach to this
curve. Even with the same conventions on orientation, etc, there are
others that are also useful. For our present purposes, the one to watch is
the use of polar co-ordinates. This takes any point P on the curve and
uses the distance OP of that point from the origin as one co-ordinate.
This is given the label r. The other co-ordinate is the value of the angle
between OP and the positive x-axis. This angle is traditionally called 6.
In these co-ordinates the equation of the curve is much simpler. It

becomes
g
—|=1. 2
rcos(3) 2)

To connect the two equations takes some work. The x and y of the first
equation are related to the r and 6 of the second by means of the
equations:

x= rcdsﬁ}

y=rsinf

If we now substitute these values into Equation (1) and simplify,
we reach

ricos@+3r —4=0.

This is a cubic equation, and the idea is now to solve it for 7 to reach a
simpler connection between r and 6.

This leads us to the standard theory for the cubic. Begin by

dividing throughout by 4r° and putting u=1/r. This gives after some
extremely simple rearrangement:
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3 3. cos@
u ——u =
4

This is one of the standard forms of the cubic, which can
always be written in a form in which there is no term in the square of
the unknown. The more general version of this standard form is

u3+pu=q.

The method of solution is to put Q =§, R =—Z— and D=0Q*+R% Dis

the so-called discriminant; it plays the same role as the discriminant
A(z b* —4ac) in the more familiar quadratic equations in that it
determines the character of the roots. If D > 0, there is one real root

and two complex ones; if D = 0, there are three real roots, but at least
two of them are equal; if D < 0, there three unequal real roots.

_ cost sin® 6

In our case, Q=—-%, R_T and D=- which is

clearly negative. We thus expect three real roots, and the standard
way to proceed is by means of a trigonometric substitution. Here
however, this is to put the cart before the horse, as the substitution
was developed specifically to reduce the general form to the special
case
3 3 cos@
u
4 4

here under discussion.

In general, we substitute

cosf = JR_S

-0
but if 'we do this here, we merely find that cos@ =cosd. This is good
in a way, as it can act as a check on the work, but it tells us that some
new insight is needed to complete the solution. However this is easily
rectified, as the point of the general substitution was to reach exactly
the equation
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The reason that this is a good equation to have is that it is
known that, for any angle a,

“cos3a=4cos’ @ —3cosax.

So now compare this with the previous equation, and set a=—.

From the comparison we learn that u = cos(—q] .

This completes the proof of Equation (2).

And now we may see how the trisectrix works. The distance

from O to the point P is the reciprocal of cos(g) . We can mark on

the diagram the point P, measure its distance from the origin, and
compare the result with the distance x, the x-co-ordinate of the point
P. Then

rcos@d=x
rcos(8/3)=1J

and therefore xcos(g-J:cosH. cos(-Z—) thus appears as the ratio of

two known quantities and so its value may be determined. This in
a
turn enables us to construct the angle 3 So, although we cannot use

ruler and compass alone to trisect an angle, we can do quite well if
our toolkit also includes a trisectrix.

The cover picture was produced using MAPLE. Equation (2)
gave a better picture than did Equation (1). The commands that
produced the diagram read:

>with(plots);
>polarplot(sec(theta/3),theta=-4.18..4.18,scaling=constrained,
color=black,thickness=2);
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{Here sec is an abbreviation for 1/cos, and the value 4.18 was chosen
for consistency with the picture below, deriving from Equation (1).]

Equation (1) was graphed equally painlessly:
>with(plots);
>implicitplot((yA2)*(3+x)=((x+2)"2)*(1x),x=-3..1,y=5..5,scaling=

constrained,numpoints=10000,color=black,thickness=2);

Here is the result. We thought it less attractive than the other.
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A final question for readers to ponder over. A cubic has three
roots and in this case they are all real. These must correspond to the
three = intersections between the trisectrix and the straight line
through O making an angle @ with the positive x-axis. How are the
other two points to be interpreted?

Readers seeking further information could do worse than to
consult the websites

http://www~groups.dcs.st-and.ac.uk/history/Curves/Trisectrix.html -

with a linked page on the life of Maclaurin, and

http://mathworld.wolfram.com/MaclaurinTrisectrix.htmi

which derives in large measure from the other, but is more detailed
and has links to useful explanatory pages.
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MATHEMATICAL CLASSIC

Hermann Bondi on the Night Sky

[From time to time, Function reprints an excerpt from a
famous mathematical classic. In recent years, we have had George
Boole on the laws of thought and Florian Cajori on how the ancient
Babylonians solved quadratic equations. - Here in the same spirit is
Hermann Bondi on “Olbers’ Paradox” and the prediction of the
expanding universe. It comes from his book The Universe at Large, a
reprint of an early (1959) account first appearing in The lllustrated
London News.]

“The question ... arises of whether ... very distant stars,
[that] would individually be too faint to be seen, might not be so
exceedingly numerous as to provide an even background illumination
of the night sky? This is the question that the German astronomer
Olbers asked [in] 1826. [He argued as follows.] .

“On the basis of ... four assumptions,

“[1. Distant stars are separated by the same
average distance as nearby stars; 2. Distant stars
have the same average brightness as nearby stars;
3. Light is propagated in . distant regions of the
universe in obedience to the same laws as govern it
nearby; 4. (Implicitly) There are no large-
scale motions of the universe, which is essentially
static.]
it is easy to work out the background light of the sky. Imagine a vast
spherical shell surrounding us. ... . The thickness of the shell is
supposed to be small compared with its radius; but the whole shell is
supposed to be so enormous that there are vast numbers of stars
within the shell. How many stars are there in this shell? If we call
the radius of the shell R and its thickness H, then we can readily see
that the surface of the sphere on which the shell is built is 47R* and
thus the volume of the shell is, to a sufficient approximation,
47R*H . If, now, N is the number of stars per unit volume, then the

number of stars in the volume 47R?H will be 4ZR*HN . How
much light will all the stars in the shell send out? If the average rate
at which an individual star sends out light is L, then all the stars in
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the shell put together will send out 47zR>HNL . However, what
interests us is not how much light all these stars send out, but how
much light we receive from them. Consider the light of an individual
star in the shell. By the time the light reaches us, it will have spread
out over a sphere of surface 47zR”>. That is to say, the light of each
individual star has to be divided by 47ZR” to tell us the intensity of
light from it which is received here. This is true of all the stars in the
shell, and, therefore, the total light we receive from all the stars in the
shell is the total light they send out divided by 47R . This division

leads to the cancellation of the factor 4#R> and we are left with
HNL.

“It will be seen that this does not involve the radius of the shell
at all. The amount of light we receive from any shell of equal
thickness is the same irrespective of the radius of the shell. If,
therefore, we add shell after shell, then, since we get the same amount
of light from each shell, the amount received will go up and up
without limit. [Even if we take account of the fact that some stars
block the light emitted by others, we find that we get from] all these
shells of stars a flood of light equal to- 50,000 times sunlight when the
sun is at its zenith. On this basis, then, it should be incredibly bright
both day and night. Everything would be bumed up; it would
correspond to a temperature of over 10,000 degrees Fahrenheit [over
5500 degrees Celsius]. Naturally, this remarkable result astonished
Olbers, and he tried to find a way out. ... . [Various] ways have been
tried, but none of them works. We are, therefore, inevitably led to
the result that, on the basis’ of Olbers’ assumptions, we should be
receiving a flood of light which is not, in fact, observed.”

Bondi then goes on to discuss the assumptions detailed at the
start of this excerpt, and to decide that it is the fourth (implicit)
assumption that is in error. This leads him to the deduction that the
universe must be expanding, as modern theory now completely
accepts. As he writes: “... the forecasts of the theory do not agree
with observation, and thus the assumptions on which the theory is
based must be wrong. ... . By this method of empirical disproof, we
have discovered something about the universe and have so made
‘cosmology a science.”

- [esloelocloaleoleelaclonleclotrelealealseloels ]
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BOOK REVIEW

Vasile Berinde: Exploring, Investigating and Discovering in Mathematics
(Birkhduser, 2004) 246 + xx pp. Reviewed By Michael A B Deakin.

The author of this new book is a highly experienced problem setter
and solver based in Eastern Europe. The original edition was published
in 2001 in Romanian, and this version claims to be a literal translation. It
would seem to be so, as the English is at times stilted rather than
idiomatic. This, however, is my only criticism of a work that deserves
notice for its content, its valuable asides and its overall structure. It
comprises a collection of interesting and challenging problems, but it also
fulfills a useful reference role for anyone concerned with the posing and
the solution of mathematical problems.

The level of Mathematics will strike Australian readers as high,
and this may well reflect the difference in standards between schools in
this country and those of Eastern Europe. (Regular readers of Function
will recall how well teams from Eastern Furope perform in the
International Mathematical Olympiads.)

The book is arranged into 24 chapters, and concludes with a brief
but interesting addendum. Much of the material is drawn from the
Romanian journal Gazeta Matematica, an approXimate counterpart of
Function, but which was founded in 1895, and is still going strong. The
most frequently cited author is Berinde himself, and his comments are
always to the point.

Each chapter begins with a “Source Problem”, and follows this up
with variations on the theme established by it. Solutions are given to the
source problem and its variants in such a way as to instruct not only in the
relevant Mathematics, but also in the strategy of seeking solutions.

I will not list all 24 of the themes discussed, but will rather
concentrate on a single example that should interest Function’s readers.
Chapter 12 concerns numbers in arithmetic progression. Suppose the
sequence {a p} makes up an arithmetic progression for all p=1. The

p+3 =0 for all

positive integral p. The proof is straightforward, and readers are invited
to construct it for themselves. But now, Berinde generalises the problem
and asks for a proof that

source problem asks for a proof that a, —=3a,,; + 3a,,-a
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n n) W7
a, - 1 a,q+ 5 ap+2~...+(—1) u a,., =0.

(The notation here is that explained in this issue’s History Column.)

With this problem solved, Berinde goes on to speculate on the
converse proposition: If the equation above is true, then is the sequence
{a p} an arithmetic progression? It turns out that it is, but this in its turn

suggests a further related problem, based on Equation (2) of the History
Column in this issue. This then leads to a further converse result and
another generalisation. And still we are not finished; further
generalisations and converses appear. All in all, the source problem
generates nine further related problems. The final section details the
provenance of all the various problems and gives references for further
reading. (The references, however, may not be so easy to come by. They
are mostly in Romanian and in books or journals published in Romania!)

This chapter is typical. The format and organisation of each of the
others follows similar lines. My one general comment would be that, just
as the level of Mathematics assumed is higher than that of Australian
schools, so too are the demands made in other directions. The reader is
assumed familiar with a range of notational conventions and technical
terms that lie outside what our own schools teach. This is indeed the
language of today’s Mathematics, and so perhaps Australia has some
catching up to do.

The final section, the Addendum, deserves especial notice. It is the
shortest of all and runs to a mere four pages. It offers three general
principles that a problem solver should respect (along, of course, with
accuracy and rigour). These are: (1) “The solution should be clearly
constructed, highlighting the various stages, so that the basic lines
constitute a well-traced sketch for solving the problem”, (2) “[Once] we
have solved a problem and the solution has a coherent method, we should
investigate to what extent that method can be applied to problems related
to the initial one”, (3) “[Once] we have solved the problem, we should
not consider the solution complete until” we have analysed all its
components, examined the status of all the arguments employed and
checked the role played by all the data supplied.

Very sound advice, and usefully amplified. It makes a nice finish
to a very nice book.
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LETTERS TO THE EDITOR

~ More on Currency Conversion

I read with interest the article on “The Doubly Golden Euro” in last
February’s issue. But readers should know that the golden ratio, 7, is not
the only number whose reciprocal is easily calculated. At a time when
the Australian dollar was worth about 71 US cents, I realised that the US
dollar was about $1.41 in our money.

-2
-2

This is because 1.41 = «/5 and

1=

Similarly, because —}: = ~3—3— , we can calculate that when our

dollar was down to 58 US cents, their dollar was worth 1.73 of ours.

There is a whole family of such reciprocals. The next one, based
on the number 4, is very simple, and leads into a second family where the
number to be inverted is a simple whole number ratio. For example 0.75
is % and its reciprocal % ~1.33. Similarly, 0.625 =§ and §= 1.60.

(Not all that far from the golden ratio, this one!)

A third family can be constructed from the binomial approximation

1% =~ 1F £ for small values of ¢&. This has worked at times for the
te

Swiss Franc and the Singapore dollar in relation to our dollar.
Bernard Anderson

Portland College

[It seems likely that the entire range 0 < x < 1 can be covered by the use
of devices such as Mr Anderson describes. We leave the exploration of
this question to readers. Eds.)

COOACAOICACIOOOICOOA CACIOCIOA0Q
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More News from Wales

My friend and co-worker Kim Dean has asked me to pass on to
Function’s readers the discoveries I have made in going through the
manuscripts left behind at the death of our mutual friend Dai Fwls ap
Rhyll. Kim wrote a year ago about the death of this controversial genius;
his loss is mourned by those of us who knew him, and by a wider public
as well. Once his death was confirmed, the relevant authorities acceded
to my request and appointed me as his literary executor. It is in this
capacity that I write to you.

The task is far from easy. In 2002, Kim did a wonderful job
making sense of a painfully scrawled document that nevertheless
discovered serious flaws in established mathematical formulae. I have
had to follow in the same tradition and it has been heavy going!

Of those documents that I have had some success in deciphering,
perhaps the most interesting is his discussion of Euclid’s parallel
postulate. Surely everyone will know the basic background. Euclid’s
“fifth postulate” became the basis on which he formulated his account of
parallels. It was later replaced by the so-cailed “Playfair’s Axiom”,
which states:

Given any line [ and any point P not on it, there is e);actly
one line through P parallel to .

/

The development of non-euclidean geometries depended on the
supposed impossibility of demonstrating the truth of this axiom from the
other axioms and postulates in Euclid’s Elements.

All this theory, I can now confidently say, is wrong! Dr Fwls has
produced a simple proof of Playfair’s Axiom based only on material in
the Elements. Nor is the new material abstruse or difficult. Like all of Dr
Fwls’ work, it uses only simple mathematical concepts, rarely if ever
straying beyond the confines of what is routinely taught in High School
Mathematics courses. '

Here is how Dr Fwls proves Playfair’s Axiom.
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From the point P, drop a perpendicular to the line [, meeting it in a
point 0. Now through P draw a line [ perpendicular to OP. The

situation is as shown in the diagram below:

o

Consider now the question of whether [ and /; intersect. Suppose

that they do, and suppose, for definiteness, that they do so in a point A to
" the left (in the diagram) of OP. Then, by symmetry, they will also meet
in a point B to the right of OP (and indeed equidistant from that line).

Then the points A, O, B are collinear, as all three lie on the line I.
Similarly the points A, P, B are also collinear as all three lie on the line /;.

Thus the two different lines [, /; meet in two distinct points A, B, and this
is clearly impossible in view of Euclid’s other assumptions.

It follows that /, must be parallel to I Furthermore, the
construction admits only of a single line I,. It follows that the line /; is a
unique parallel to line [ passing through the point P.

Thus Playfair’s Axiom is proved.

Where generations of eminent mathematicians have strayed into
fanciful realms, Dr Fwls has here introduced a refreshing note of common
sense. ;

Sue de Nimmes,
Llanfairpwligwyngyll-
gogerychwyndrobwyll-

antisiliogogogoch,

Wales
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HISTORY OF MATHEMATICS
Meditations on a Tattoo
Michael A B Deakin

I was out shopping when I saw a fellow with a tattoo on his
shoulder. That in itself is hardly remarkable, but this tattoo took the form
of a mathematical equation. It read:

K;=% (") )
v=0\V

n
First let me explain the notation. ( ) is the “combinatorial symbol”. It
v

stands for the number of ways in which a subset of v elements may be
chosen from a full set of n such elements. [This is what most
mathematicians would regard as the standard notation, although the older

"C, retains some currency in high schools, and various mathematical
software packages use yet others.]

n
The numbers ( ) will be most familiar to Function’s readers as
v

the entries in Pascal’s Triangle:

0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

Here the column on the extreme left gives the number of the row
(starting, please note, from ). Within each individual row,

. AW .
number the entries 0, 1, 2, etc. Then (’ ) is the vth entry in the
v .

4
nth row. (2j =6, etc.



46

n
The notation Y is a shorthand for addition; it tells us to insert in
v=0

order the values 0, 1, 2, ..., n for v into what follows, here (n) , and to
: 14

add up all the results. So, what is meant here is:
n n n n
+ + + o+

This amounts to adding up the entries in the nth row of Pascal’s
Triangle. When we do this, we find:

Row 0 1
Row 1 2
Row 2 4
Row 3 8
Row 4 16

which strdngly suggests the generalisation

Row n 2".

In the notation I have just been explaining, this generalisation would read

z("] =2 @)
v=0\V

A proof of this result may readily be supplied. The binomial
theorem concerns the expansion of (a + b)" , and it may be approached by
considering the product (a +b)a+ b) - (a +b), where there are n factors
involved. When the multiplications are carried out, the result will be a
sum of terms each of which is of the form a"b"", and, as the v @’s may

n n
be chosen from the n factors in ( j different ways, there are ( ] such
1%

v

terms. Thus the binomial theorem, in the notation I have just described,
reads '
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v=0

(@+b) =% (Zj a’b™.

Now simply put a = b =1 into this formula to reach Equation (2) .

These were the thoughts that occupied me when I saw the tattoo. ‘1
made bold to speak to its owner along these lines and suggest the left-

hand side of the equation might more accurately read, not K, but 2",

My suggestion was loftily dismissed, but I did learn from him that the
formula had been copied from Wittgenstein’s Tractatus.

This is the short name of an influential book by the philosopher
Ludwig Wittgenstein. Its full title is Tractatus Logico-philosophicus, and
it was the first of his many books, but the only one published in his
lifetime. It is a somewhat quirky production, consisting of a sequence of
oracular utterances (“‘propositions”), numbered in a manner reminiscent
of the Dewey decimal system for cataloguing books.

The underlying rationale is explained in a footnote, which reads:

“Note. The decimal numbers assigned to individual
propositions indicate the logical importance of the
propositions, the stress laid on them in my exposition. The
propositions n.1, n.2, n.3, etc. are comments on proposition
no. n; the propositions n.ml, n.m2, etc. are comments on
proposition no. n.m; and so on.”

The Tractatus was written in German, but there are two English
translations, of which the second is regarded as more accurate, although
the first is better known. In the older, more familiar, of the two
translations, the first few of these propositions are:

1.
1.1
1.11
1.12

1.13

The world is everything that is the case.

The world is a totality of facts, not of things.

The world is determined by the facts, and by their being all
the facts.

For the totality of facts determines both what is the case, and
what is not the case.

The facts in logical space are the world.
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These propositions describe a view of the world that Wittgenstein
was concerned to promote. Most of us would see the world as being
made up of rhings — what Wittgenstein later calls “simples”. He,
however, saw a new approach to Philosophy, basing his analyses on the
language in which our thoughts are expressed. The Tractatus takes a
very simplified model of language. It considers the basic unit of
discourse to be the straightforward assertion, which may be either true or
false. Then if there are two such assertions, there are four possibilities:
both true; first true, second false; first false, second true; both false. And
so on for more than two assertions. It is in this connection he gives
Equation (1) as his Proposition No 4.27.

Quite how Wittgenstein meant his equation to be interpreted is a

n n
matter for some analysis. The symbols ( ) and ) have standard
' |4 v=0
interpretations, and any mathematician will understand what they mean.
K, however does not. Thus Wittgenstein is not asserting a result — as he
would have been had he written Equation (2); rather he must be using the

equation in a definitional mode, defining what he means by K,,.

It is rather surprising that Wittgenstein did not immediately
recognise that K, had the value 2". In a career that spanned many

professions (primary school teacher, soldier, architect, professor of
Philosophy) he had also worked as an aeronautical engineer and so
become interested in a roundabout way in Mathematics and its
foundations. This had led him to work under the philosopher-
mathematician Bertrand Russell, who supervised his graduate study.
Eventually the Tractatus was accepted as his doctoral dissertation. It is
also surprising that Russell seems to have missed the point also.

The viewpoint of the Tractatus is aptly named “logical atomism”.

When he first wrote it, Wittgenstein believed it to offer a solution to all -

the problems of Philosophy. Its approach was certainly new and the work
has been most influential. The emphasis on language was in itself a
departure, but the insistence on facts instead of things being the stuff of
reality was more radical.

We can get a feel for the new viewpoint if we reflect on the
analysis of Rubik’s Cube. (See Function, October 1981 and February
1982.) The key to unravelling the puzzle is to analyse the effect of
operations on the cube, rather than the state it is in. The rise of abstract
algebra lent some readiness to this type of thought, and it informs some of

[R—
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the metaphysical thinking of Alfred North Whitehead, the mathematician
who supervised Bertrand Russell’s own studies and who collaborated
with Russell in the writing of Principia Mathematica.

So perhaps the time was ripe for this novel approach. “The facts in
logical space are the world.” Of all the statements that may be imagined
to be true (logical space), those that actually are constitute the world.
The Tractatus thus limits discussion to the uses of language in making
assertions. Not all of the things we might like to say fall into this
category. These Wittgenstein dealt with in his final Proposition:

7 Whereof one cannot speak, thereof one must be silent.

Indeed, Wittgenstein is said to have condensed the entire Tractatus into
one compound sentence:

“What can be said at all can be said clearly, and what we
cannot talk about we must pass over in silence.”

The first part of this sentence summarises Proposition 4.116; the
second is Proposition 7; the entire sentence is given at the website

hitp://www.brewbooks.com/ret/tip/ref ‘tlg;html

Later, Wittgenstein came to reject the narrow focus of the
Tractatus, and paid more attention to the complexities of real language.
As he wrote in introducing his later (posthumous) work Philosophical
Investigations:

“... since beginning to occupy myself with philosophy
again, sixteen years ago, 1 have been forced to
recognise grave mistakes in what I wrote in that first
book. I was helped to realise these mistakes — to a
degree which I myself am hardly able to estimate — by
the criticism which my ideas encountered from [the
mathematician] Frank Ramsey, with whom I
discussed them in innumerable conversations during
the last two years of his life.”

Real languages - display a complexity that has been
appreciated even more in the years since Wittgenstein. The
following example (a well-known one) comes not from him but out
of the early experiments in-machine translation. The sentence
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“Time flies like an arrow”

has of course the meaning we usually attribute to it, but we can also
analyse it to mean

“Get out there pronto and start timing flies”
or as a (bizarre) analogue of
“PFruit flies like a banana”.

Yet we never consider these other possible readings; we know at
once what is meant.

However, the tattooed man did not enter into all these
subtleties. He seemed to ascribe a mystical significance to the
formula, which he saw as expressing the manifold possibilities the
world has to offer. (It is most doubtful that Wittgenstein meant
what the man thought he meant.) “Wittgenstein wouldn’t make a
mistake,” he declared.

No, this is not exactly a mistake, but we might class it as an
oversight. Max Black, in his very detailed and thorough work A
Companion to Wittgenstein’s “Tractatus”, remarks laconically
“K_ : has the value 2",

A similar oversight is to be found in the later Proposition
K,

(K,
4.42, which gives the formula Z( K"] = L,. Black likewise

k=0
provides the formula for L,, which I invite readers to discover for
themselves.

However, Wittgenstein did make mistakes in his mathematical
formulae. His Philosophical Investigations was left incomplete at the
time of his death, although the incompleteness was only minor.
However it contains a formula that the editors (Anscombe & Rhees) who
prepared the text for publication felt compelled to correct. What should
be written as 2x + 1 appeared in the manuscript as x*> +1. The error and
its correction occur in §226, on p 86e. It seems a curious mistake, but
perhaps we can take a charitable view and assume that Wittgenstein

would have made the correction himself, had he lived to do so!
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NEWS ITEMS

Yet more on the Collins Case

In June 2003, we ran an account of a US court case involving
expert statistical evidence: the so-called “Collins Case”. A couple were
arrested and charged with a crime because their description matched
exactly that of the perpetrators. The odds of any randomly selected
couple matching this description were assessed as 1 in 12,000,000. At
their trial, this figure was quoted as the probability of their innocence.
This identification of one set of odds with another is however wrong; in
fact it is now called the “prosecutor’s fallacy”.

In our June description, we reported on an analysis by T Rolf
Turner of the University of New Brunswick. Turner likened the situation
to that of a very large number of beads in a barrel in which almost all the
beads are white, but there is a very small probability that any given bead
may be red. Turner assumed the probability of any given bead’s being

red as p=; and took the number of beads to be N, whose
12,000,000

“value he took to be 2,000,000, (These numbers arise from evidence given
at the trial and the subsequent appeal and, although their accuracy has
been questioned, they are accepted for the sake of argument in almost all
discussions of the case.)

We thus have a situation where a very large number N is balanced
against a very small probability p. This type of problem leads to the
Poisson distribution with a parameter m equal in value to the product Np.
m is the expected number of beads in the barrel; its value here is 1/6. The
Poisson distribution however requires modification in this instance, to
take account of the undoubted fact that a couple did match the unlikely
description: i.e. there was known to be at least one red bead in the barrel.

Turner’s analysis has more recently been questioned by Halvor
Mehlum of the University of Oslo. The distinction between Turner’s
account and Mehlum’s is subtle and serves to illustrate the difficulty
involved in applying probability theory to real life situations. Mehlum
argues with Turner on the basis that “[the] only information that Turner
extracts from the circumstances is that there is at least one red bead”. He
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calls this piece of data F,. Mehlum would replace this piece of data with
a stronger one: a “bead drawn at random is.red”. He calls this F;.

He argues that the second interpretation better applies to the case in
hand. This is justified by means of a verbal argument, essentially based
on the assumed independence of the description of the perpetrators and
the commission or not of the crime. This is what justifies his “drawn at
random” wording. In Function, we wrote: “It is established by careful
investigation that the barrel does indeed contain a red béad”. For
Mehlum, this “careful investigation” consists of drawing out a bead at
random, finding it to be red and then putting it back into the barrel.

Now write Pr{r=n|F,} for the probability that there are n red
beads in the barrel, given that F, is true, and Pr{r=n|F} for the
probability that there are n red beads in the barrel, given that F, is true.

The theory of the Poisson distribution now gives:

-m n -m__ n-1
¢ — n and Pr{r=n|F,}=f———m—
1-e™ n! : (n=1!

Pr{r=n|F}=

On the basis of his distribution (the first of these), Turner
calculated the probability that Mr and Mrs Collins were innocent as 4.3%,
a figure that makes it unlikely, but large enough to constitute “reasonable
doubt”. Mehlum however, on the basis of his distribution (the other),
reaches the figure of 7.9%, somewhat more favorable to the accused.

Perhaps we might reflect that Turner’s analysis makes the less
tendentious assumption Fy, which we can most surely accept. Mehlum

makes the stronger assumption F, and as he himself comments, this

enables him to come up with the higher figure. Mehlum also relates the
case to the so-called “island problem” (see Function, April 1980).

A general point might perhaps be in order. Turner’s assumption
F, is incontrovertible, and even this (weaker) assumption is enough to
allow the accused the benefit of the doubt. Mehlum’s assumption F; is
perhaps more precise, but it is less assured. Were one arguing the case in
court, perhaps the simpler course to follow would be to use Turner’s
analysis, even though Mehlum’s is likely to be more accurate!
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Means, more Means and still more Means

Mathematicians are a little suspicious of the word “average” and
often refer to the concept involved as a “measure of central tendency”.
Three such measures are the mean, the median and the mode. These three
were the subject of an early article in Function (February 1979).
However, the word mean is itself ambiguous, and four different meanings
of this word were discussed in our issue for August 1991.

There are however many more “means” and a recent article in
Mathematics Magazine explores some of them. Mathematics Magazine
is an approximate counterpart of Function, published by the
Mathematical Association of America (MAA). Whereas Function is
meant for senior secondary students, Mathematics Magazine is addressed
to undergraduates. However, there is some overlap in standards and
material. In their issue for October 2003, they publish an article that
readers of Function could follow and enjoy.

The author is Howard Eves, who in the late 1960s produced his
book In Mathematical Circles, a teal treasure of anecdotes and
miscellanea of a mathematical nature, that sold so well that it led to the
production of several sequels. (The entire set has just been reissued by
the MAA.)

In this article, Eves considers seven of these “means”. If a and b
are two positive numbers, then their different means are:

Arithmetic A(a,b) =;a b
Geometric G(a,b)=+ab
Harmonic H(a,b)= 2ab

a+b
Heronian ) N(a,b)= @‘IZ

2,42
Contraharmonic C(a,b)= a +b

a+b

2 2

Root Mean Square R(a,b)=42 b

2
2 2
Centroidal ‘ T(a,b) = 2la* +ab+b

3(a+b)
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QOur 1991 article considered four of these: A, G, H and R , and
included a proof that H<G<A<R. Eves has a further set of
inequalities: H<G<N<A."

We leave readers to look at Eves’ article for themselves, but make
some comments of our own on the matters related to those he raises.

You may care to prove that all these means lie between a and b and
that, as long as a and b are both positive and unequal, then all the means
are different. Can you provide a complete listing of the seven means in
order of their size?

Four of the means are special cases of “power means”:

1/n
a" +b"
2

P.(a,b)= {

A is the case n = 1, R is the case n = 2, and H is the case n = —1.-
Although it is far from obvious, G is the case n = 0. For a proof of this,
see Function, Volume 16, Part 1, p 23. The inequalities given in our
1991 article can then be seen as special cases of a more general result:

P.(a,b) in an increasing function of n.

(And this in its turn is a special case of an even more general result
known as Jensen’s Inequality.)

It will be noted that the various means are not independent of one
another. The most obvious connection is that C = —I—}Z— but there are also
others. If we extend the definitions to more than two numbers, we would
have formulae such as A(a,b,c)= f’_"_"_%’j__‘i and then we could write, for

example,
N(a,b) = Ala,b,G(a,b)).
The list goes on.

[eelebloltlonloblobloblonleoletlobloale clonleb0l
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COMPUTERS AND COMPUTING

The “Kahane Function”

In 1990, W M Kahane addressed the International Congress of
Mathematicians in Kyoto, and proposed a number of tests for computer
accuracy. One of these was briefly reported in Function in our issue for
February 1991.

It goes like this. Define

= F
£ =l f
where x is a positive number and # is a positive integer.

Now, very clearly, we have f,(x)=x, as a straightforward

consequence of the index laws. However, Professor Kahane was
concerned to study f,(x) not in this ideal sense, but rather as evaluated

by a computer. The extent to which the value differs from x provides a
measure of the computer’s inaccuracy.

We can easily compute f,(x) on a hand-held calculator by
entering x, pressing the \[_ button 7 times and then pressing the * button
n times. In the earlier Function article, it was reported that a Casio fx-570
gave f,(2)=1.805 and f,,(2)=1. This is actually quite good accuracy.
By comparison, a Casio fx-82L gives f,(2)=1.9999997.

The reason for the error is not hard to trace. Whatever number x
we begin with, the sequence of values of | Jx will tend towards 1, and
after sufficiently many presses, the calculator will record it as either
exactly 1 or possibly 1.00.....1, if x > 1, or as 0.99....9, if x < 1. Once
this point is reached, we get a value of either 1 itself or else a power of
140.00....1, rounded to whatever accuracy the computer can achieve.

The dependence on x is not especially sensitive, unless of course x
is very near 1. If we start with x = 4, for example, we would expect to

find that f;(4) = f;, (2)? =1.9999997% and so we do. The Casio fx-82L
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returns a value 3.9999996. Each squaring of the value of x corresponds
closely to a reduction of 1 in the value of n.

If we try the test on MAPLE, the result depends on how the
calculation is configured. If we simply ask the machine to compute
AMRAEN)NA(2%) for a specific value of n, it will return the answer x
even for values of n as high as 1000. It knows about the identity
(although if we type in n in place of the specific value, it can’t simplify
the resulting expression).

However, if we make the package actually compute the
intermediate value, as the hand-held calculator has to do, then the
performance is not particularly good. On the default setting (ten
significant figures, one more than the Casio fx-82L), we find:

> 2M2M(-5))

(1/32)
2
> evalf(%);
1.021897149
> %™N215);

2.000000022
whereas with x = 2, n = 5, the Casio returns the value 2.

EXCEL, by contrast, does exceedingly well. Starting again with
x=2, and continuing to take square roots and to square, we find that the
square roots are recorded as 1 from n = 22 onwards, but that nonetheless
the value 2 for f,(2) is still returned until n = 33. Even after this, the
value returned is still reasonably close to 2, and so it continues, but with
the error getting larger. When n = 52, the value returned is the truncated
decimal expansion of the number e, the base of the natural logarithms.
This may say something about how the EXCEL spreadsheet is
programmed.

Readers are invited to explore the Kahane function for themselves.
There’s a lot to discover, both theoretically and experimentally!
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PROBLEMS AND SOLUTIONS

We begin with the solutions to the problems set in August 2003.

Solution to Problem 27.4.1

This problem, taken from The Australian Senior Mathematics
Journal, may be approached in various different ways. It read:

Through the vertices of a triangle ABC, draw its
circumncircle. Form three other circles by reflecting this
circle in each of AB, BC, CA. Show that these three circles
all pass through a common point.

We received solutions from Bernard Anderson, Keith Anker, John
Barton and Julius Guest. Anderson and Guest used different approaches
based on co-ordinate geometry. Anker used an ingenious argument based
on the angle in a semicircle’s being a right angle. The elegant solution
given here is Barton’s. He wrote:

“As well as reflecting the circumcircle
ABC in, say, side AB, reflect the other two L
sides BC, CA as well. And similarly for %~
each of the other sides BC, CA chosen as the
reflecting agent. Let the reflections of the
vertices A, B, C be denoted , respectively by
A,B’,C’. Then AA’,BB’,CC’ coincide
respectively with the altitudes AD, BE, CF
of the triangle ABC, and hence are
concurrent at the orthocentre H.”

Barton went on to note that there is a standard theorem (to be
found, for example, in C V Durell’s Modern Geometry as Theorem 20) to
the effect that, if the circumcircle ABC cuts an altitude AD at P, then
HD=DP. Similarly HE=EQ and HF = FR. Thus all three circles

intersect at H.
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Solution to Problem 27.4.2

This problem was based on an article by T Eisenberg in the
International Journal for Mathematical Education in Sczence and
Technology. It read:

A, b and N are non-negative real numbers with b#0. Let
ay=a, by=b and then form the sequences {a,}, {b,}
according to the rules a,,, =a, +Nb,, b, ,=a, +b,. Prove

a, . « . .
that as n — oo, Z—"— tends to a limit and determine the value
n

of that limit.

We received solutions from Bernard Anderson, Keith Anker, John
. Barton, Julius Guest and Joseph Kupka. All gave similar analyses,
although details differed. What follows is a composite.

First note that b, #0. This may very easily be proved by

g . a x, +N .
induction. Now write x, =Zl. Then x,,, =-2——— . Now if x, tends

x, +1

n

to a limit L, then L must satisfy L= LL+ ];J and this entails that L=+/N .
+

It remains to show that the sequence indeed converges. There are
four cases: (1) N=0,2)0<N<1,(3)N=1, 4) N> 1. Of these, the
first and third are easy and the details are left to the reader. In Case (2),

o = N=2‘11;7—W=(1—«/7V_Xxn——\/ﬁ)x—n%l.

n

Now x, >0, and therefore

x,., ~JN|< } x —J7V_|. It follows that
%1ep = VN < | I, - VN,

letting p — oo, (1 —a/N )p — 0, so that as n increases, x, —+ N tends to
Zero.

for any positive integer p,

In Case (4), begin by writing v =% and interchanging the roles of

x, and L . The argument then proceeds as in Case (2).
x'l
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Solution to Problem 27.4.3

This problem was submitted by Avni Pllana of Austria, who also
submitted a solution, as did Keith Anker, whose solution was different.
The problem read:

A strip of paper is folded into a “Tie” as shown below.
Determine the angle 8.

The two solvers seem to have interpreted the problem differently.
Pllana relates it to the diagram below, where the knot is indicated by the

As,




60

more promihent lines. (Compare the two figures.) He then argues as
follows.

“From the constant width it follows that
AH =CG )
and
BB'=BC’=CC’ . @)

“The folded triangle fAAB'BCC’ can be viewed as the isosceles

triangle AA’BC folded around the side B'C’ in such a way that Equation
(2) holds. Then

fAAB’'BCC’= fABD'DAE’ 3)

“Now we can formulate the problem this way: Find the angle S

. such that when the isosceles AA'BC folded around B'C’ satisfying

Equation (2), and rotated until AC coincides with 4B, that is fAAB'BCC’

coincides with fABD'DAE’, the extended side D’E’ passes through the
vertex C.

“Therefore from ACC’F it follows that o+ ¢+ % +g =7, 1.€.
B
a+p+==—,

pri=> 0
“From AACC’ we have

w=p+6. )]
“The Sine rule applied to AACC’ yields

cC’ AC

sind sinf ©)

“Applying Equations (1) and (5) to AACH and ACC’G we have
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st b1 2 T
sm(ﬂ+ )—CC s1n(—2—-—-—§-), 1.e. —m . (7)

“Substituting from Equation (7) into Equation (6) and rearranging

yields
sin fsin(f + &) = siné'cos—’g— . (8)
“From the isosceles AAOC it follows that 2(—’[21 +d+a=7x ,or
a=n-f-26.. ©)

“From AACC’ it follows that B+ S +y +p =1 ,
or using Equation (5)

P=n-2p+35). 10)

“Now from Equations (4), (9) and (10) we get
=%(37r—55). | an

“Substitution from Equation (11) into Equation (8) finally yields
. . |3 . |3 5 Jii
“(m+P)p=sini=(r—-= =
sin ,Bsm{8 ( ,B)} sm{8 ( 3,B)}cos 5 (12)

an equation in the unknown angle 5.”

Pllana then solved this equation numerically to find £ = 39.8956° .

Anker interpreted the problem differently. He commented that he
hoped the knot was still loose, as “otherwise the problem is impossible”.
He had the knot forming part of a regular pentagon, as shown overleaf
where the four of its five diagonals are also drawn. The ‘“knot” is
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identified with the trapezium BCDE and the angle § with the angle BAC.
In this case, by a familiar result for the regular pentagon, the angle is 36°.

Solution to Problem 27.4.4

Problem 27.4.4 has quite a long history of which some was detailed
last August. It is simply stated:

Simplify 3/2 +45 + Y2-45 .

We received solutions from John Barton and Julius Guest. Here is
Guest’s.

Write the first term as x and the second as y. Then x° = 2 ++/5 and
y*=2-4/5. It follows that x*> + y* =4 and (xy)3 =-1. The second of
these equations may be simplified to xy =1, if we confine ourselves to
real arithmetic. And also

X3 +y3=(x+ y)(x2 —xy+y2)=(x+ y){(x+y)2 ——3xy}.

Now put z = x + y to reach the cubic equation in z: 2 +3z=4.

This has the sole real root z = 1, and this is the required
simplification.

[The restriction to real arithmetic may be seen as implicit in the
notation in which the problem is expressed. However, the expression

(2 +52 )”3 + (2 ~5"2 )”3 could be said to admit complex values. Eds)

As usual, we close with four new problems.
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Problem 28.2.1, submitted jointly by Willie Yong (Singapore), Jim Boyd
and Richard Palmaccio (both USA)

In the diagram below, A and B are points on a semicircle
resting on the diameter MN, whose mid-point is O. AB and
MN are extended to meet in P. Prove that

AMxBM _ PM
ANXBN PN

Problem 28.2.2, based on a note in School Science and Mathematics,
October 2003, pp 309-310.

Let

A:%{iﬁm+m]}

B=—;~{’\/l4+6\/_5_+%/14—6\/§—i/6+2«/§—7{/6—2x/§} ‘
=i}6{6‘/3+‘/§—g/3~‘/§}{‘/3+‘/§+‘/3"‘/§}‘/;

Prove thatA =B = C.

Problem 28.2.3, from Mathematical Bafflers, ed Angela Dunn

2

Solve in integers x and y the equation x> = J 1
y+
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Probl_em 28.2.4, adapted from the same source

A and B are integers as also are both of the roots of both the
quadratic equations

x*+Ax+B =0 and x> +Bx+A = 0.

Find A and B.

A Correction

Our regular correspondent Keith Anker writes to point out an error
in the comment at the bottom of page 163 of our issue for October 2003.
That comment mentions a “triangle [with] sides 4, 2, 1” and another
whose sides are twice these. Anker says he would like to see a picture of
these triangles. So would we. It would indeed be most intriguing! The
point is that these lengths cannot possibly be the sides of a triangle. For
three lengths to form a triangle, the sum of the two smaller lengths must
exceed the longest. This does not happen here!

The simplest triangle satisfying the given requirements derives
from a difference of two cubes of 19 (=3% - 2?), not 7, as was claimed.
We then have for the first triangle, a = 18, b = 12, ¢ = 8, and for the
second, sides of 27, 18 and 12.

Our apologies for the error.

It remains to say that the mistake was not the fault of our other
regular correspondent David Shaw, who pointed out the possible
generalisation of Problem 27.2.3. Rather it was an aberration caused
when the chief editor sought to amplify Mr Shaw’s absolutely correct and
pertinent comment.

CO0OCOTICICIOOOODIOT CODOOAOOOA0O
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