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Function is a refereed mathematics journal produced by the
School of Mathematical Sciences at Monash University. It was
founded in 1977 by Prof G B Preston, and is addressed principally to
- students in the upper years of secondary schools, but also more
generally to anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to the natural and social sciences, history of mathematics,
mathematical games, careers in mathematics, and mathematics in
society. The items that appear in each issue of Fumnction include
articles on a broad range of mathematical topics, news items on recent
mathematical advances, book reviews, problems, letters, anecdotes and
cartoons.
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other material for publication are invited. Address them to:

The Editors, Function

School of Mathematical Sciences

PO BOX 28M

Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403

e-mail: michael.deakin @sci.monash.edu.au

Function is published five times a year, appearing in February,
April, June, August, and October. Price for five issues (including
postage and GST): $32.50"; single issues $7. Payments should be sent
to: The Business Manager, Function, Department of Mathematics &
Statistics, PO Box 28M, Monash University VIC 3800, AUSTRALIA;
cheques and money orders should be made payable to Monash
University.

* $17 for bona fide secondary or tertiary students.
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THE FRONT COVER

Our front cover for this issue is a photograph of the French
mathematician Jean-Pierre Serre, who has been awarded the inaugural
Abel Prize by the Norwegian Academy of Arts and Letters. We ran a
brief news-item on the establishment of this prize in our issue for
February 2002, but let us briefly recap.

There has never been a Nobel Prize in Mathematics, and this lack
is the subject of stories in our issues for April 1987 and April 1992. One
of the attempts to fill the gap was the establishment of the Fields Medal,
and this development is also recounted in those earlier articles.

In status, the Fields Medal is probably equivalent to the Nobel
Prize, but it differs in two important respects. First, the Nobel Prize
endows the recipient with a handsome monetary grant; the Fields Medal
does not. Secondly, the Fields Medal (unlike the Nobel Prize) is
explicitly intended to foster the development of promising young
mathematicians. Recipients must be under the age of 40.

The Abel Prize, by contrast, is generous. It carries a value of 6
million- Norwegian kroner (about $A1.25m), and there is no age
limitation placed upon it. The prize aims to help raise the standing of
Mathematics in the community at large, and more particularly to
stimulate the interest of children and young people in pursuing
Mathematics.

The name honors the meimory of Niels Henrik Abel, a brilliant
Norwegian mathematician of the early 19" Century, whose bicentennial
occurred last year, coinciding with the establishment of the award. He
was born into poverty and lived a hand-to-mouth existence throughout his
short life which ended when he was only 26, dying of (probably)
tuberculos1s His most enduring result is the proof that the general
quintic (5™ -degree) equation cannot be solved by the normal processes of
algebra (is not solvable by radicals, as the jargon has it).
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Serre, the recipient of the award named after Abel, is a
mathematician of outstanding depth and breadth in his interests. Here we
can only describe this work in general terms as its details are extremely
technical. He is perhaps best known for his development of algebraic
approaches to deep geometric problems in higher dimensions. His work
in this area introduced a systematic view of earlier results, which it
clarified very considerably.

He has also been active in Number Theory. His work here has
been seen as extending Abel’s insights on 5".degree equations, in
particular to polynomial equations in two variables. It is also seen as
fundamental to much modern research in Number Theory, including
Wiles’ solution of the Fermat problem (see Function, April 1994).

He was born in France in 1926, showed early promise, and was
awarded the advanced degree of D. Sc. in 1951. After brief periods at
other institutions, in 1956 he took up a professorship at the College de
France, a post he still holds.

His work has been widely honored by both the French government
and by the mathematical community. In 1954, he won the Fields Medal,
and he remains the youngest person ever to do so. In connection with the
Abel bicentennial, the University of Oslo joined the ranks of the many
universities that have awarded honorary degrees to him.

Biographies of both Serre and Abel may be found on the net. A
good place to start is

http://www.groups.dcs.st-and.ac.uk/history

and follow the prompts from there. The above summary and the cover
photograph are both derived from the Notices of the American
Mathematical Society for June-July, 2003. This is available online. Go
to

hitp://www.ams.org/notices/

and again follow the prompts.
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HORNER IN THE CORNER

John A Shanks, University of Otago, NZ

No, not Little Jack Horner, but William George Horner, born in
Bristol, England in 1786. While he never went to University and cannot
be regarded as a mathematician, he was undoubtedly a clever fellow. In
fact at the age of 14 he became an assistant master at Kingswood school
and at 18 the headmaster! He became famous for his invention of the
-zoetrope (see Figli_re 1), which he called a “daedaleum” Latin for
“ingenious device™ This consists of a small drum with an open top,
supported on a central axis. A sequence of pictures on a strip of paper is
placed around the inside of the drum, and slots are cut at equal distances
.around the outer surface of the drum, just above the pictures. When the
drum is spun, a viewer looking through the slots sees a rapid progression
of images and the impression of animated motion. His model is regarded
as an important step in the development of motion pictures.

Figure 1

- Homer’s only significant contribution to Mathematics is now
known as Horner’s Method. This term is used somewhat ambiguously
as there are two methods which bear this name. The first is his method
for finding the roots (solutions) of polynomial equations (presented to the
Royal Society of London in 1819), which involves finding a root digit by
digit, producing a set of related polynomial equations using a table of
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calculated coefficients. (This was a rediscovery of a technique known to
the Chinese mathematician Zhu Shijie some 500 years earlier.) As an
offshoot of this method Horner used an efficient process for evaluating a
polynomial using what we also call synthetic division. It is this latter
Horner’s method of “nested evaluation” that is the subject of this article.
The “corner” of the title arises in a method proposed by the French
mathematician M E Lill.

The polynomial p(x)=3x* ~4x® — x* + 5x + 6 for example can be
written in nested form like this:

p(x) =[x —4x® ~x+ 5k +6

=(3x? —4x-1)c+ 5 +6

=(((3x—4)x—1)x+5)x+6

The evaluation of the polynomial in this form requires only four
multiplications and four additions, and an algorithm based on this idea is
very widely used in computing. This way of writing the polynomial
implies that we calculate the bracketed expressions from the innermost
outward. For example, to evaluate p(2) one would calculate as follows.
(Note how the result at the end of each line is used to begin the next.)

3x2-4=2

2x2-1=3

3x2+5=11
11x2+6=28

28 is the required value.

These calculations are often displayed in a table (as explained

below).

11 28

The first row contains the coefficients of the polynomial, and the 2 on the
left is the x-value at which we are evaluating p(x). The bottom row
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consists of the sums of each column; the first entry is always the same as
the leading co-efficient, while the other entries can be seen to coincide
with the intermediate values 2, 3, 11 and 28 that we calculated above.
Each entry in the second row (after the first which is always blank) is the
product of the previous sum with the x-value.

In 1867, the French mathematician M E Lill suggested a graphical
method for solving polynomial equations. This obscure but ingenious
technique can never produce roots with great accuracy but it does give a
novel insight into how the value of a polynomial p(x) changes as the
value of x changes, and a unique visual representation of this dependence.
As we will see, its basis is none other than a clever application of
Horner’s nested evaluation method.

Lill’s Method

A sequence of perpendicular straight lines is drawn to represent a
given polynomial. The lengths of the lines are taken in proportion to the
magnitudes of the coefficients of the polynomial. The first line can be
drawn horizontally left to right. Each additional line is attached to the
previous one, turning right (i.e. clockwise) if there is no change of sign in
the coefficients, and turning left where there is a change of sign. Figure 2
shows some examples of the resulting patterns of lines for the
polynomials -

(@ x* +2x% ~x-1, b 2 +2x+2, (0) 2x*—x*—x*-3x-4.

(It should be stressed that, although our examples all have integer co-
efficients, the method is not restricted in this way.)

1 1

A B A
A
3
2 2 4
4
o L5 2 ) 211
1
@ xB3+22-x-1 E ) x2+2c+2 (©) 3x* +H4x3 —4x2 - 2x + 1

Figure 2
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Graph paper or squared paper is obviously an advantage here, We
will concentrate on the first example, Figure 2(a). AB is drawn a
convenient length and, since the leading coefficient of the polynomial is
1, it represents a unit length. Then BC, CD and DE are drawn with
lengths 2, 1 and 1 respectively, corresponding to the magnitudes of the
other coefficients. The four coefficients of the polynomial have the signs
+ + — —, Because there is no change of sign between either the first and
second or the third and fourth coefficients, both ABC and CDE involve
right-hand corners. The change of sign between the second and the third
coefficients however makes BCD a left-hand corner.

The line-segments BC, CD and DE are extended as in Figure 3.
We now draw another sequence of perpendicular line segments starting
from A, which we call a trace. We can start off in any direction, and each
segment finishes when it hits the extensions of BC, CD and DE taken in
turn. In this example we have drawn APQR where P is on BC (extended),
Qis on CD and R is on DE. The aim is to adjust the angle BAP so that R
equals the final point E. For the trace shown in Figure 3, as the angle is
reduced, R moves upward. Figure 4 shows the required angle to make
R=E
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The triangles ABP, PCQ and QDF are similar. Consequently if we
let BP = x, then, using triangles ABP, QDE,

PB DE . X
— = — i.e. T =

AB  DQ
So DQ = 1/x. Then also we have, using triangles ABP, PCB,

1/x+1
x+2

PB _ QC

LA 24 X
1

AB  PC

Multiplying both sides of this equation by the common denominator
x(x+2) gives x> +2x*=1 ie x> +2x*-1=0. So this value of x
satisfies p(x)=0 and so makes it a zero of the original polynomial.

In fact there are two more positions of P on BC that make R
identical-with E. One of these and the corresponding trace are shown in
Figure 5. (Can you find the other?) Taking BP = x again, a similar
argument to the above, using similar triangles ABP, PCQ and QDE, finds
this root of the equation. This second root is in fact negative (as also is
the third) and Figure 5 suggests a way to deal with this. We regard the
BP as positive when P is above B and negative when it is below. For
consistency, we measure the angle BAP in an anticlockwise direction
from the line AB, and let x = tan(ZBAP). Because AB = 1 in the present

example, this agrees with the definition BP = x given above. Note that x
is positive for the first trace considered, but negative for the second.
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The connection between Lill’s method and Horner’s nested
evaluation algorithm is revealed if we consider Figure 6, which shows a
trace for which R is not equal to E. Using the fact that x is the tangent of
each of the shaded angles, we find

x=o— == )

and consequently, starting from AB = 1, we deduce

BP=ABx=1x from (1)

PC=1x+2 from Figure 6

CO=(1x+2)x because CQ =CP, again from (1),
DO=(1x+2)x-1 again from Figure 6

DR=(({x+2)x-Dx because DR = DQ, again from (1),
ER=((1.x+2)x~1x-1 againfromFigure 6

This last expression for ER is just the nested form of p(x). Hence,
the distance ER is simply the value of p(x), and it is now clear why we
. want to find x so that ER = 0.

Figure 7 (opposite) shows the pattern of lines ABCDEF
corresponding to the quartic polynomial g(x)=2x*-x>+3x*+x-4,
together with the trace APQRS where the lines are at 45° to the horizontal.
Only a very small change in the angle at A is needed to make S coincide
with F and so give a root of the equation g(x) = 0, which evidently must
be close to tan(—45°), in other words. —1. Readers should try to find
another trace that succeeds. In this example there are only two such
traces, and these correspond to the two real roots of the equation g(x) = 0.

Figure 2(b) showed the pattern ABCD for the polynomial
x? + 2x+ 2, which has no real zeroes. Readers should experiment with
different traces and check that none can succeed. How many zeroes can
you find for the polynomial in Figure 2(c)?

In Lill’s day, this graphical technique would have been very
convenient for finding rough estimates of roots, to be refined later by
numerical means such as Newton-Raphson. Compare the effort involved
here with that required to evaluate the polynomial at sufficiently many
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points to get a good picture of its graph. These days we can reach for a
computer or graphing calculator and get a rough picture of where the real
roots lie, and so Lill’s method may be no more than a curiosity. But is it?
It is still faster to sketch one of Lill’s traces on the back of an envelope
than it is to boot up the computer, run the graphing program, enter the
polynomial and click on “graph”. And it’s certainly much more fun!
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But we can combine the old with the new here and use a computer
to construct the traces for us: both the calculation of the required line
segments and their graphing can be done very quickly by computer,
bringing Lill’s method to life with animation. An interactive version of
Lill’s method can be found at

http//www.maths.otago.ac.nz/java/lillapplet.htmi

This Java applet copes with polynomials up to degree 7. By clicking and
dragging on the image, you can swing the trace around until you hit the
target and read off the corresponding root. polynomials up to degree 7.
By clicking and dragging on the image, you can swing the trace around



138

until you hit the target and read off the corresponding root. You can also
very easily see how many real roots there are.

Finally, the reader is asked to consider the case when one or more
of the polynomial’s coefficients is zero. This is not really a complication;
it merely results in coincident corners. For example, what is the drawing

for the polynomial x*> — x+3? (Hint: It must be very similar to that for

x* +0.01x* — x +3.) If you are not sure, you can always consult the Java
applet for confirmation.

Further Reading

There is a web-page devoted to Horner at:

http://www.gap-system.org/~history/Mathematicians/Homer.htm

Lill’s original paper, “Resolution graphique des équations numériques de
tous les degrés” appeared Volume 2, Part 6 of the journal Nouvelles
Annales Mathématiques in 1868.

CACICACACACACACIOACEMA OO CACICOCACD

Ants on a Stick

One hundred ants are dropped on a metre stick. Each ant is
traveling either to the left or the right with constant speed 1 metre per
minute. When two ants meet, they bounce off each other and reverse
direction. When an ant reaches an end of the stick, it falls off. At some
point all the ants will have fallen off. The time at which this happens will
depend on the initial configuration of the ants.

Question: over ALL possible initial configurations, what is the
longest amount of time that you would need to wait to guarantee that the
stick has no more ants?

Continued on p 158
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HISTORY OF MATHEMATICS
Charles Babbage’s Ninth Bridgewater Treatise

Michael A B Deakin, Monash University

A couple of years ago, my wife and I found ourselves in a small
country town. It was one of those towns that have long ago lost most of
their original raison d’étre and now survive on their tourist potential. We
made our way to a rather promising antique shop, where she browsed
among the items of furniture while I checked out the second-hand books.
One of these was by an author I recognised: Charles Babbage.

Babbage was a mathematician who lived from 1791 to 1871. Heis
most celebrated today as the inventor of two calculating machines: the
difference engine and the analytical engine. Limitations of funding and
of the available technology ensured that no fully working prototype of
either was built in Babbage’s lifetime, but he is now regarded as a pioneer
of many of the ideas behind modern computers. (Quite how much actual
influence, if any, he exerted on the development of the computers of
today is not, however, clear.) His associate, Ada Lovelace, appeared in
my column for October 2000.

So, when I saw this book for sale at the very reasonable price of $6,
I bought it, and in due course I took it home and read it. Its very title
seemed a conundrum: it is called The Ninth Bridgewater Treatise: A
Fragment. The first part of this name was explained in the work itself,
and I repeat it here for the benefit of readers. There were eight
“Bridgewater Treatises” in the official count, and they were quite famous
in their day. You can still read about them at various websites, of which
perhaps the best (apart from a few minor inaccuracies) is that from The
Catholic Encyclopedia (although the treatises have no connection with
the Roman Catholic Church):

hitp://www.newadvent.org/cathen/02783b.htm
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The background is this. The eighth and last Earl of Bridgewater,
the Rev Francis Egerton, died childless in 1829. His will left an amount
of £8000 to the Royal Society of London with detailed instructions as to
how it was to be used. It was to be invested “in the public funds” and in
due course applied (along with any interest it earned) to endow the
publication of 1000 copies of a work “On the Power, Wisdom and
Goodness of God as manifested in the Creation illustrating such work by
all reasonable arguments as, for instance, the variety and formation of
God’s creatures, in the animal, vegetable and mineral kingdoms; the
effect of digestion and thereby of conversion; the construction of the hand
of man and an infinite variety of other arguments; as also by discoveries
ancient and modern in arts, sciences, and the whole extent of modern
literature.”

The Royal Society (perhaps reflecting that the reverend Earl
seemed to have been very fond of the number eight) nominated eight
authors each to produce a volume along the lines indicated. The first four
of these were prominent British theologians and the other four were
eminent medical men. In due course, their eight treatises appeared. They
were (with the correct dates of their first publication in parentheses):

1. On the Adaptation of External Nature to the Moral and
Intellectual Constitution of Man, by the Rev Thomas
Chalmers, DD, Professor of Divinity in the University of
Edinburgh (1833),

2. On Geology and Mineralogy, by the Rev William
Buckland, DD, FRS, Canon of Christ Church and
Professor of Geology in the University of Oxford (1837),

3. On Astronomy and General Physics, by the Rev William
Whewell, MA, FRS, Fellow of Trinity College,
Cambridge (1833),

4. On the History, Habits and Instincts of Animals, by the
Rev William Kirby, MA, FRS (1835),

5. On the Adaptation of External Nature to the Physical

Condition of Man, by John Kidd, MD, FRS, Regius
Professor of Medicine in the University of Oxford (1833),

6. The Hand: its Mechanism and Vital Endowments, as
evincing Design, by Sir Charles Bell, KH, FRS (1834),
7. On Animal and Vegetable Physiology, by Peter Mark
. Roget, MD, FRS, Secretary to the Royal Society (1834),
8. On Chemistry, Meteorology and the Function of

Digestion, by William Prout, MD, FRS (1834).
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It is apparent from this list that the intentions of the will were
carried out conscientiously. The president at the time was Davies Gilbert
and he took advice from the Archbishop of Canterbury, the Bishop of
London and “a nobleman who had been intimate [i.e. friendly] with the
testator”. The eight authors were all (as the above list shows) eminent
authorities. Nonetheless, The Catholic Encyclopedia notes that “the
selection of writers was somewhat severely criticized at the time”. It
would seem that Babbage’s entry onto the scene was a part of this
criticism. He certainly had some differences with Chalmers and also with
Whewell. .

The area of discussion was “Natural Theology”, which is
concerfied with those aspects of Theology that are supposed to be
amenable to natural reason, without the intervention of divine revelation.
The claim is that it is possible, by reason alone, to deduce the existence of
God, the immortality of the human soul and the freedom of the human
will.

The argument for the existence of God took the form of an
“argument from design”. This had been popularised by the writer
William Paley in his book Natural Theology (1802). Paley’s argument
uses the analogy of someone who finds a watch, and deduces from its
intricate design that it -is the product of a watchmaker. He then
characterises the universe as an even more intricate mechanism than the
watch, and so leads to the deduction of an intelligent designer: God.

This view became very influential, but has taken something of a
battering in more recent years. The long times available for evolution
and the force of natural selection as its governing principle have made it
less and less necessary to invoke such external intervention. Indeed, The
Catholic Encyclopedia retreats from endorsing this position in the course
of its discussion of the Bridgewater Treatises. An explicit rejection of
Paley’s view underlies the title of Richard Dawkins’ 1986 book The Blind
Watchmaker.

The treatises may thus now be seen as part of a response by the
Christian church to the rise of the scientific spirit. Buckland’s treatise, in
particular, was an attempt to find common ground between the biblical
accounts of creation and the emerging science of Paleontology. The
Bridgewater treatises were published only some few decades before The
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Origin of Species. [There is a good account of all this in Deborah
Cadbury’s The Dinosaur Hunters (4‘h Estate Press, 2001).] This clearly
takes Buckland outside the purview of Natural Theology, and this is one
of the grounds that Babbage advances against others of the chosen eight.

But one might well ask what Babbage, a mathematician, could
bring to such debate. It is hardly surprising that the Royal Society (of
which he was a fellow) overlooked him in its search for authors.
Certainly, Babbage was a devout Christian (in the 1950s, a relative,
Barton Babbage, served as dean of St Paul’s cathedral in Melbourne).
Charles Babbage accepted Paley’s “argument from design”, although he
did, in his preface, admit that it was possible that even persons of sound
intellect and high morality might not be convinced by it.

So what did Babbage have to say? Well, it’s a very strange
mixture, and it often strays well beyond the boundaries of Mathematics
per se. Furthermore, although he wishes to remain within the realm of
Natural Theology, as he interprets the Earl of Bridgewater’s intentions, he
strays here also. And yes! The book is a fragment. It was published in
incomplete form in 1837, and ran (still incomplete) to a second edition in
1838 and to an American second edition in 1841. The copy I bought was
much more recent. In 1967, the second edition was reprinted, but with
the addition of an index. Chapters six, seven and fifteen in particular are
clearly unfinished. Whole paragraphs are signalled as missing, replaced
by arrays of dashes. Quite what was meant (ultimately) to replace them
has never been settled.

Among the main points of interest for the mathematical reader are
the descriptions of his “calculating engines”. In Chapter 2, he supposes
the use of the “engine” to produce lists of numbers that exhibit a
straightforward pattern of regularity, but for which the appearance is
deceptive. There is a pattern and it is regular, but it is more complicated
than we initially thought. With our present-day familiarity with computer
programs, it is not at all difficult to appreciate the point. A computer
outputs the numbers 1 to 1,000,001 in turn, but then outputs 1,010,0002,
1,030,003, etc, where the excess over and above what we had come to
expect is 10,0007,, where 7, is the nth triangular number (in the
sequence 1, 3, 6, 10, 15, etc). At some further time, the output might
surprise us again, and so on. It would be a simple matter to program one
of today’s computers to do this and a lot more.

We can well appreciate the suggestion that our world may indeed
be more complex than we imagine, but I must confess myself baffled as
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to what all this has to do with the existence of God. Later however he
applies similar thoughts to the freedom of the human will.

He returns to this point with another example. Here he introduces
the curve:

¥t -4y? =0,

where Q(x) is a quartic (4‘h-degree) polynomial in x. The graphs of such
functions can take a wide variety of apparently different forms,
depending on the nature of the zeroes of Q(x).

Here he does supply a context, and we may perhaps apply it to the
earlier example also. He has embarked on a discussion of miracles.
Miracles, as the term is commonly understood, are suspensions of the
normal laws of nature. Commonly these are seen as instances of divine
intervention (perhaps as a result of prayers of intercession), and thus are
interpreted as providing evidence of God’s existence. Babbage discusses
miracles at some length and from all sides. On the one hand, he is
concerned to say (as these examples illustrate) that what we interpret as a
miracle may merely be a part of a more intricate pattern than we
previously allowed for.

[Here we may think of eclipses for example, which are now seen as
perfectly natural occurrences, and not in any way miraculous. Another
example is the stance taken by the Nobel prize-winner Alexis Carrell,
who accepted the alleged miracles of Lourdes as genuine, but regarded
them as examples of an unusual, but still natural, psychological power,
not as instances of divine intervention. ]

Babbage classes miracles, if they are genuinely cases of divine
intervention, as examples of revealed Theology, rather than Natural
Theology. But on the other hand if they are not really miracles in this
sense, but only the marks of some higher pattern in the natural order, then
they do constitute material for Natural Theology and so fall under the
scope of the Bridgewater bequest.

All the same, Babbage is concerned to show that miracles can
occur. The philosopher David Hume had endeavored to show that they
do not. As Babbage correctly points out, Hume’s use of the term
“miraculous” is synonymous with “improbable”. With this under-
standing, his argument is easily put, and Babbage quotes a paraphrase by
Hume’s compatriot Boswell:
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“It is more probable that witnesses should lie, or be mistaken, than
that [miracles] should happen”.

Babbage now begins his discussion with: “The only sound way of
trying the validity of this assertion is to measure the numerical value of
the two improbabilities”. The details are consigned to an appendix (Note
E), and they make too trusting use of the Laplace law of succession (see
my column for June 2000). However, we may readily fix things up.
Suppose that the probability of some unlikely event is p, where p is very
small. Even if we cannot put a numerical value on p (which is where
Babbage uses the Laplace law), we can consider the testimony of
witnesses who are generally truthful and reliable. Suppose there are N
independent witnesses and each has the chance P of being mistaken or
lying (where P is small, but not as small as p). Then if all agree in
asserting that the unlikely event did occur, then the chance that it did not
is PY. The point is that we can always find a value of N that will make
PY < p. If 11 independent witnesses, each with a reliability of 99%,

testify to an event with a probability of less than 10, then we should
believe them!

I’'m not sure that this helps Babbage’s argument as much as he
thinks. For one thing, the witnesses must be independent, and this is not
always as clear as we might like to believe. Babbage couches his
discussion in terms of the Christian doctrine of the Resurrection. But
how many independent witnesses do we really have? The apostle Paul (I
Corinthians 15) gives an apparently impressive list, but even if we
assume all these to be independent of one another, the fact remains that
all their testimony is filtered through a single channel: Paul himself. This
is before we take on board Babbage’s own sensible comments on the
interpretation of Scripture. The other point to bear in mind is that while it
is always possible to find an N that satisfies the required inequality, that
value, if p is small enough, may turn out to be unrealistically large.

But although I find Babbage’s analysis flawed, and his book a
strange mishmash, it has certainly prompted me to look once more into
these questions. It was a well-spent $6 that led me to it, and I do think it
fortunate that it was the 1967 edition I acquired. Hunting around on the
internet, you can find booksellers offering earlier editions as rare books
and at much much higher prices!

OOOQOICICACIOIOOCICIICATCIOOCIOLCO0
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COMPUTERS AND COMPUTING

A Spreadsheet to assist with Elections

Paul Grossman, paulgrossman @netspace.net.ai.

Introduction

The resuits of elections can be greatly influenced by the electoral
system used. For the election a body of members — whether they form a
Committee, a Board of Management or a House of Representatives — the
most equitable procedure is arguably the Single Transferable Vote first
proposed by T. Hare in 1859 and later refined by Clark and others. This
system, also known as Quota Preferential Voting, leads to proportional
representation of parties or interest groups and also to the election of
independents with adequate voter support. It avoids the frustration of
voters who think they have “wasted” their vote on an unsuccessful
candidate or on a candidate who would have been elected without their
help. The system has been used in Tasmanian elections since 1918, and
has also been adopted in the ACT, in Upper Houses of some Australian
States and in overseas countries such as Ireland. It forms the basis of our
Senate elections where however those who vote “above the line” delegate
their choices to the parties.

The single transferable vote could profitably be used for elections
in clubs and societies, but its introduction is usually resisted on the
grounds that counting the votes is too cumbersome. There are of course
computer programs available but their use has drawbacks. Firstly, unless
voting is electronic, data from the voting papers must be entered into the
computer and their accuracy checked; this is an arduous task. Secondly,
voters and scrutineers must accept the program on faith and may well
suspect that it may be flawed.

In the following I shall outline the principles of the single-
transferable-vote system and then introduce a spreadsheet I have devised
to take care of much of the simple but tedious computations. The
spreadsheet thus expedites the procedure of vote allocation and allows for
easy application of corrections. It displays all figures so that scrutineers
can check any step using a calculator, an abacus or pen and paper.
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Principles on which the Single Transferable Vote is based

1. Each voter has a single vote, but this vote may be split during ‘
counting to benefit more than one candidate. For that reason voters
list candidates in order of preference.

2. Any candidate supported by a sufficiently large proportion of the
electorate (the quota) has the right to a seat.

3. When the number of votes in favour of a candidate exceeds the
quota, it is considered that only part of each vote has been used and
the unused portion is transferred to the next unelected candidate
favoured by the voter.

4. Should there still be unfilled seats after transfer of excess votes, the
candidate with the lowest aggregate of votes is excluded.
Aggregate here means the sum of full votes (first preferences) and
vote fractions received by transfer. The aggregate of the excluded
candidate is transferred to the next preferences listed.

5. This process of transfers of excesses and of excluded candidates’
votes is continued until all seats are filled.

The Quota

If there are p vacancies and N votes, an obvious interpretation of
principle 2 means that winning N/p votes is sufficient for election.
However, is such a high quota necessary? We can reduce the quota while
still ensuring that no more than the p most favoured candidates will be
elected, as long as the quota exceeds NAp + I). A quota lower than N/p
means that not all N votes or fractions of votes are utilized to determine
the winning candidates. Critics have argued that this can deprive some
voters of their right to use their later preferences to influence the
outcome. On the other hand, unused vote fractions are advantageous,
indeed essential in practice, giving us some latitude in the process of
transfers of vote fractions. When adding fractions we can limit the
number of decimal places. We can also reach a result without
distributing the votes of every unsuccessful candidate.
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A desirable value for the quota is Q = N/(p+I) + & where two
conditions apply:

1. & <N/p (p+1)), and preferably much smaller.
2. & 210% where k is the number of decimal places one wishes to
work with,

Readers might verify the reasons for these conditions.

When the number of voters is in the millions, as in a Senate
election, an integer quota is acceptable and the formula

O = INT (M(p+1)+1)

fulfils the conditions. For small numbers of voters, such as members of a
school committee, an integer quota would be too imprecise; besides,
Condition 1 mlght be violated by the above formula. It is convenient to
choose Q = 10 INT (10° N/ (p+1) + 1) and to deal with thousandths of a
vote. In practice we sometimes omit writing the decimal point (as if each
vote had a value of 1000).

The Transfer Value

Suppose candidate K receives ng primary votes (first preferences
on the voting papers). If ng > Q, he or she has been elected. Fractions
Q/n, of these votes are sufficient for K’s election and the unused

portions 1-Q/n, may be transferred to the second preferences listed on
the voting papers of K’s supporters. The weighting factor T, =1-Q/ n,

is called the “transfer value”. Clearly the product Tk ng is the number of
K’s votes in excess over the quota.

Candidate L does not reach the quota on primary votes n; but only
after a transfer of ng;, vote fractions from K, thus with a total of n; + Ty
ngg. Let us define a transfer value

Ty, =1 - quota/ total vote = 1 — O/ ny + Ty ng)

and we find again that the number 4 of votes in excess of the quota
equals the product of the transfer value and the total vote,

A= TLnL+ T; Tg ng.
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This shows that on each of the papers favouring L in the primary vote a
fraction 7, may be transferred to the next preferences, and on papers
listing K first and L second a smaller fraction 7T to the third preference.

The transfer value is a number smaller than unity. However, when
we deal with thousandths of votes and omit the decimal point, as
mentioned at the end of the section on the Quota, the transfer value is also
listed as 10° times its real value.

The Spreadsheet

The Proportional Representation Society of Australia (PRSA),
which is active in promoting the single transferable vote, uses a counting
sheet for use by electoral officers. The spreadsheet presented here
follows the same layout and enables anyone to check each step by
following the PRSA procedure with a pocket calculator.

Figure 1 shows part of the spreadsheet, which can be extended or -

reduced in both directions as required. The faintly shaded cells
(detectable by the termination of the gridlines) show up as yellow on the
computer screen. These contain functions and are coloured to warn the
operator not to accidentally override them. Results from a ballot count
have already been entered on Figure 1. The entries are in script to
distinguish them from the figures and letters appearing in the shaded
cells.

Column A lists the names of the candidates and is frozen, so that it
remains visible when you have to scroll to the right. Columns B-D refer
to the primary votes, i.e. the first preferences listed by the voters. To the
right, starting from E, are sets of three columns, one of which is hidden to
save space. The hidden columns G, J, M etc. are used for auxiliary
computations and their results transferred to visible columns. The sets of
three (two visible) are used for the transfers of surpluses of elected
candidates and of the total votes of excluded candidates.

Suppose you are the returning officer and you proceed as follows.

Step 1. You enter details about the poll, in particular the number of
vacancies (B5) and the names of the candidates. Having been handed the
voting papers you sort the papers according to first preferences and enter
the number received by each candidate in column C. (In Figure 1, your

o —,
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entries are printed in script to distinguish them from the figures produced
by the computer).

The spreadsheet then displays:

11. The total number of papers (C31), the vote values (D even
rows) and their total (D31) and the maximum vote value

(D29).

12. The quota (I5) and a capital red E against any candidates who
have exceeded the quota, in this case Samantha.

13. The highest vote value (F8) and the number of votes (F9) to be
transferred with the integral part of the transfer value (F12).
You have to enter Samantha’s name yourself in F7.

14. The remainder (E14), i.e. vote fractions unused because only
the integer part of the transfer value is being used. (The
computer could readily cope with a closer approximation to
the transfer value, but integer parts only are used to enable
scrutineers to check any of the results using a pocket
calculator in accordance with PRSA practice).

Step 2. Sort Samantha’s 12 papers according to second preferences and
enter in column E how many transferred papers each candidate receives.
(Had another member been elected in the first round, that member would
not be given any more transferred votes and these would go to the third
preferences). For Samantha you enter the number of transferred votes

with a negative sign.
The spreadsheet then displays:

21. The vote values transferred (i.e. the number of second
preferences multiplied by the transfer value) in column E,
even rows.

22. ’I’hé number 0 in E31, which is a check to confirm that you
have distributed as many vote fractions as you have removed
from Samantha.

23. The cumulative vote values in column F, even rows. (Before
Step3 the number in F12 was 7812.) ‘
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24. A capital red E for any candidate who has exceeded the quota
with the help of transfers, in this case Nanh.

Step 3. Because the transfer value used is smaller than the real one,
Samantha’s cumulative vote value (F18) was higher than the quota by the
remainder in E14. You therefore override F18 and enter the quota from
I5.

The spreadsheet displays:

31. A change in F17 from a capital to a lower-case e to distinguish
elected members whose surpluses have been transferred from
those who have yet to be processed.

32. Maximum and minimum cumulative vote value (F29, F30)
33. The total vbte value in F31, which must equal that in D31.

34. The vote value of the newly elected member Nanh (I8) and the
transfer value for the excess from his primary votes.

Step 4. Since Nanh has received votes from two sources, namely the
primary votes and the transfers from Samantha, the transfer of his excess
requires two sets of columns. You enter Nanh’s name in I7 and L7 in
precisely the same way. You also enter, in 19 and L9, the number of
voting papers received from each source respectively. Since the seven
votes in Col. L were of reduced value you override the 1000 in L11 and
enter the past transfer value 349.

The spreadsheet displays:

41. The vote value in L8 (Unless the name is copied exactly, the
vote value in L8 will not remain the same but will reduce to
7987, the maximum after the excess from Nanh’s primary
votes has been transferred).

42. The transfer value in L12. Note that the transfer value in L12 is
0.349 times that in 112,

Step 5. You proceed as in Step 2, listing the number of papers transferred
to the highest yet unelected preference but you do not take Step3,
overriding Nanh’s total, until you reach L.20.
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The spreadsheet displays:

51. All the transferred vote values and cumulative vote values as
before, as well as the totals, maxima and minima.

52. A change from capital E to lower-case e in row 19 once the
quota is entered in L.20. Since there is not another elected
member, the vote value appearing in the next set of columns
(08) is the minimum 3653. This is no longer shown in the
figure here.

Step 6. You find that Natasha is the candidate with the minimum. She is
excluded and her votes are transferred, the papers from each source
separately under the transfer value under which they were received. You
therefore enter her name in four sets of columns with three votes with a
past transfer value 1000, one with 349, four with 76 and two with 26 and
proceed as before. After the transfers her total vote value will have been
reduced to zero.

The procedure continues until four members are elected.

Some of the formulae used

The numbers or letters in shaded cells are the results of formulae,
which are displayed when the cells are selected. Many of the formulae are
obvious, showing simple operations. The sum in F31 cannot be obtained
from column F because some of the cells are not numerical. This is the
reason for the hidden columns. Col. G, not shown, lists the numbers from
the even-rowed cells F16 to F28 and their sum is copied into F31. The
same applies to the maxima and minima.

For the less obvious formulae let us discuss cells in columns K &
L. All later pairs of unhidden columns such as N & O etc. are copies of
these. Readers familiar with Microsoft Excel will know that the cells
referred to in copied formulae will be relabelled unless it is specified by a
$ sign that they remain unaltered.

Cell L8 [EIF(L$7=1$7,1$8,IF(J29>$1$5,29,J30))  displays the
vote value of the candidate whose excess or total votes are to be
transferred. If the candidate’s name is the same as that listed in the earlier
set of columns, then obviously votes from several sources are being
processed and the vote value remains the same. Otherwise, the vote value
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is the maximum from the earlier columns provided that maximum
exceeds the quota. Or else it is the minimum, which belongs to a
candidate about to be excluded.

Cell K10  =I$11*%(L$8-$I$5)/L$8  is the expression for the
transfer value for the excess of an elected member. Its companion cell
L10 [EIF(L$8>$1$5,K$10,L$11) | specifies that K10 should be used
when the vote value exceeds the quota, otherwise the transfer value L11
from previous transfers applies. The numerical values are not shown
since the operator is interested only in the integer part, which is listed in
112.

CellK14 [ =ROUND((L$10-L$12)*L$9,0) | displays the
remainder, i.e. the fractions of votes neglected by the use of the integer
part of the transfer value. It is rounded to the nearest whole number.

CellL17  EIF(L16>$I$5,"E"IF(L16=$I$5,"¢",""))  alerts the
operator to the status of a candidate. Those elected with excess yet to be
transferred have the letter E displayed, those without an excess have
lower case e.

Conclusion

The spreadsheet has been used successfully in elections comprising
some 40 to 50 voters, considerably reducing the time needed to process
the results. Readers interested in copies and detailed irstructions may
contact the author via the email address given at the head of this article.

©OOCIOCACABIOIOCICICASAIOICIACICO

“It would be a mistake to think that solving problems is a ‘purely
intellectual’ affair; determination and the emotions play an important
role.”

G Polya, How to solve it
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UPDATE ON TWIN PRIMES CONJECTURE

In our June issue, we reported a major advance in the study of the
“twin primes conjecture”, the suggestion that there are infinitely many
prime pairs differing only by 2. The advance was the work of Dan
Goldston and Cem Yildrin, and it created a lot of interest. In part this
was because it opened a new approach to the question; in other part it was
because it stated strong technical improvements in previous results.

Sadly, the new work is not without its problems. While the new
approach has continued to create interest and to open new avenues of
research, the technical result has been found to contain an error. Even
when our issue went to press, the mistake had been found. It was pointed
out by Andrew Granville (Montreal) and Kannan Soundararajan
(Michigan). A term in an equation had been believed by Goldston and
Yildrin to be so small as to be negligible. However, this is not always so:
it can in some cases be as large as the main term in the same equation.

So we are not quite as far toward the resolution of the twin primes
conjecture as had briefly been thought. Nonetheless, the new approach is
thought to offer a very promising line of enquiry. The overall idea is to
search for infinite sets of primes that are spaced much more closely
together than the overall average.

The place to learn about this is the website

http.//aimath.org/primegaps

and this will give links to other websites, both technical and popular.

 Goldston, in a recent interview, and other mathematicians also
have expressed the hope that the error may somehow be overcome.
Although there seems no simple or obvious way to do this, we might bear
in mind that Wiles’ original proof of Fermat’s Last Theorem was also
flawed, but the defect was swiftly remedied.

OOOICOOOICTOOCAOIOD CICIACADIOICO
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OLYMPIAD NEWS

Hasns Lausch, Monash University

The 2003 International Mathematical Olympiad

This year’s International Mathematical Olympiad (IMO) took place
in Tokyo. On the 13™ and 14™ of July 2003, 457 secondary students from
82 countries sat the contest, which consisted of two sets, each of three
problems.

In past years, Bulgaria has regularly sent teams that proved
themselves among the best in the world, but without ever taking the first
position. However, this year things were different, and they did indeed
top the competition. Each member of the Bulgarian team received a gold
medal, and the team as a whole achieved a total of 227 points out of a
possible 252. China (211 points) came second and the USA (188 points)
third. Australia and Brazil (each with 92 points) shared the 26™ and 27%
positions, just behind Mongolia (93 points).

Australian students won two silver medals, two bronze and two
Honorable mentions:

Laurence Field, Year 11, Sydney Grammar School, NSW SILVER

Daniel Nadasi, Year 11, Cranbrook School, NSW SILVER
Ross Atkins, Year 12, Pembroke School, SA BRONZE
Ivan Guo, Year 11, Sydney Boys High School, NSW BRONZE
Zhihong Chen, Year 12, Melbourne High School, Vic HM
Marshall Ma, Year 12, James Ruse Agricultural

High School, NSW HM

Congratulations to ali!
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Here are this year’s IMO problems. On each day a total time of
four and a half hours was allotted. Each question was worth 7 marks.

First Day

Problem 1. Let A be the subset of § = {1, 2, ..., 1000000} containing
exactly 101 elements. Prove that there exist numbers .

L, 8, ..., oo in S such that the sets
A =frtfre Al forj=1,2, ..., 100
are pairwise disjoint.
Problem 2. Determine all pairs of positive integers {a, b} such that
2 7

e
2ab® -b* +1

is a positive integer.

Problem 3. A convex hexagon is given in which any two opposite sides
have the following property: the distance between their
midpoints is +/3/2 times the sum of their lengths. Prove
that all the angles of the hexagon are equal.

{A convex hexagon ABCDEF has three pairs of opp031te
sides: AB and DE, BC and EF, CD and FA.)

Second Day

Problem 4. Let ABCD be a cyclic quadrilateral. Let P, Q and R be the
feet of the perpendiculars from D to the lines BC, CA and AB
respectively. Show that PQ = OR if and only if the bisectors
of ZABC and ZLADC meet on AC.



157

Problem 5. Let n be a positive integer and X, X,, ..., X, be real
numbers with x; £ x, < ... < x, .

(a) Prove that

non 2 _ nn

(535 l] 2SS o)

i=1 j=1 3 i=1 j=i

(b) Show that equality holds if and only if x, , x,, ..., x,
is an arithmetic sequence.

Problem 6. Let p be a prime number. Prove that there exists a prime
number g such that for every integer n, the number n° — p
is not divisible by q.

The 2003 Senior Contest of the Australian Mathematical
Olympiad Committee (AMOC)

The AMOC Senior Contest is the first hurdle for mathematically
talented Australian students who wish to qualify for membership of the
team that represents Australia in the following year’s IMO. This year 70
students took part in a four-hour competition on August 12.

These are the questions.

1. Prove that there does not exist a natural number which, upon
transfer of its leftmost digit to the rightmost position, is doubled.

2. Determine all functions fthat satisfy:

(i) flx) is a real number for each real number x;
)  yA2x%) -xf2y) =8xy (x = yz) for each pair x, y of real
numbers.

3. For any three distinct real numbers x, y, z, let
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(A
EGy.0= [Gx= ¥ )y - 2}z - x)

Determine the minimum possible value of E(x,y,z).

4. Let S be the set of 2003 points in three-dimensional space such that
each of its subsets consisting of 78 points contains at least 2 points
that have distance at most 1 from each other.

Prove that there is a sphere of radius 1 such that at least 27 points
of § lie on or inside it.

5. Let ABCbe atriangle. Let P be the point on BC and Q the point on
AC such that BP = AB = AQ. Suppose that angle ACB = 30°. Let
O and I be the circumcentre and the incentre, respectively, of ABC.

Prove that
(@ PQ=0L
(b) PQ and OI (extended) are perpendicular.

OOCAOACICICICICATICIABICIOICO0CO

Continued from p 138

The answer is 1 minute! While ants bouncing off each other seems
difficult to keep track of, one key idea (fun fact!) makes it quite simple:
two ants bouncing off each other is equivalent to two ants that pass
through each other, in the sense that the positions of ants in each case are
identical. So, you might as well think of all ants acting with independent
motions. Viewed in this way, all ants fall off after traversing the length of
the stick, i.e., the longest that you would need to wait to ensure that all
ants are off is 1 minute.

Seeking alternate ways to look at a problem can offer useful
insights! '

From the Funfacts site of Harvey Mudd College
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PROBLEMS AND SOLUTIONS

LATE SUBMISSION

We received solutions to problems in the February issue from
Keith Anker and Sefket Arslangi¢ (Bosnia), but too late to include them
in our August column.

We move onto the solutions to the problems posed in the April
issue.

SOLUTION TO PROBLEM 27.2.1 (submitted by Peter Grossman).

In a well-known puzzle, you are challenged to draw four line
segments passing through nine points arranged in a 3x3
array (as shown below), without lifting your pen off the
paper. Most people know that the solution requires some of
the line segments to extend beyond the bounds of the array,
but a justification for this claim is rarely given.

Prove that no solution is possible in which all of the line
segments lie within the bounds of the array.

We received solutions from the proposer, from Keith Anker and
from Julius Guest. Here is the proposer’s solution.

Suppose there is such a solution. The solution is a path passing
through the nine array points, and consisting of four line segments that
may start and end at array points but need not do so." Define an end point



160

to be a point that is at one end of 'a line segment but which is not an array
point. Define an edge to be a part of a line segment in the solution
between two points (either array points or end points) that are adjacent on
the path. Since the path passes through each of the nine array points at
least once, there must be at least eight edges. (There will be more than
eight edges if the path contains end points, or if it passes through any
array point more than once.)

Now, on examining the array, we can see that any line segment
lying within the bounds of the array can contain at most two edges. It
follows that there must be exactly eight edges in any solution, with two
edges in each of the four line segments. Further, there can be no end
points in the path, and so each line segment must start and end at an array
point. Eight such line segments can be drawn, corresponding to the three
rows, the three columns, and the two main diagonals of the array. The
middle row and middle column can be excluded from consideration, as
they cannot be joined to any of the other line segments to-form a path. Of
the remaining six line segments, the two horizontal and two vertical line
segments must be included in the path, in order to ensure that the path
passes through the four array points in the middle of the sides of the
array. However, none of these four line segments pass through the centre
point. Therefore, no solution with four line segments is possible.

SOLUTION TO PROBLEM 27.2.2 (based in part on a problem in
Mathematical Bafflers, ed Angela Dunn)

The game of periwinkle is the same as noughts and crosses
(tic-tac-toe) except that the object is not to place three of
your symbols in a row, but to avoid doing so. Show that the
player moving first can always avoid defeat. Is the second
player so lucky?

Keith Anker provided a detailed discussion and Julius Guest
offered a partial analysis. The first part of the problem is readily
answered. We here paraphrase the solution received from Keith Anker
and published by Angela Dunn. The first player seizes the centre, and
then counters each subsequent move by taking the diametrically opposite
square. Call the second aspect of this strategy Strategy S.

The game is referred to in Dunn’s book as Toe-Tac-Tic, and
elsewhere other names are also used.
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To further the analysis, suppose the game to be played between A
(for Ada, playing first with O’s) and B (for Bob, playing second with
X’s). Now we have seen that Ada need never lose; the question is: can
she do better? Can she force a win?

Before we proceed to systematic analysis, we can guess that the
answer is “No”. Bob has only 4 moves with which to make a line of 3
crosses, while Ada has 5 moves with which to make a line of 3 noughts.
As the making of a line of 3 is to lose the game, we surmise that the
advantage lies with Bob. (Just as in regular noughts and crosses, the first
player holds an advantage, although not a winning one.)

The first point to make is that Ada cannot force a win by following
the program given above (seizing the centre, followed by Strategy S). To
follow the progress of different games introduce a notation in which the
different squares are numbered, starting from the top left in order: 1, 2, 3,
..., 9. (So 2 is the square in the centre of the top row, 7 is the square in
the lower left hand corner, 5 is the centre, etc.) Thus Ada begins with 5.
Suppose Bob now plays 2 (for reasons that will become clearer later on).
Ada, following the program, now plays 8. Bob then plays 4 (again for
reasons that will become clearer later on). Ada continues to follow her

. program and so plays 6. Now Bob can play 9, and he has avoided any
possibility of lining up three crosses. The game is a draw.

Look at the pattern of Bob’s first three moves.

No matter how he places his fourth and final cross, he cannot make a line
of three. So Bob cannot lose. The same conclusion follows whenever
Bob has two midpoints of adjacent sides and the opposite corner.

Another “safe” patten for Bob is that in which he has the
midpoints of three sides (see the diagram overleaf):
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Here the perfectly typical case of 2, 4, 6 is shown, but any one of
these numbers could be replaced by an 8. This one is even more
favorable to Bob than is the previous gattern. Of course, he must avoid
playing 5, but his final move is the 8" (second last) move in the entire
game and so there must be two vacant squares at this time. If one of these
is 5, then he takes the other. If this is 1 (or 3), then Ada has lost; indeed
badly, because she has two lines of three. If it is 6 (or 9), again Ada
loses, and so she does if it is 8. Thus this configuration is a winning one
for Bob.

Ada’s only hope of forcing a win therefore is to prevent either of
these configurations. She can either: (a) Try to prevent Bob from taking
the midpoints of two adjacent sides, or (b) Allow the two adjacent sides
but block the opposite corner.

The first strategy is disastrous. It loses. Ada tries to stop Bob from
gaining two adjacent midpoints. To this end, she plays 2. Bob now plays
4 (with a view to playing 8 next move). So Ada must now play 8 to keep
to her plan, and now Bob wins by playing 6. Ada cannot play 5, and so
must take a corner square, say 1. Bob now plays 7, and now, whatever
she does, Ada is lost.

The other attempt Ada might make to force a win would still
involve playing either on a side or in a corner. All Bob has to do to hold
the draw is to follow Strategy S, until such time as Ada takes the centre.
However the game unfolds, he cannot lose. But in fact he can do better.
Anker offers the following summary: If Ada starts by playing a corner
square (1, say), then she loses if Bob plays 2. If she starts on a side (2,
say), she also loses if Bob plays 4.



163

A complete analysis of the game goes beyond what is given here,
but enough has been said to show that, with best play on both sides, the
game is a draw.

SOLUTION TO PROBLEM 27.2.3 (from Mathematical Bafflers, ed
Angela Dunn)

ABC and DEF are two similar triangles, both with integral
sides. Two of the sides of ABC are equal to two of the sides
of DEF. The third sides are different from one another and
the difference in their lengths is 387. Find the lengths of all
the sides of both triangles.

We received solutions from Keith Anker, Julius Guest and David
Shaw. Here is Shaw’s.

Let a, b, ¢ be the lengths of the sides of the triangle ABC, and let
a>b>c. Then the lengths of the sides of the triangle DEF are ¢ + 387,
a, b, where now c+387>a>b. Because of the similarity of the
triangles,

c+387 _
a

4
¢

Sl B

2
Then a® =b(c +387) = b(é— + 387J so that a® —b* =387ab.
a

Looking at a list of cubes, we see that 8°> — 5> =512 -125=387, so
put a = 8k and b = Sk. We then have a® - b® =512k> - 125k> = 387k>.

Therefore ab =40k> = k>, So k=40. Then

2007

320
triangle, the sides are 512, 320, 200 in length.

a=8x40=320,b=5x40=200and c= =125. In the second

[This gives a complete solution for the problem we set, but Mr
Shaw went on to comment that similar problems may be constructed by
replacing 387 by any difference of two cubes. The simplest example
results when the difference is 7. In that case, the first triangle has sides 4,
2, 1 and the second 8, 4, 2.]
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SOLUTION TO PROBLEM 27.2.4 (from The Australian Mathematics
Teacher, June 2002)

Hobson is in gaol but is given a chance of escape if he can
make the right choice. Three boxes are presented to him,
one of which contains the key to his cell, i.e. the means of
escape. The three boxes are made of gold, silver and lead,
and each carries an inscription. One and only one of the
inscriptions is true. They are as follows:

On the gold box: The key is in this box
On the silver box: The key is not in this box
On the leaden box: -  The key is not in the gold

box.

Meanwhile Jobson, in another part of the same gaol, is given
a similar opportunity. However in his case, at least one
inscription is known to be true and at least one false. In his

case they read:
On the gold box: The key is not in the silver
box
On the silver box: The key is not in this box

On the leaden box: The key is in this box.
How should Hobson and Jobson decide?
Keith Anker and Julius Guest sent solutions. Here is a composite.

(1) Hobson’s choice: Denote the statements by A, B, C respectively. If
the key is in the gold box, then both A and B are true, contrary
to the data; if the key is in the leaden box, then both B and C are
true, again contrary to the data. However, if the key is in the
silver box, then A and B are false and C is true. This provides
the answer.

(2) Jobson’s choice: Denote the statements by D, E, F respectively. If
the key is in the silver box, .all three statements are false,
contrary to the data; if the key is in the leaden box, then all three
statements are true, again contrary to the data. However, if the
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key is in the gold box, then D is true, while E and F are false.
This therefore provides the answer.

We close with four new problems.
PROBLEM 27.5.1 (Submitted by Willie Yong (Singapore), Jim Boyd
(USA) and Richard Palmaccio (USA), jointly)

Evaluate 4sin20° + tan20°.

PROBLEM 27.5.2 (Submitted by Sefket Arslangi¢ (Bosnia))
Prove that

1 1 1 1
+ .. +t— < —=

n+l n+2 2n 2

for all positive integers n.

PROBLEM 27.5.3 (Submitted by Julius Guest)
Let

12 22 n’
S = + + ...
" 2x3x4x5 3x4x5x%6 (n+1D(n+2)nn+3)(n+4)

Find an explicit formula for S, and determine lim S,,.

n—yc0

PROBLEM 27.5.4 (Submitted by Keith Anker)

Lines /; and [, are perpendicular to one another and lie in the
plane of a triangle ABC. Using only measurements in the directions of
I, and l,, determine the area of ABC.
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