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Junction is a refereed mathemat-ics journal produced by the
School of Mathematical Sciences at Monash University. It was
founded in 1977 by Prof G B Preston, and is addressed principally to
students in the upper years of secondary schools, but also more
generally to anyone who is interested in mathematics.

Junction deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to. the natural and social sciences, history of mathematics,
mathematical games, careers in mathematics, and mathematics in
society. The items that appear in each issue of Junction include
articles on a broad range of mathematical topics, news items on recent
mathematical advances, book reviews, problems, letters, anecdotes and
cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and
other materials for publication are invited. Address them to:

The Editors, :Jun<:.tion
School of Mathematical Sciences
POBOX 28M
Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403
e-mail: michael.deakin@sci.monash.edu.au

Junction is published five times a year, appearing in Fehruary,
April, June, August, and October. Price for five issues (including
postage ,and GST): $32.50*; single issues $7. Payments should be sent
to: The Business Manager, Function, Department of Mathematics &
Statistics, PO Box 28M, Monash University VIC 3800, AUSTRALIA;
cheques and money orders should be made payable to Monash
University.

* $17 for bona fide secondary or tertiary students.
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THE FRONT COVER·

The History Column for this issue introduces the simultaneous
differential equations describing the interaction o.f a predator and a prey
species:

where N} ,N2 are the numbers of prey and predators respectively, t is the
time and. the other letters represent positive constants. These equations
cannot be solved in terms of the functions that Function's readers will know.

. They may however be simplified, and reduced to a standard form. To reach
this, put:

N = Dx
1 K

and so obtain:

N=ry
2 k

s
t=-

r
D

a·=-
r

which is the standard form.

dx
-= x(l- y)
ds

dy = ay(x-l)
ds

It will be seen immediately that this. is considerably simpler than the
previous form. However, it is still not possible to solve it fully. But we can
nonetheless make progress. Divide the two equations to reach:

dy ay(x-.l)
-=---
dx x(l- y)
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an equation that can be integrated.

The integral may be presented in a number of different forms. Here
we use:

xya =Aeax+y , (*)

where A is a constant. (Readers may care to check this result by
differentiating.)

Our front cover shows several such curves, graphs of Equation (*),
each corresponding to a different value of A. The curves appear as closed
loops and this property may be proved to hold exactly. The curves may be
used to follow the behaviour of the system. Take as an example, the
outennost curve, and follow it round in an anticlockwise direction from the
topmost point. Here, y, and hence the number of predators, is at its highest,
and the number of prey is insufficient to sustain them. They therefore begin
to die off, but not sufficiently quickly to avoid decimating the prey. Once
we reach the leftmost point of the curve, the prey have become very scarce
indeed (x is very small) and the predators continue to die off in large
numbers. Down in the. bottom left comer of the diagram, both prey and
predators are scare,e. This situation is good for the prey, who can multiply
while the predators are still few in number. Along the bottom leg of the
curve, x increases and y is relatively constant. The prey are having a good
run and predators are still relatively scarce. But the good times do not last.
The conditions have now become favorable to the predators .(there are
relatively few of them and food is plentiful!). The numbers of predators
begin to increase and the stocks of prey are depleted. And so the entire
cycle begins again.

The reader will note that we eliminated s, equivalently t, from the
analysis when we divided the two equations. However from the full
equations, we see that when y > 1 (i.e. predators are plentiful) x is
decreasing. This observation tells us to follow the curves around in an
anticlockwise direction.

It is possible to solve the equations numerically, and this produces
periodic functions of s for both x and y. However, we do not go into these
further details here.
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THE USEFULNESS OF A SEEMINGLY USELESS
FORMULA

G J Troup,·Monash University

The seemingly useless formula of my title concerns spectral lines. For
the purposes of this article, a spectral line may be looked upon as a plot
arising in a physical context and having a somewhat simple shape and a
simple mathematical description. It appears as a graph with a single
maximum and, for present purposes, the graph will be taken to be symmetric
about this maximum. This is to qversimplify ~ but it will suffice for the
purposes of this article. A typical spectral line is shown in Figure 1.

\
\
\

H \
\,

\
'\
\
\
\
\
\

i/ \ ..

l
/
/

.I
I
I
f
I

/
.I

./

Figure 1

The graph shows a single maximum point with two points of
inflection, one on either side of it. The horizontal distance between these
two points is called w (for width, as it provides a measure of the width of the
spectralli~e) .

.Some colleagues and I were using spectral line analysis in the course
of a study for the wine industry (~pmparing the number of tannin molecules
in the grapeseeds of red wine grapes as those grapes ripened). We were
asked to participate in thi's research, using a technique called magnetic
resonance spectroscopy~ but the same problem was also being investigated
by another team using a different met~od.

The "total absorption" of the spectral line is defined as the area A­
under the line. This is a figure we often need and so we need a way to
calculate the area under a graph of the type illustrated in Figure 1.
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This can be done via the use of analogue-to-digital converters
suitably hooked up to the spectroscope and to an integration package in a
computer. However, when (as all too often is the case) funding limitations
apply, they' can make this route difficult or even impossible to follow.
Nevertheless, it is possible to process the graphical output by hand, making
use of a seemingly useless formula! .

We can in fact give a formula for the area in. very simple terms. If we
denote the height to the maximum in Figure 1 by H an4 continue to use w to
stand for the width, then we may expect a formula for A to look like

A=kHw, (1)

where k is a constant independent of the unit of length. that we are using. (It
is simply a number; however, its value will. depend on the shape of the
spectral line.) This is because we may use different units to measure both
the horizontal and the vertical distances on our graph, and the fonnula must
retain the same fonn whichever units we empl9y.l

However, there is a further complication. In magnetic resonance
.spectroscopy, what is recorded is not the spectral line itself, but its
derivative. Figure 2 shows the- graph of the derivative of the function
graphed in Figure 1.. The zero corresponds to the maxiPlum in Figure 1,
while the peak and trough points of Figure 2 correspond to points of
inflection in Figure 1.
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Figure 2
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1 The type of argument used here is the subject of an ex.tended discussion in Function, VallO, Part 1. Eds.
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A graph such as Figure 2 is characterised by the parameters w, now
clearly evident as the horizontal, separation of the maximum and minimum
points, and h, which is their vertical separation. h is twice the maximum
value of the slope of the curve, and we may estimate this as being
proportional to the ratio H/w by means of arguments similar to those that
gave rise to Equation (1), Le. H ex hw . Now we may combine this
information with that of Equation (1) to produce a new equation:

A= Khw 2
,

where K is a new constant of proportionality.

(2)

Equation (2) is our formula, but it involves the unknown number K,
and so it would appear to tell us very little. Indeed, further investigation
would seem to limit its usefulness even more. The value of K depends on
the actual shape of the spectral line, and it is not especially difficult to show
that for different shapes, its value may range from 0 all the way to 00. In
other words, it may take any positive value whatsoever! This is why I
describe the formula as "seemingly useless".

However, all is not lost! If the set of samples being analysed produce
spectral lines all of the same shape, then the unknown constant will be the
same for all of them. It is in fact a reasonable physical assumption that the
absorption lines of particular absorbers in a solid will all have the same
shape. This argument applies quite well in a wide range of practical
situations.

The upshot of this is that in comparing two spectral lines, all we need
in order to obtain the relative areas beneath the curves, are the values of w
and h. "In the study that involved me and my co-workers, we were able to
assure ourselves that all the curve~ we encountered did have the same shape,
and so we could proceed using very simple instruments: ruler, pencil and
calculator.

I provide an illustrative example in the Appendix to this paper. It
shows the detailed working out of one special case.

It is pleasing to report that the two teams working on the problem
obtained results that agreed well with one another, and also with the
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underlying theory, according to which the number of tannin molecules rises
to a maximum prior to maturation, and then decreases.2

Although we were able to use simple considerations to allow very
simple modes of processing our data, it is sobering to reflect that although
the wine industry is worth millions of dollars in export earnings to Australia,
this is not reflected in the priorities accorded to funding research in the
associated Physics and Mathematics! Although in this instance we were
able to work our way around funding limitations, other studies might not
have such luck come their way!

Appendix

The common forms of naturally occurring. spectral lines are not very
well suited to checking this material. However, the following simple
example will serve to illustrate the points made above.

Take the family of curves:

y = {o(x 2
- a

2 Y if - a < x < a
otherwise.

These functions all exhibit a single maximum at x =0, where y =H =a4
•

There are points of inflection at x =± .J:i' and so w =~. The values of

y I at the points of inflection are :+ 8a~ so that the distance between them, h,
3-\'3

is 1:.$ . Equation (2) thus gives for the area A the value K(~ )(~J

h" h· l·fi 64Ka
s

R d Iik h k b' . thw IC SImp lIeS to ~. ea ers may e to c ec y IntegratIon at
9-\'3

16as
the exact value of A is --

IS

Concluded on p 128

2 The technical report on this work may be found in The Australian Journal ofGrape and Wine Research,
Vol 6 (2000), pp 244-254.
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THREE RECENT REVIEWS OF OLD RESULTS

A New Look at Cubic Equations

Function has several times in the past looked at the solution of cubic
equations. See for example the account in our issue for April 1992.
Recently a new approach has appeared. It is the work of the English
mathematician A J B Ward, and it was published in the International
Journal of Mathematical Education in Science and Technology, February
2003, pp 153-158. Our account here derives from this work, but presents the
material in a somewhat different order.

Let us begin by rehashing the theory of the more familiar quadratic
equation, which is solved in general by "completing the square". If we
adopt the standard fonn for the quadratic as

x2+ax+b=O,

then we may compare this with another standard fonn

The virtue of this latter form is that it can be saIyed immediately by
taking square roots of both sides. The result is. that x = p ± q, where the

term ±q represents the fact that q2 has these two square roots. If we now

substitute this solution back into the first standard form we find, after a little
rearrangement,

{p2 +q2 +ap+b)±q(2p+a)=O.

This is equivalent to two equations:

.2p+a=O and

Solving these produces the results p =_!: and q =!...;a2 '-4b , and now the
2· 2

reader can complete the rest, producing a version of the familiar "formula".
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Ward's idea, which he calls "completing the cube", is to approach the
cubic in an analogous way, beginning with the standard fonn:

x 3 +ax+b=O.

(Every 'cubic may be reduced to this form; see the Function article referred
to above. We may also assume that b ':t 0, as otherwise one of the roots
would be zero, and the cubic would reduce to a quadratic.)

By analogy with what has just been done for the quadratic, write the
equation as

(x- py =q3,

and its solution as x = p +OJq, where the term mq is one of the three .cube

roots of q3. Now back-substitute as before, to reach

By analogy with the quadratic case, Ward reduced this to two
equations. The fITst of these is

Putting this into the previous equation, leads to the further equation

3mpq +a =0.

(Because x =p +0Jq ':t 0, as b*0 .)

We can now rewrite these two equations as:

and

Thus p3 and q3 are the roots of a quadratic

a 3

y2 +by--=O.
27
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This equation has the solutions p3 and q3 and thus p and q may be
found. This enables us to complete the solution of the given ·cubic. The last
few steps, those from here on, are the same as those arising from the more
usual approach.

0000000000000000

A Fresh LO'ok at nth Roots

We are familiar with the fact that the square root of 2 is irrational.
(Several proofs of this result were presented in Function in Apri11999.) But
what about the cube root of 2, the fourth root and all the rest? They too are
all irrational, and a remarkable new proof of this result has just .appeared. It
was discovered by William Henry Schultz, an undergraduate at the Charlotte
campus of the University of North Carolina. He showed it to his instructor
who, in his turn, was also impressed, and forwarded it to the American
Mathematical Monthly, where it appeared in their issue for May 2003.

To prove the result, Schultz supposed the opposite and looked at the

possibility that V2 = P or in other words that it was rational. He considered
. q

the cases n ~ 3, taking it as read that the case n = 2 was already settled.

This makes the number triple (q, q, p) a solution of the Fermat
problem, and it is· now established (see Function, April 1994) that this is
impossible. Thus the assumption of rationality leads to a contradiction and
must be false.

Because the result is so neat and so surprising that it seems a pity,
downright churlish in fact, to criticise it, but there are two grounds on which
it can be challenged. The first point to make is that it is not established
conclusively that it does not assume what it sets out to prove. We would
need to know that nowhere in Wiles' proof of the impossibility of the Fermat
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problem does he use the irrationality of V2, and this would be quite a
difficult task, and possibly even a mistaken one.

The second point to make is that there are better proofs of the result.

Here is one. Suppose that V2 =P and that the fraction P is in its lowest
q q

terms, which is to say that no cancellation is possible between numerator and

denominator. Then 2 =L and here the left-hand side is an integer and theqn

left a fraction' in which no cancellation is possible between numerator and

denominator. This can only happen if q = 1, which in turn i111plies that V2
is integral, which is wrong!

Indeed this latter proof readily generalises to show that v;:;; (where m
is an integer) is either itself integral or else irrational, so that the alternative
proof tells us more.

Schultz probably knew of this proof, but nevertheless produced his
new proof. Despite the criticism, it is very elegant, and we thought you
might like to share it!

0000000000000000

Columella's Formula

The Roman author Lucius Columella (1 st Century AD) wrote
extensively on rural life, and two of his works, De re rustica and De
arboribus, have survived. They have been issued together in English
translation as Of Husbandry. For the most part they are concerned with
farming, but among the details he includes a formula for estimating the area
of a segment of a circle. This has been the subject of a recent article in The
Mathematical Intelligencer, authored by J-M Levy-Leblond, a mathematical
physicist at the Universite de Nice.

Look at the diagram opposite. The segment of the circle shown is the
portion of the circle's interior cut off at the extreme right of the diagram. It
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subtends an angle, esay, at the centre of the circle. As is standard in modern
trigonometric discussions, the radius has been set equal to 1.

Columella was interested in finding the area of a paddock shaped like
this. (Levy-Leblond comments that this is an unlikely shape fora paddock.
However, if the paddock lay on a bend in a river or else was situated beside
a curved coastline, then perhaps it is not quite such a strange idea.)

"Two lengths .are easily measured. They are the length of the straight
boundary of the region and the width of the segment at its widest extent. In
an older usage, these were called the chord of f) and the versed sine of e.
Here we will use this terminology, although Levy-Leblond does not. Write
chB for the chord and vs(} for the versed sine. In our more familiar notation

chB =2sin~ ., aIJd
2

()
vs(} = 1-cos­

2

Long experience has taught us to use the more familiar sine and cosine
functions in place of these more basic alternatives. Try writing out some of
the familiar trig fonnulae in tenns of chB and vs(}, and you will soon see the
benefits of our modern viewpoint.

There is a simple (exact) formula for the area of the segment. It reads:
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A=..!.(B-sinB),
2

where A is the area, and 0 is measured in radians.

However Levy-Leblond notes that this involves finding the centre of
the circle and determining the angle 0, which is less direct than the simple
measurement of chB and vs(). It is terms of these quantities that Columella
gives an approximate expression for A.

In the notation used here, it reads

1
A(e) =(vsO+ chO)vsO+-vs2 0,

56

where now A(e) is written for the area. The formula is quite accurate.
Levy-Leblond plots it against the exact result, and notes that its worst errors
occur for small values of f), which probably makes for an unrealistic
paddock anyway. But then he goes on to speculate about how the formula
was· derived. Here is his suggestion.

If we measure two lengths, and wish to compute an area, then there
are three possible areas we can form from the two lengths. Call the lengths
chB and vs() and then note that we can have ch 2 0, chOvsB and vs 2 B or
some sum of these all as possible areas.

Therefore suppose that we ask that the area have the form

(*)

and that it give exact results for () =1i and B =~ , two values for which the
2

calculation is relatively straightforward. In fact we have: -



ch1Z' = 2 VS1Z' =1

1r J2
vs-=l--

2 2
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Feeding these values into the assumed form (*) gives two equations in the
three unknowns a, p, y, which, after a little work, may be written:

7t
a+2{J+4y=-

2

3.. a +J2(fJ -a}- fJ +2y =!!.._!
242

At this point, Levy-Leblond becomes somewhat speculative.. He

suggests that the term in J2 was abolished by setting a = p. This gives two
simpler equations in the two remaining unknowns p, y:

1Z'
3j3+4y =-

2
1Z'

,8+4y =- -1.
2

1 1r-3
We may now solve to find that a =,8 =~ y =-- and if we use the

2 8

approximation 1r ~ 22 Columella's formula follows. Levy-Leblond notes
7

that it is often asserted that the Romans used the cruder approximation
1r ~ 3, but this would not give Columella's formula as he has it.

As an exercise, try using a similar derivation to find an approximation
for the perimeter of a segment ofa circle. The result is surprisingly good; at

its very worst it is still under 10% off. Ji vanishes from the calculation of
its own accord, and this time the fit is exact at (J =0 .

0000000000000000
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HISTORY OF MATHEMATICS

Vito Volterra

Michael A B Deakin, Monash University

I had long wanted to devote one of my columns to this extraordinary
man, and last February I promised to do so. Vito Volterra is one of the most
important mathematicians from the late 19th to the early 20th centuries. He
was born in 1860 in what was then known as the Papal States (before the
incorporation of that principality into today's Italy), and he lived ti111940.
His family background was humble, but by dint of ability and hard work he
achieved a tertiary education and a subsequent academic career.

His early work lay in Mathematical Physics, and he was appointed to
a chair in (essentially) this discipline at the University of Pisa in 1883. In
1892, he moved to a similar appointment at the university of Turin and by
1900 he had moved again to the University of Rome. Although by the
outbreak of World War I he was past the age of military service, he
volunteered for the Italian Air force and worked on airships (dirigibles)
rather than heavier-than-air machines (the Italians were among the last to
move over to what we now regard as the norm!). In this capacity he
introduced the use of helium in place of the more dangerous hydrogen.

His interest in Mathematics sprung initially from the demands of
Theoretical Physics. In the course of a short article for a general readership,
it is not feasible to describe either in depth -or in full breadth the many
contributions he made to Mathematics, especially over a fifty-year period
extending from about 1880 to 1930 or thereabouts.

) The Italian air force general Umberto Nobile achieved one of the first major successes of this fonn of
flight, when with the Norwegian explorer Roald Amundsen and the American aviator Lincoln Ellsworth he
took an airship across the Arctic Ocean in 1926 (the first ever such crossing). However, Nobile afterwards
fell from grace when a later (1928) airship expedition, an attempt to reach the North Pole, came to grief
with the loss of 17 lives. Amundsen was another victim, for he perished in the search for survivors.
Dirigibles finally lost all favour with the burning of the Hindenburg in 1936. Had helium been used in that
vessel, the tragedy would have been averted.
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Rather I will concentrate on certain major themes, and so hope to give
a flavour of the Mathematics he developed. It is summed up by the
Encyclopedia Britannica in the words "[he] strongly influenced the modem
development of calculus". This is no exaggeration. To substantiate it, let
me describe one line of his research.

Much of .Mathematical Physics takes the fonn of Differential
Equations, such as were discussed briefly in my February column. Think of
the simplest case introduced there: the_ vibration of a taut string (as on a
guitar, for example). If u is the displacement of the string. from its
equilibrium resting position, and x is a co-ordinate that measures the position
of a point of the string, when that point is at rest, then the string takes up a

position described by the differential equation: d 2~ =n2 x. where n is a
dx

constant to be determined. As well as the differential equation, there are two
"boundary conditions" specifying what happens at the ends of the string. In
the case of the guitar string, the ends are held fixed and so u = 0, when x = 0
or l ( 1being the length of the string). These boundary conditions detennine
the possible values of the constant n.

Volterra discovered that the information included in the differential
equation, together with the further information provided by the boundary
conditions, could all be included in a single equation of another type: an
integral equation. Integral equations are equations in which an unknown
function occurs as part of the integrand in a definite integral. He was one of
the first researchers to undertake a systematic study of such equations, and
two of the basic fonns now bear his name.

He was able to show that these equations could be looked on as a
limiting form of a large array of simultaneous linear algebraic equations,
where the number of equations tends to infinity. Indeed, the computer
solution of such equations often involves approximating them by a large
array of simultaneous equations' a·nd then inverting the matrix involved.

Among the uses to· which such equations were put is the study of
seiches ("tides" in lakes) as outlined in my column for last February. As I
pointed out then, the analogy between the theory of seiches and of the
vibrating string is a close one.
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However, there were· other such applications. One important one is
the study of a phenomenon known as hysteresis. This occurs in many
contexts. FOf example, when adefonnable solid is subjected to stress, its
response depends not only on the stress applied at the precise instant of
observation, but also on, what has gone on before: on the history of the
stresses to which the solid has been subjected. This later led to fru'itful
extensions of the, classical theory of elasticity. Other contexts also benefit
from this generalised approach; hysteretic effects also occur in connection
with electromagnetism, in biological studies and ~lsewhere.

This last remark brings me to one of Volterra's best-known
contributions: his formalisation of some of the basic ideas in Ecology. He
began this work in 1926, and already in his fust paper on the subject, he laid
down the fundamental equations that inform much discussion even today.
The first section of this paper considers the interaction of two species. Two
cases are presented. The first is that in which the two compete with one
another for a common resource. In many such cases, one species survives
and the other is eliminated. The case in which the two co-exist is less likely.

But Volterra is much better remembered for his discussion of
predator-prey interaction. Suppose there are two species: Species 1, which
is the prey of Species 2, which is the predator. Let there beNt individuals
of Species I 'and N2 . of Species 2. Then the prey, if unchecked will tend to
increase in proportion to their numbers. (This is a law of growth frrst
expounded by 'the economist Thomas Malthus in 1798.) However, the
population of Species 1 will be depleted in proportion to the number of
encounters between an individual of Species 1 and one of Species 2. This
number in turn is jointly proportional to the numbers of individuals in the
two species. Thus Volterra wrote

(1)

where rand k are (positive) constants and t stands for time.

If we now consider the variation .in the number of predators (Le.
Species 2), we can see their numbers growing as a result of their eating
members of Species 1, but decreasing as a result of their dying off (from,
e.g., old age). This leads to a similar equation
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(2)

where K and D are (positive) constants.

Equations (1, 2) constitute what is now termed the Volterra oscillator.
Its behaviour is the subject of the cover story for this issue. Biologically the
conclusion is that the populations of both species will fluctuate, but that both
species will survive.

Later, Volterra collaborated with the biologist.Umberto D'Ancona in
a study of fisheries in the Adriatic Sea. This led to the conclusion that if two
prey species are involved then one of these will go to extinction. The logic
can easily be put into words: If the fisherman (the predator) hunts for fish of
Type 1 for preference, but will also take fish of Type 2 if need be, then,
when Type 1 becomes scarce, he will remain in business by taking Type 2.
Type 1 (the preferred species) is now doomed, for the fisherman will not be
averse to taking whatever Type 1 fish he can when the opportunity presents
itself. (Had Type 2 not existed, then the fishery would have become
uneconomic, and the fish-stock would have had time to recover.)

[We see this effect very strongly in the case of the whaling industry.
Only the force of very powerful sanctions prevents the larger (and preferred)
species (sperm whales and blue whales) from being hunted to extinction.
Those whaleries that remain in business do so by relying on their catch of
Minke whales, which the early whalers would have scorned to bother with!]

Later, Volterra learned that his work in this area had, to some extent,
been anticipated by the US mathematician Alfred J Lotka, who initiated a
correspondence between them. In it, there is no sign of the animosity that
sometimes besets such disputes: rather their tone is friendly throughout.

However, already in that first paper, Volterra was concerned to go
beyond the two species case. He considered the more general situation with
larger numbers of predator and prey species. Later he was able to set up
even more general models. This matter is somewhat controversial. Volterra
saw his models as important special cases, idealisations that simplified ·the
complications of the natural world, but which nonethele~s remained relevant
to it.
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He considered that he was proceeding in the same spirit as that of
classical Physics. To give an analogy that will show the flavour of his
thought, consider the fall of a stone under the influence of the earth's
gravity. Initially, it has no velocity, but it has potential energy by dint of its
position above the earth ~ s surface. As it falls, it gathers speed and this
potential energy is converted into kinetic energy. Just before it hits the
ground, its potential energy is all gone and the entire energy it possesses is
kinetic. In an ideal case, all the original potential energy would be converted
into kinetic energy, but in real life there is a loss· caused by the resistance of
the air. This energy turns up as heat. However, for many purposes, the
small loss may be disregarded.

The science of Mechanics (from which this example derives) is one of
the most successful aspects of Applied Mathematics, especially as it relates
to the motions of the heavenly bodies, such as planets and satellites. It
works particularly well in this context because' of the relative unimportance
of frictional effects in space.

The Volterra oscillator has been criticised because of an unrealistic
feature. The closed loops like the ones shown on the cover correspond to
exactly periodic motion. Consider the analogy of a pendulum. Ideally, it
oscillates periodically forever, and a diagram analogous to that of the cover
diagram shows similar closed loops. However, in real life, .it runs down.
The ideal situation is now referred to as "structurally unstable", and this term
is also applied to the Volterra oscillator. This feature was in fact first
demonstrated by Lotka, but Volterra was concerned to investigate the ideal
case, as a first step to understanding the more complicated behaviours of
more realistic systems.

. In this endeavour, he was guided by the extensive elaboration of
Classical Mechanics. He showed that a system representing many predator
and prey species, subject to special conditions that he likened to the idealised
treatments of that discipline, displayed remarkable similarities to those other
ideal results. Volterra believed that these investigations constituted a major
contribution to the understanding of ecosystems. Nowadays, however, we
are more cautious. Even back in 1941, when Sir Edmund Whittaker's
obituary of Volterra was published, it included the evaluation: "It would be
rash to say whether the analogies with physical science which he unearthed
will remain what they appear to be at first, and certainly are, at least, a
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clever and remarkable tour de force - or whether they will eventually be
seen as the germs of a profound biodynamics, essential to the theoretical and
economical biology of the future: what is beyond dispute is that his
contributions to· pure mathematics will be in demand more and more
inescapably as mathematical biology develops."

What has happened is that these elaborations are now seen as not
saying anything profound about biological associations, but rather as saying
very profound things about systems of differential equations. The systems
of Classical Mechanics and of Volterra's idealised biological models are
now seen as two examples of an entire class of such systems.

Even in Whittaker's day, biologists treated the matter with caution.
As he also wrote: "Biologists have been apt to criticise Volterra for pre­
occupying himself so elaborately with abstract mathematical models based
on simplifying assumptions remote from the complexities of nature." SOlne
of Volterra's results now seem unrealistic; for example he believed that the
number of species in a population that had reached equilibrium was
necessarily even. Furthermore the recent realisation of the importance of
chaotic solutions has undermined some of his more ambitious conclusions.
Nonetheless the simpler conclusions of his less ambitious models have made
a lasting impact on ecological thinking.

In 1978, the more influential ecological writings of Vo~terra, Lotka
and others were collected together (and where necessary translated into
English) and published as a volume, The Golden Age of Theoretical
Ecology, 1923-1940, published by Springer as· Volume 22 of their Lecture
Notes in Biomathematics series: More recently (2002), a volume of
Volterra's correspondence on mathematical biology was also published, this
time ·by Birkhauser, under the title The Biology ofNumbers. I was fortunate
to receive a review copy of this work from the journal Mathematical
Reviews, and I treasure it greatly. It is clear that Volterra was in close
contact with all the leading figures of this remarkable movement.

The last years of his life were overshadowed by the political turmoil
that ultimately led to World War II. The Fascists came to power in Italy in
1922, and by 1930, much of Italy's democratic heritage had been
dismantled. In 1931, Volterra refused to swear an oath of allegiance to
Mussolini, and was in consequence forced out of the University of Rome; in
1932, he was compelled to resign from all the Italian scientific societies of
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which he was.a member. As a Jew, he came to suffer more and more from
the resurgent anti-Semitism of th,e period. From this time, he spent most of
each year in voluntary exile, and valued his membership of foreign scientific
bodies all the more highly.

In 1936, Pope Pius XI revived the Pontifical Academy of Sciences
and gave it a new constitution based on trans-national and non-sectarian
values. He invited Volterra to become a member, and this was an honour
that it was not in Mussolini' s power to revoke. Volterra's very last scientific
paper (on hysteresis in elastic media) was published by the Pontifical'
Academy. The second-last (on hysteresis in biological associations) was
published by the Edinburgh Mathematical Society, of which he was also a
member, and which likewise lay outside the reach of the Fascist government.

He became seriously ill in 1938 and eventually died in 1940, working
on Mathematics almost to the very end. The Pontifical Academy concluded
their announcement of his death by saying "we believe him to have passed
from this life to' the earnest and industrious advancement of. the sciences
throughout an eternity of wisdom".

Further Reading

The most accessible source for most readers will be the on-line
biography at the St Andrews site:

http://www-historv.mcs.st-and.ac.uk/historylMathematiciansNolterra.html

although this is rather a clumsily compiled piece of work. The article in the
Dictionary of Scientific Biography is much better, and the Obituary Notice
by Whittaker is an excellent summary. This is reprinted in the Dover edition
of the English translation of one of Volterra's books: Theory ofFunctionals
and of Integral and Integro-Differential Equations. The work cited in the
body of my account above, The Biology ofNumbers, contains a very careful
and detailed. discussion of the significance of Volterra's biological studies,
and the references given by the authors of the St Andrews biography are also
useful.
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COMPUTERS AND COMPUTING

Solving Non-Linear Equations:
Part 6, The Secant Method

JC Lattanzio, Monash University

The Secant Method is a modification of the Newton-Raphson. It is
suitable for equations f(x) =0 where f(x) is not easily differentiable. For
example we might have a horrendously complicated function whose
derivative could only be evaluated using large amounts of computer time.
Such a case occurs with interstellar gas clouds, whose cooling is due to
molecular vibrations. The cooling function is known analytically, but
solving using Newton-Raphson is not practical because of the complexity of
the derivative. Also, often we do not have an actualfunction, but rather the
result of many experiments. These return a measured value if) as we vary
some input (x). We thus define a function f(x) , without knowing its form.

We can rerun the experiment many times and so determine the value of
f(x) for any x, but we cannot determine the derivative of such a function.

The idea of the Secant,Method is to replace the analytic form f'(x)

in the Newton-Raphson formula with the approximation:

f'(X;):::: fexi ) - f(Xi- 1 )

Xi -Xi- 1

Recall that the Newton-Raphson fonnula was

.. I(x.)
x· =x.---'-

1+1 r f'(X;)

and now replace the derivative by the approximation. This gives

I (x. )(X. - X'_l)
X

i
+
1

=X; , I I

f(x;)- !(Xj _ 1)
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This formula simplifies to

and this is what we use in our iterative scheme.

Consider as an example the solution of the equation

j(x)=XX -2cosx=0.

The somewhat unusual function whose zero we seek can in fact be
differentiated, but we will proceed without doing this. If we explore the
behaviour of the functions XX and 2cosx, we find that when x = 1, XX = 1
and 2cosx = 1.08.... (Remember that x is measured in radians!) For the
slightly larger value x =1.1, XX =1.11 ... ,and 2cosx =0.907.... We thus
know that there is a root near these values, in fact between them.

So choose Xo =1, Xl =1.1. Applying the formula derived above
yields the following table (where, as in previous articles, the final column
gives the relative change in the estimate for the root):

Xi Bi

0 1.00000
1 1.10000 0.09091
2 1.02839 -0.06964
3 1.02950 0.00108
4 1.02954 0.00004

So we have the value of the root as 1.0295 to four decimal places.

Concluded on p 128
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PROBLEMS AND SOLUTIONS

More on Problem 26.5.4

Bernard Anderson writes to say that john Barton's method of solution
to this problem may be extended to cover more cases. We stated in our last
issue that Barton's argument may be used whenever the set of points S
involved was the same after it was rotated by 1800 about a central point.
Anderson points out that almost the same argument may be used with 1200

rotations, etc. Thus the original problem could be solved for an equilateral
triangle by the same nleans, merely replacing the grouping of the points into
pairs by a grouping into threes.

By extension, Anderson's generalisation may also be applied to the
case of 5-fold, 7-fold symmetry, etc. Thus, whenever there is what we
would clearly· recognise as a centre, then that point supplies the required
minimum. (The case of, e.g., 6-fold symmetry may be viewed as a subcase
of either the 2-fold or the 3-fold case, etc.)

However, this still leaves a lot of asymmetric cases not accounted for!

Solution to - Problem 27.1.1 (from the Wasan, traditional Japanese
Mathematics, reproduced in History in Mathematics Education, ed J Fauvel
and J van -Maanen)

The problem read:
The diagram overleaf shows six circles packed as _arranged inside a

rectangle. The circles are all equal and the radius of each is 1. Find the
dimensions of the rectangle.

We received solutions from John Barton,_ Paul Grossman and Carlos
Victor (Brazil). All followed essentially the same lines, and here we use the
notation and diagram supplied by Grossman.

Draw a straight line through the centres Ci of the four consecutive
circles. At P j , where circles 3 and 4 touch., draw a line normal to the first to
the centre of circle 5. Since C3, C4 and Cs are the corners of an equilateral
triangle, the distance PICs is "3.
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Join Cj and Cs by a straight line and you find from the triangle CjCSP j

that tana= ~3/5. From C4 drop a line normal to the extension of Cj C5 to
point P2. Write C4P2 = Hand C j P2 = W. Since the distance C j C4 = 6, it
follows that C4P2 = H = 6sina, and Cj P2 = W = 6cos a. We now have two
equations for H and W,

HIW=~3/5
H2 + W2 = 36,

with the solutions W = 151-V7 = 5.669 and H = 3~3/~7 = 1.964.

The rectangle enclosing the circles has dimensions (W+2) x (H+2), or
7.669 x 3.964. .

Solution to Problem 27.1.2

The problem (after correction of an error) read:
Volume 2 of Arthur Mee's Children 's Encyclopaedia shows a set of

six cards, each containing 30 numbers between 1 and 60 (inclusive). The
idea is to ask a friend to choose a number in this range and to identify those
cards on which it appears. From this information it is possible to identify the
number the friend chose.
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How are such puzzles constructed and what is so special about the
number 60?

We received solutions from John Barton, Paul Grossman, Julius
Guest, Garnet J Greenbury and Carlos Victor (Brazil). Again all followed
similar lines, but Guest gave the most thorough discussion.

The key to the trick is to express the numbers in binary notation. Six
binary digits allow the representation of all numbers between 0 and 63. If
the binary representation contains a 1 at position n, then the number appears
on card number n, otherwise not. 'Thus (for example) 37 has the binary
representation 100111. which means that it is to be found on the 1st, 2nd

, 3rd

and 6th cards, but not on the 4th or the 5th
• The number of entries on each

card will be exactly half of the total number posed at the outset. Card
number 1 will contain all the odd numbers and no others. Card number 2
will contain just the numbers: 2, 3; 6, 7; 10, 11; and -so on in pairs spaced 4
apart. This pattern continues until the 6th card which lists all the numbers
greater than 31. (The number 0 would appear on none of the cards, but the
"rules of the. game" as usually presented outlaw it in any case.)

The puzzle, as printed in the encyclopaedia gives only the numbers up'
to 60, not up to 63. Almost certainly this is because 60 can be thought of as
a "round number". It is also "divisor rich" which makes it more likely that
the number of entries on each card (i.e. 30) can be presented in a tsatisfyingly
compact tableau. However, there are a few anomalies that must be. hidden.
Barton checked the reference (p 874 of Vol 2 of the work) and found that
the 3rd card had the number 13 repeated, as also did the 4th

; the 5th repeated
the number 31 and the last repeated the number 46. Of course it makes no
difference which numbers are repeated on these cards, but otherwise the
pattern is uniquely determined.

The trick depends on the binary representation and so works best for
numbers like 63 which are one1ess than a power of 2. 64 is a power of 2
that is satisfyingly close to the "round number" 60. The only other viable
candidate would be to choose the "round number" 30 and use five cards each
with 15 entries in a 3 x 5 pattern. This would entail less duplication, but
would perhaps be a little less spectacular in use~
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Solution to Problem 27.1.3 (based on a problem in Mathematical Bafflers,
ed Angela Dunn) .

The problem read:
x, y, z--are positive integers such that x + Y + z = xyz. Find all

solutions of this equation~

We received solutions from John Barton, Paul Grossman, Julius Guest
and Carlos Victor (Brazil), who sent two different solutions. Here is one of
Victor's. .

Let xy =a, yx = b, ZX =c and suppose that a ~ b ~ c . The given

. b . 111 1 B I 1113 IequatIon may e rewrItten as - +- +- =. ut a so - +- +-:::; -. t
abc abc c

follows therefore that c ~ 3. Therefore c = 1, 2 or 3. Clearly we cannot
have c = 1, but c = 2 allows either a = b =4 or a =6, b =3. If c = 3, then we
may have either a = b =3 or a =6, b =2. These possibilities give us the
solutions (x, y, z) =(1, 2, 3), (1, 3,2), (2, 1, 3), (2, 3, 1), (3, 1,2), (3, 2, 1): in
other words the six possible permutations of (1, 2, 3).

The solution demonstrates the symmetric nature of the problem. The
other solutions all made use .of this although in somewhat different ways.

Solution to Problem 27.1.4 (from the same source)

The problem read:
A rower is moving upstream when his cap falls into the water. He

does not realize this until 10 minutes later. Then he instantly reverses
direction, and chases the cap as it floats downstream. He finally retrieves it
one kilometre downstream from the point where it entered the water. What
is the speed of the stream?

We received solutions from John Barton, Paul Grossman and Carlos
Victor (Brazil). Grossman's had a nice "lateral thinking" flavour to it.

"Consider another reference frame. Imagine an observer sitting in a
boat that floats with the water. She had .seen the rower approaching from the
right and dropping his cap as he was passing her. The cap for her remains
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stationary, but an adjacent tree on the shore is moving slowly to the left.
The rower is. also moving to the left, faster than the tree. She follows his
progress with a telescope andh~r radar gun and notices after ten minutes that
he is coming back. To her the rower's absolute speed is the same in either
direction and ten minutes later he arrives back. ''Here is my cap", he says
and she replies: "I have been keeping an eye on it". She then picks up her
telescope to look· for the tree on the shore. The tree is now one kilometer
away, so she concludes that the speed of the tree is 3km/hr."

And this, of course, is the speed of the stream.

Here are four new problems for eager puzzlists.

Problem 27.4.1 (from Australian Senior Mathematics Joumal15(2), 2001)

Through the vertices of a triangle ABC, draw its circumcircle. Form
three other circles by reflecting this circumcircle in- each of AB, BC, CA.
Show that these three circles all pass through a common point.

Problem 27.4.2 (based on an article by T Eisenberg in International Journal
for Mathematical Education in Science and Technology 34(1), 2003)

a, b and N are non-negative real numbers with b *' o. Let
ao = a, bo = b and then form sequences {an}' {bn} according to the rules

an+1 = an + Nbn ' bn+1 = an +bn • Prove that as n~ 00, an tends to a limit
bn

and determine the value of that limit.

Problem 27.4.3 (proposed by Avni Pllana, Austria)

A rectangular strip of paper is folded into a "Tie-knot" as shown
overleaf. Disregarding the thickness of the paper, determine the angle f3.
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Problem 27.4.4 (from the Australian Mathematics Competition, 1988;
further discussed in American Mathematical Monthly, May 2003)

Simplify V2+-15 + V2--I5.

Continued from p 106

Thus the result is verified and the relevant value of K in this particular

case is 3..fj or about 0.26. This value holds forall members of the family,
20

irrespective of the value of a.

Continued from p 122

This demonstrates fairly rapid convergence, and in fact it can be
shown that the convergence is less. rapid than for the Newton-Raphson
Method, but more· rapid than Fixed-Point Iteration. Recall that the relative
errors declined approximately as a sequence of squares for Newton-Raphson
(C[+1 ==:: kc;2) and approximately as- a geometric sequence (c;+1 ==:: kc i ) for
Fixed-Point Iteration. In the case of the Secant Method, it may be shown
that £i+l ==:: ket, where t/J is the golden ratio (1 +$)/2 (about 1.6).
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