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Junction is a refereed mathematics journal produced by the
School of· Mathematical Sciences at Monash University. It was
founded in 1977 by Prof G B Preston. Junction is addressed
principally to students in the upper years of secondary schools, and
more generally to anyone who is interested in mathematics.

Junction deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
mathematics to the natural and social sciences, history of mathematics,
mathematical games, careers in mathematics, and mathematics in
society. The items that appear in each issue of Junction include
articles on a broad range of mathematical topics, news items on recent
mathematical advances, book reviews, problems, letters, anecdotes and
cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and
other material for publication are invited. Address them to:

The Editors, Junction
School of Mathematical Sciences
POBOX 28M
Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403
e-mail: michael.deakin@scLmonash.edu.au

Junction is published five times a year, appearing in February,
April, June, August, and October. Price for five issues (including
postage): $32.50* ; single issues $7. Payments should be sent to: The
Business Manager, Junction, School of Mathematical Sciences,
PO Box 28M, Monash University VIC 3800, AUSTRALIA; cheques
and money orders should be made payable to Monash University.

>« $17 for bonafide secondary or tertiary students.
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THE FRONT COVER

Our Front Cover for this issue illustrates the feature article "The Bull
and the Botanist" (p 70).

The case illustrated is that in which the bull and the botanist run with
equal speeds,. which is the critical case, although it is shown in the course of
the article that the bull never catches the botanist in this case of equal
speeds, unless the initial conditions are highly unusual.

In the article, a somewhat unfamiliar set of co-ordinates is used. Here
on the cover, the usual conventions are employed instead.

The equation of the curve is

X= cy 2 -lny,

but it should be noted that the conventions under which this simple form is
achieved are not those of the article. Here x =c when y = 1. Another point .
of interest is the turning point where the bull reverses its direction and runs

from left to right instead of right to left. At this point dx = 0, so that
dy

y= fl
Vl;;

which gives a value

1+ In(2c)
x=----

2

Readers should contrast this with· the different convention adopted in the
article.

For a brief account of this curve, but under somewhat different
conventions again, see the website

http://www-history.mcs.st-and.ac.uk/history/Curves/Pursuit.html
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THE BULL AND THE BOTANIST

Michael A B Deakin, Monash University

I first learned of this problem from one of my Mathematics teachers
when I was in High School. Later I discovered that he in his tum had
encountered it when it was set as a problem in his Mathematics course at the
University of Melbourne. I don't now recall the precise wording, but the
gist of it has stayed with me, and I should like to share it with Function's
readers.

In a paddock, collecting specimens, is a botanist. Also in the
paddock is a bull, who, on seeing the botanist, charges at him.
Just when the animal begins its charge, the botanist begins his
flight. He heads for the safety of the nearest fence, and runs
toward it with a constant speed u. The bull charges in such a
way that it is always headed straight for the botanist,
proceeding at a constant speed v. What happens?

Here is the situation after a time t has elapsed.

o

Figure 1

x

Initially the botanist is at 0, which can be taken for the moment as the
origin. At time t, he has reached the point B1, to which we may assign the

co-ordinates (ut, 0). The understanding is that the botanist is moving to the
right, in the dire~tion OX. The bull is at B2 , whose co-ordinates are (x, y).
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The point X is that for which the angle aXB
2

is a right angle. ' The bull is

moving along a path whose tangent B B always passes through the botanist.
2 1

As I have drawn the diagram, x > ut, so that the bull is ahead of the botanist
as he runs toward the fence (off to the right and out of frame). However, the
analysis is general and will equally well apply if the bull is initially behind
the botanist. .

I will analyse the situation from the point of view of the botanist, who
will be concerned with the distance between himself and the bull. This

distance IB B2 1 I will call r, and the angle BB X. I will call B. (r and B turn1 . . 2 1

out to provide a more convenient des~ription than do x and y. However, it is
possible to use these instead. George Boole, a famous mathematician of the
19th century, included such a discussion in his Treatise on Differential
Equations on pages 252,253. See also the cover diagram.) As I have drawn
things, the bull is to the botanist's left, and this may be assumed without any
loss of generality (apart from the special case, to be discussed briefly later,
in which the two characters in our drama are both on the line OX). We may
thus restrict discussion to the case 0 ~ B~ 1l .

The botanist's velocity along B X may be resolved into two
1

components, one along B B , the other perpendicular to it. Thus the
2 1

distance between the bull and the botanist is reduced by two effects: the first
of these two components and the bull' s direct velocity toward the botanist.
This provides the first of the two equations below. The second refers to the
need the bull has to continuously alter its direction. We thus have:

dr
-=-ucos8-v
dt

dB . B
r-"- =USln .

dt

(1)

(2)

From Equation (2), we see that if initially B is either 0 or 1[, then it
does not change, but remains at that same' value. I leave it to the reader to
analyse what happens in these two cases. I will in. the rest of this article
assume' that the situation is otherwise. In all these other cases, B increases
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steadily as the action proceeds because the right-hand side of Equation (2): is
positive.

If we now divide Equation (1) by Equation (2), we reach the single
equation

dr - r(k +cosO)

dO sine

where k = v/u, the ratio of the speeds.

This equation may now be solved. The solution is

r =~(1+COSOJk
sine sine

(3)

(4)

where A is a constant whose value is to be determined from the initial
situation. (The reader may check this result by differentiation.)

Now the main point of interest is whether the bull catches the botanist
or not. If they do meet up, then r will be zero. The only possibility of this
occurring is that cosO =-1, i.e. e= fl. This means that if the bull does
catch the botanist, it will always be from behind. (Remember that we are
not discussing the special case in which the bull and the botanist rush
headlong toward one another!)

There is a ready corollary of this deduction. From Equation (1), we

see that dr =0 when cos 0 =-k. This equation can be satisfied if k < 1,
dt

that is to say if the botanist can run faster than the bull. But now when
cos e=-k, the distance between the two is minimised, so that, as. 0
continues to increase beyond the value achieved at that point, r then
increases because the right-hand side of Equation (1) is then positive. It
follows that in this case the bull will never catch the botanist, but will always
fall behind after a point of closest approach.

(Remember that we are thinking of the bull and the botanist both ·as
moving points, with no size. In real life, things could be rather different!)
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This now leaves us with two cases to consider: k > 1 and k = 1. It will
turn out that these cases have to be treated separately. But before we start on
this task, it will be best to do a little tidying up. If x > ut, as in Figure 1, then
the bull Plust at some stage turn round and proceed toward the right instead

of to the left as shown (because as e increases towards rc it will at some
stage equa11l/2, so setting up the approach from behind). At this time, the
situation is as sho.wn in Figure 2.

B
1

(= 0.= X)

Figure 2

This is a convenient point at which to fix our origin and start our
clock. The situation of Figure 1 is thus altered a little, but not in any
important sense. Nor are things very different if x < ut initially, as in this
case, we may imagine the film being run in reverse, so to speak, again to
reach a notional starting point as diagrammed in Figure 2. So our
convention shall be that when t =0, e= 1l /2. The value of r at this time

will be called a (=OBI)' If we feed these values into Equation (4), we

readily see that A =a.

Now, with this out of the way, let us get down to the ,task of
determining the botanist's fate. The case we need most thoroughly to
consider is that in which k > 1, with the bull being faster than the botanist.
Equation (4) tells us the shape of the bull' s path, but says nothing about
time, and time is what is clearly of the essence here. To introduce time into
the discussion, we need to get back to Equations (1) and (2). The overall
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plan of attack will be to combine Equation (4) with Equation (2), and so to
connect (J with t. This indirect attack turns out to work better than a more
direct approach via Equation (1).

Even so, things are not easy, and long experience has taught
mathematicians to tackle this problem by means of a somewhat elaborate
subterfuge. Instead of using () as the measure of the angle· between the
bull's path and that of the botanist, we use 'i, defined as tan( () /2), whiyh
gives us new versions of Equations (2) and (4). These new versions are
much simpler than the originals.

We have (after some tricky algebra and trigonometry):

d'i
r-=UT

dt
(5)

(6)

Equation (5) is th~ new version of Equation (2), and Equation (6)
expresses Equation (4) in the new notation.

If we now substitute from Equation (6) into Equation (5), we find,
after some simplification,

A[~]dT =u.
2 T k + 2 dt

This equation may be integrated to give

(7)

l-k

T- 1- k 2ut
- -- =-+B.

l+k A
(8)

(Again, check this by differentiation.)
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We may now use our data on the initial moment, as defined from
Figure 2. At that time, t = 0, and e = 1l12. This means that T =1, so that
Equation (8) tells us that

B
1 1 2k

-- - -- =--
1-k 1+k 1-k 2

(9)

'We now know enough to determine the fate of the botanist. For the
bull to catch him the situation must arise that (J = rc. This means that T =00 ,

so that r 1- k =r- I - k = 0, since k > 1. Putting these values into Equations
(8) and (9) tells us that at this time

ak
t=---

u(k 2 ~ 1)

because we found previously that A =a.

(10)

Thus the botanist escapes if the fence is close enough for him to reach

in this time. Its distance must be less than ak / (k 2 - 1). Otherwise, it is

curtains!

We may also tie up another loose end at this point. Earlier it was
found that if the bull was to catch the botanist, then we needed to satisfy the

condition () = 1i. This is not quite the same as saying that if this condition is
satisfied, then the bull will catch up with the botanist. However Equation (6)
makes it clear that if 8 = 1l (and consequently "[ = 00), then r is indeed
zero.

Equation (8) demonstrates that we need a separate analysis in the
special case k =1. However, Equation (10) shows that the time taken for the
bull to reach the botanist tends to infinity as k tends to a limit of 1. This
provides strong evidence that the bull. will never catch the botanist in this
special case.
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There is a very simple argument that proves this statement. Look
again at· Figure 2, and suppose that at some point P on the horizontal axis,
the bull and the botanist meet. The botanist will have traveled a distance

IE?I while the bull will have traveled the clearly longer distance IE2pI; as

both travel at the same·speed, this is clearly impossible! Thus the pair never
meet.

Closer analysis of this case replaces Equation (7) by the simpler
equation

(11)

This becomes on integration

(12)

and this time B = 14.

Equation (6) simplifies to

(13)

from which it follows that as time goes on and '!~ 00, r ~ a / 2. The bull
in the long run thus remains at the constant distance a/2 behind the botanist.

So there we have our complete description of what happens.
Problems of this type are quite widespread and there are many variations.
The curves generated are known as "pursuit curves". A different pursuit
curve turned up on Function's cover for October 1998.

00000000000000000000000000000000
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NEWS ITEMS

Vale Bernhard Neumann

The de.ath on October 21 st of last year of Bernhard Hermann Neumann
was a sad loss for Australian Mathematics. Born on October 15th 1909, he
studied at first in his native Germany, earning a doctoral degree in 1931. In
1933, being Jewish, he fled Hitler's Reich for England, where he earned a
further doctorate in 1935. Following. several academic posts in the UK, he
emigrated to Australia in 1959, where he became the first professor and head
of the Research School of Mathematical Sciences at AND.

His first wife, Hanna, was also a mathematician and a Professor of
Mathematics at ANU up till her death in 1971. An account of her life and
work appeared in Function in February 1979. His second wife, Dorothea,
was not a mathematician, but shared many of his other interests, notably
music. Two of his children have gone on to become professional
mathematicians and another is a musician.

His research interests lay primarily in the area of Group Theory, .
especially the theory of infinite groups, but he took a keen interest in the
whole of Mathematics. Mike Newman, who wrote his obituary for the
Australian Mathematical Society's Gazette, commented:

"Bernhard arrived in Australia' with an outstanding reputation
for his seminal work on infinite groups and more broadly in
algebra. He also published in geometry. More importantly he
was a strong supporter of all endeavours in mathematics - he
supported people who did mathematics for its own sake, people
who applied mathematics and people who taught mathematics.
To him it was important to share and spread the joy of doing
mathematics."

He was a familiar figure at Mathematics conferences right till the time
of his death. He was active in the Mathematics Olympiad movement and
many other such activities. His name is attached to the award for the best
student presentation at the Australian Mathematical Society's annual
conference and (via the Australian Mathematics Trust) to -the B H Neumann
Awards for Mathematical Enrichment. He was an avid reader of Function.
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Active to the end, he was still working in the cause of Mathematics ,at
the· time of his death. His was a full life and we are the poorer for his
leaving us.

The "Collins Case" Revisited

Lawyers know of many different cases that all go by the name of the
"Collins Case". This becomes very clear if these key words ~re put into a
search-engine like Google. However, statisticians pay particular attention to
one of these: a 1964 California case, in which a conviction and a subsequent
successful appeal both relied on expert statistical evidence. Because of this,
there has been a deal of discussion of the case in the statistical literatulTe.
Function published an account in June 1994. Most recently, an article about
it appeared in The Mathematical Scientist (November 2002). The authoris
T Rolf Turner from the University of New Brunswick (Canada). A
summary may be found at

http://erdos.math.unb.ca/.-Jrolf/Research/Abstracts/ealease.pdf

The situation was as follows. An old lady was mugged and robbed in
an alley in Los Angeles. Although there were no witnesses (other than the
victim herself) to the actual crime, a good description was provided to police
of a couple observed running away from the scene at the appropriate time.
They were a black man with a beard and moustache and a blonde woman
with a ponytail. They effected their getaway in a car that was partly yellow
in colour. On the basis of this description, the police arrested Janet and
Michael Collins, a married couple who fitted this description exactly.

At their trial, a statistician calculated the probabilities as:

A woman's being blonde:
A man's having a moustache:
A man's being black and bearded:
A car's being partly yellow:
A woman's having a ponytail:
A couple's being interracial:

1/3
1/4
1/10
1/10
1/10
1/1000.
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These figures were then multiplied together to produce a probability of
1/12,000,000 of finding such a couple. Because of this low probability, it
was concluded that Janet and Michael must be the guilty pair.

There -are some grounds for querying the calculation. In particular,
simple multiplication is only justified with independent events, and these
different probabilities are clearly not independent (bearded men tend to have
moustaches; a black man and a blonde woman necessarily constitute an
interracial couple; etc). However, the figure of 1/12,000,000 has been
accepted by most subsequent commentators, including Turner, so as to
concentrate attention on more important points of probability theory. (The
appeal, however, had also to consider such matters, as well as the reliability
of the witnesses and the accuracy of the statistician's numbers.)

The first point to stress is that, however unlikely such a couple might
seem to be, there was such a couple. So the relevant question is not "How
likely is it that a random couple might fit this description?" but rather "How
likely is it that of all the couples fitting this description, this particular
couple is the guilty pair?" .

Turner likens the case to the situation of a whole lot of coloured beads
in a very large urn, or barrel. Nearly all the beads are white but there is a
very small probability that a bead may be red. It is established by careful
investigation that the barrel does indeed contain a red bead. We now fish
around inside the barrel and eventually discover a red bead. What is the
probability that this bead is the same one as that previously. shown to exist?

Turner takes the probability that a bead is red to bep = 1/12,000,000.
The number of beads he takes to be 2,000,000, a figure advanced by the
defence lawyers when the case went to appeal. (They presumably used this
as their estimate of the total number of couples in the relevant area at the
relevant time.) Call this number N. So Turner's model of the situation takes
a very large barrel containing 2,000,000 beads, each with a probability
1/12,000,000 of its being red. We may say immediately that the number of
red beads we expect to find in the barrel is 2,000,000/12,000,000 or 1/6.

Thus if we were able to conduct an experiment with many such
barrels, we would expect to find no red beads most of the time, one red bead
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about one-sixth of the time, two red beads rather rarely, three red beads even
more rarely, and so on.

This situation, in which N is large, p small and their product Np of
moderate size, is one that statisticians model using the Poisson Distribution.
(See Function, October 1984.) Write Np = m. Then the Poisson distribution
gives the probabilities of the number of red balls in our barrel as

where r is the number of red balls in the barrel. These probabilities add up
to 1, as they should, and the expected (mean) value of r is m. Here however
the case is a little different, because we already know that there is at least
one red bead in the barrel. So we need to adjust the probabilities to:

Pr{r=O}=O
e-m mn

Pr{r =n (> O)} =--­
I- e-m n!

(The extra term in the denominator is inserted to ensure that the adjusted
probabilities add up to 1.)

If now, r = 1, there is one red bead in the barrel and this must be the
one we already know about. If r = 2,. there are two red beads in the barrel
and the chance that the one we find is the same as that previously identified
is 112 . We continue in this way to find that if there are n red beads in the
barrel, then the probability that the chance that the bead is the one we found
before is lIn, and the chance that it is not is (n - 1)In.

So the chance that we have a different bead is the sum over all these
possibilities:

123
-Pr{r = 2} +-Pr{r =3} +-Pr{r =4} + ...
234

e-
m

{m 2m
2

3m
3

}

=l-e-m "2+ 3x2! + 4x3! +....
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This sum may be evaluated, by using for example the EXCEL
spreadsheet, or even on a reasonably good hand-held calculator. Only a
small number of terms are needed (5 is certainly plenty). The answer for the
case m = 1/6 is 0.0413.

Now to get back to the Collins case. The calculation is the same, and
so we have a probability of 0.0413, or just over 4% that Mr and Mrs Collins
were not the guilty' couple. We also find the probability that there were two

or more such couples to be 1- (1/~ ) =0.0810, i.e. 8.1 %. Turner's
6 e -1

calculation seems more accurate than any attempted before. In particular it
seems more convincing than that supplied as a supplement to the appeal
decision (available in the text Statistics for Lawyers by M 0 Finkelstein and
B Levin, pp 83-88), which calculated a much higher figure in deciding in
favour of Janet and Michael. (They calculated the chance of there being two
or more such couples to be 41+%.)

Certainly, Turner's result is not a very high probability, but it is high
enough to· support a successful appeal, even had it been adduced at the time.
The case was a criminal one with the standard of proof that guilt must be
established "beyond reasonable doubt". 4% is enough to constitute
"reasonable doubt". (Civil cases, however, are decided on the balance of
probabilities, and so had the case been a civil one, the appeal should not
have succeeded.)

The original confusion presumably came about because the jury were
led to believe that the probability of the defendants' innocence was
1/12,000,000. This extremely low probability was seen as not constituting
"reasonable doubt". However it was not the correct figure!

Progress on the Twin Primes Conjecture

The "twin primes conjecture" concerns pairs of primes that differ by
just2. .(3, 5) is the first such pair, (5, 7) is the next and (11, 13) the next, and
so on. The conjecture states that there are infinitely many such pairs. It
made a brief appearance in Function's History column in April 2001, where
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it was stated that if it is true (as most m~thematicians believe), then sueh
pairs are nonetheless quite rare.

Re~ently there has been a partial breakthrough. Dan Goldston of tme
American Institute of Mathematics had a sudden idea while in discussion
with Roger Heath-Brown (of Oxford University). He and the Turkish
mathematician Cern Yildrin then followed this u'p and produced new resul!ts
on the distribution of primes. These increase the case for the conjecture's
being true, but fall short of resolving the matter. For a press release on this
work, see

http://www.aimath.org/releasegoldston.html

This- website also has links to more technical accounts of the new results.

00000000000000000000000000000000

More on the Poincare Conjecture

In our issue for last August, we reported a claimed proof of· the so­
called Poincare conjecture, a deep result in 4-dimensional geometry. As we
foreshadowed, the claim proved to be incorrect and the conjecture thus
remained unproved. Now however comes another claim, and this time it
seems to be standing up.

A Russian mathematician, Grigori Perelman of the Russian Academy
of Sciences in St. Petersburg, gave a series of public lectures at the
Massachusetts Institute of Technology recently. He presented a number of
highly technical results, but these seem to imply the truth of a deep. theorem
known as Thurston's Geometrization Conjecture.

This in its tum contains the Poincare. Conjecture as a special case. If
Perelman's claim passes expert scrutiny t4erefore, the Poincare Conjecture
will be established. As the proof of the Poincare Conjecture is one of the
Clay Challenge Problems (see Function, April 2001), there is a prize @f
SUS 1,000,000 for its resolution. For more detail, see the website

http://mathworld.wolfram.com/news/2003-04-15/poincare/
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HISTORY OF MATHEMATICS

The First Hurdle (continued)

Michael A B Deakin, Monash University

My last article was cut short by space limitations, and so I need to
pick up the story where I left off. The point under discussion was the proof
of a proposition known as Euclid 1.5, popularly termed the pons asinorum.
Because Euclid's own proof is very clumsy (unnecessarily so), various
attempts were made to improve it. Most of these involved bisecting the
isosceles triangle under discussion in one way or another. A favourite was
to bisect the apical angle of the triangle. This drew the criticism from
Charles Lutwidge Dodgson (aka Lewis Carroll) that it had not previously
been proved that this manoeuvre was possible.

The criticism has weight. In Hall & Stevens' A School Geometry, the
pons asinorum is used in the proof of the theorem that two triangles are
congruent if the sides of the one are all equal to the corresponding sides of
the other (essentially Euclid 1.7). This theorem is used in its turn to show
how to bisect an angle. We thus have the following chain of deduction:

Angle bisection :::::> pons asinorum => Euclid 1.7 :::::> Angle bisection.

The entire argument is circular!

Now read on!

It is, of course, possible to "avoid the circularity. Euclid himself does,
and so do later writers with different approaches. However, if the Pappus
proof discussed in the first part of this article is used, then the entire
enterprise becomes much simpler (and the circularity is avoided).

Nowadays the Pappus argument is seen as the best, although it
requires some mathematical sophistication to appreciate its force. 'I first
encountered it in a popular Mathematics book Mathematics in Management,
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by Albert Battersby. He speculates that it must have been previously
discovered by bright young students, who may well have been marked
wrong for using it. As I showed in the first part of this article, at least one
such student was marked wrong.

However, Battersby was himself in error in not knowing· that Pappus
had discovered the argument. Rather he stated that the argument had been
discovered by a computer. As he wrote in 1966, when the study of artificial
intelligence (AI) was still in its infancy, I was intrigued by this claim.

Eventually, I managed to track down the basis on which it came to be,
made. Several versions are extant, but the most authoritative comes from (of
all places) the magazine New Yorker (14/12/1981). There is to be found the
record of an in~erview with Marvin Minsky, one of the pioneers of AI.
Minsky claims that it was he who produced the proof by hand simulation of
what a suitably programmed machine might do. He showed his proof to. a
colleague, Nathaniel Rochester, who in turn recruited Herbert Gelemter into
the enterprise. It was Gelernter who implemented the program in hardware
and so caused a machine to "rediscover" the proof.

Gelernter and Rochester wrote about "problem-solving machines" in
the IBM Journal of Research and Development (1958) and· later Gelernter
wrote a paper on his "geometry theorem proving machine", which he
presented to a UNESCO meeting in Paris in 1959.

But Minsky made a strange assertion that I have also tried to check
out. Minsky later learned that his "hand simulation" was not the first
discovery of the proof. He came to believe it to be by Frederick the Great of

.Prussia. The claim is unsupported by any evidence and strikes me as most
unlikely. I have found no evidence that Frederick the Great (King Frederick
II of Prussia) had any direct involvement with Mathematics at all. He .did
support the mathematician Leonhard Euler for a time, but this is not the
same as doing Mathematics himself.

I rather think that Minsky must have been talking to his colleague· 0f
the early days of AI, Douglas Hofstadter, author· of Godel, Escher, Bach,
which had just appeared. Frederick does appear in that work, but as ·a
patron, not as a mathematician. Hofstadter gives a correct account of the
pons asinorum, Gelemter and the Pappus proof. Minsky must have got
confused!
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COMPUTERS AND COMPUTING

Solving Non-Linear Equations:
Part 5, The Newton-Raphson Method

J C Lattanzio, Monash University

The Newton-Raphson Method is another "open method", and is the
most popular of all methods. It is t.he method of choice where we are to
solve the non-linear equation f(x) =0, where f(x) is an easily·

differentiable function. Start with an approximation Xi to the root we seek,

and draw a tangent to the curve y = f(x) at the point (Xi' f(x;)) as shown in
the diagram below. .

Root ~

\

tangent at (xi ,1(Xi»

Figure 1 The Newton-Raphson Method

This tangent has the equation

y = f{x i )+ (x - Xi )f'(xi ).
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Where this lirie intersect the x-axis is often a better approximation to the root
we seek, and it is our next approximation X i+1 • That is to say .

As an example, consider again the example discussed in my previous
column in this series: f(x) =x - e-x =o. For this case, we have

f'ex) =l+e-X
• So

Begin with the approximation Xo =0 . Applying the above method

SUCC~SSiVelY generates the fOllOI:~~~ ~blle, where the third column gives the

relative error at each step, £; = .
X i+1

Xi cj

0 0.000
1 0.500 1.00
2 0.566 0.12
3 0.567 0.001

As in the previous column, we are seeking 2-place accuracy and,
working to 3 places to avoid roundoff errors. Notice that we have achieved
accuracy to within 1% in only 3 iterations!

If we analyse the relative error of the Newton-Raphson method, we

find that at the (i + l)th iteration, we have ci+1 ::::: k£i
2

• This should be
compared with the Fixed-Point Iteration method, where the relative errors

formed an approximate geometric sequence, that is to say &;+1 ::::: k&; .
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If we reach a point where the relative errors are small, then the next
such in the case of the Newton-Raphson method will be approximately the
square of this small quantity, and so will be very small. It is this result that
provides the rapid convergence that often characterises this technique. This
is why the Newton-Raphson method is so often the method of choice when it
comes to solving a non-linear equation.

This having been said, however, it is as well to be aware that the
method does have its pitfalls, and one needs to be forewarned. Although
usually showing rapid convergence, it is not guaranteed to converge, and can
actually suffer from a variety of problems.

Here I list four of these.

1. If f'ex;) =0 for some Xi' then the method will clearly

fail.
2. If there is a point of inflection near the root, the method

may cycie instead of converging.
3. If there are multiple roots,. the method may find one not

necessari1~ the nearest to the initial approximation Xo'

4. A near-zero slope can ruin th~ convergence.

Figure 2 shows an example of the second of these problems. Even if
we do not see an exact cycle, such problems may make the method

impractical. As an· exercise, look at the equation x 3
- x - 3 = 0, with an

initial approximation Xo =0 . You will find that Xi+4 ~ Xi •

Y=f(x)

Figure 2. Cycling with the Newton-Raphson Method
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Figure 3 shows the third of the problems that may arise. You should
continue the geometric constructions to see what happens in the long run.

Figure 3. Trying to find a ,Root

Finally look at Figure 4. This illustrates the fourth of the difficulties,
which is actually closely related to the first, although a little more subtle.
Again as an exercise continue the process to see what happens in the long
run.

I
Figure 4. Trying to find a Root
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OLYMPIAD NEWS

Hans Lausch, Monash University

The 2003 Australian Mathematical Olympiad

The Australian Mathematical Olympiad (AMO) for 2003 was held in
Australian schools on February 11 and 12. On both days, 104 students in
years 8 to 12 sat a paper consisting ·of four problems, for which they were
given four hours. These are the two papers. No calculators were allowed
and each question was worth 7 points.

First Day

1. Determine all the triples (p, q, r) of positive integers that satisfy:
(i) p(q - r) = q + r,
(ii) p, q and r are prime numbers.

2. Determine all functions f that are defined for all real numbers x # 0, 1
with real numbers as their values, and which satisfy the equation

" " 1 ( 1 )f(x)+-f - = 1.
2x I-x

3. Let ABC be a triangle such that LACB = 2LABC, and let D be a point
in the interior of ABC satisfying AD =AC and DB =DC.
Prove that LBAC =3LBAD.

4. Let

where ao' at' ... , a2OO2 are integers. Let q(x) =(p(x)y- 25.
Prove that there are not more than 2003 distinct !lltegers m such that
q(m) ="0.
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Second Day

5. After several kilometers of a televised bicycle race along a straight
stretch of road on the NUllabor, the favourite Andrew pulled well
ahe"ad of the rest of the field closely followed by Brenda and then
Chris. For the remainder of the race those three were ahead of the rest
and, although they frequently changed places, at no time were all
three abreast. During the finish a thunderstorm caused the TV signal
to drop out, and when it came back" on the race was over. The
frustrated viewers only heard that the leading position changed 19
times while the third position changed 17 times and that Brenda came
third. Who won the race and why?

6. Let AD be a median of the triangle ABC. Let the point E lie on·AD
(extended if necessary) such that CE is perpendicular to AD. Suppose
that angle ACE equals angle ABC.

Prove that either AB = AC or angle BAC is a right angle.

7. Let at' a2 , a3 , ••• be a sequence defined by:

(i) al = 0,

(ii) either a i+1 =a i +1 or ai+l =-a; -1 for each i 2 O.

An example is 0, 1,2, 3, -4, -3,- 2, ....

P h al + a 2 + ... + a 1 +' 11 .. .rove t at n ~ - - lor a pOSItIve Integers n.
n 2

8. Let S be any sequence of n letters (n 21) not more than 10 of which
are different, e.g. MATHEMATICIANS or

GOOLLLDDMMMMEDALLLLLSYESYES.

Prove that each letter of this sequence can be replaced by a single
digit such that

( i) different letters are replaced by different digits,
(ii) the first letter of the sequence is replaced by a digit other

than 0,
(iii) the resulting n-digit number is a multiple of 9.
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The Fifteenth Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APMO) was started in
1989 by Australia, Canada, Hong Kong and Singapore. Since then the
APMO has grown into a major international competition for students from
-about twenty countries on the Pacific rim as well as from Argentina,
Kyrgyzstan, South Africa and Trinidad and Tobago. It was held on March
17/18, with the Australian participants numbering 28.

Here is the contest paper. Four hours were allotted and calculators
were not allowed. Each question carried 7 points.

Problem 1. Let a, b, c, d, e, fbe real numbers such that the polynomial

factorises into eight linear factors x - Xi' with Xi > 0 for each i = 1, 2, ... , 8.
Determine all possible values off.

Problem 2. Suppose ABCD is a square piece of cardboard with a side
length a. On a plane are two parallel lines 11 and 12 which are also a units
apart. The square ABCD is placed on the plane so that the sides AB and AD
intersect 1] at E and F respectively. Also the sides CB and CD intersect 12

at G and H respectively. Let the perimeters of MEF and deGH be
m1 and m2 respectively. Prove that no matter how the square was placed,
m\ + m2 remains constant.

Problem 3. Let k> 14 be an integer, and let Pk bethe largest prime number
which is strictly less than k. You may assume that Pk ;:::: 3k /4. Let n be a
composite integer. Prove:

(i) if n =2Pk' then n does not divide (n - k)!;

(ii) if n> 2Pk' then on divides (n - k)!.

Problem 4. Let a, b, c be the sides of a triangle, with a + b + C = 1, and let

r ..~ ,,~ ..~ Vi
n ~ 2 be an integer. Show that ~ an + bn + ~ bit + cn + ~ en + an < 1+ - .

2



92

Problem 5. Given two positive integers m and n, find the smallest positive
integer k such that among any k people, either there are 2m of them who
form m pairs of mutually acquainted people or there are 2n of them forming
n pairs·of mutually unacquainted people.

This year's International Mathematical Olympiad ElMO), to be
attended by teams from more than 80 countries, will be held in Tokyo,
Japan, in July. Australia has participated in this competition since 1979 and
will be represented by six secondary school students. At the 2001 IMO in
Washington, DC, USA, an Australian team. finished in 25th position, and at
the 2002 IMO in Glasgow, Scotland, UK, the Australian team came 26th

,

while at the 1997 IMO in La Plata, Argentina, our team achieved 9th

position. Good luck to our 2003 team!

LETTER TO THE EDITOR

A Different Look at Last Issue's Cover

The cover picture on your last issue reminded me of something that
has worried me for a long time. When the two ~urves you showed were
compared, you did what most people do and considered the vertical distance
between them. I have always thought that our eyes work differently and
compare the distance across the curves - at right angles to them so to speak.
I tried to look at this in relation to your cover picture.

Let P be a point on the curve y = x 3 (this curve not shown on the
picture overleaf), and let Q be the point vertically above this on the curve

that is shown, y =x 3 +ax2 +bx+c. To illustrate, I assume a > O. Let R be
the point to the left of P, but on the displayed curve. From P, I drop a
perpendicular PS to the same curve. Here is the picture (overleaf):
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Q

s
R

P

Then IPQ/ =ax2 +bx+c :::: ax2
. R will be the point (x - h, y), where

(X-h)3 +a(x-h)2 +b(x-h)+c = x3 =y.

So, because we can take x to be large, then IRP/ = h:::: a/3. Approximate the

shape PQR by a triangle. The slope of RQ will be approximately

2
PQ :::: ax =3x2 .

RP 4/3

This means that the slope of PSis about -1
2

which is very small, so
. 3x

that PS is approximately the same as PR, which is h.

So the visual distance between the two curves is about h, or at3. This
becomes small in relation to X, as we moVe out from the origin.

I think that it is this phenomenon that explains the apparent similarity
of the two curves as we go to larger scales.

Bernard Anderson
Portland (ollege

[This letter provides a new viewpoint on the question that prompted the
original article by Deiermann and Mabry. They looked at matters such as
the ultimate symmetry about x =0 of (e.g.) y =(x _1)4, whose true axis of

symmetry is in fact the line x = 1. Readers may care to investigate this
example further. Eds]
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PROBLEMS AND SOLUTIONS

We begin with the solutions to the problems set last October. Here
they are.

Solution to Problem 26.5.1 (submitted by Keith Anker)

The problem read:
Two contestants, A and B, play the following game. A's initial score

is 1, B's is O. A play consists of the toss of a coin. If it lands heads, 1 is
added to A's score (and B's is left unchanged); ifit lands tails, 1 is added to
B's score (and A's is left unchanged). The game terminates if and when B's
score equals A's score. What is the probability that the game will terminate,
and what is the expected length of the game?

No solutions were sent in, which perhaps indicates the difficulty of the
problem. However, it leads to ·some very interesting and indeed rather
strange Mathematics, and we can use it to give a taste of this aspect of
Probability Theory. An equivalent problem is discussed in Chapter III of a
standard textbook: William Feller's An Introduction to Probability Theory
and its Applications, Volume I.

To relate our problem to that discussed by Feller, suppose the game
between A and B is witnessed by two' other people, Peter and Paul. P~ter and
Paul agree to have a side bet on the progress of the game. If the coin lands
heads, Paul pays Peter $1; if it lands tails, Peter pays Paul $1. If the game
ends, then Paul has made exactly $1, and conversely.

Although all of Feller's discussion is interesting and pertinent, the key
passages for our problem are to be found on pp 74 and 75 (of the second
edition). There he defines two quantities:

and
1

f =-u
2n 2n 2n-2·
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The first of these applies for all non-negative integral n, the second for

all positive integral n. The symbol (~) represents the number of different

ways in which n objects may be chosen out of a collection of 2n such

objects. ( ~) is understood to be 1. Then the probability that the game ends

on toss 1 is 12 (= -t) ; the probability that it ends on the third toss is 14 (= t) ,
etc. Readers should check these early values for themselves, noting that the
game can only end after an odd number of tosses. These results are part of
Feller's Theorem 1, which is however couched in terms of Peter and Paul's
side bet.· The probability that the game ends on toss 2n - 1 is 12n .

Feller then goes on to show [his Equation (4.9)] that

Now it may be shown that u2n -7 0 as n -700. (This may be done in a

number of different ways.) Thus we see that the infinite sum
1

2
+14 + 16 + ... +12n + ... equals 1. This answers the first question: the

probability that the game will end (in a finite time) is 1.

The expected length of the game is now

1·/2 +3·/4 +5·/6 + ... + (2n -1)/2n + ...

and this series may be shown to diverge, again in a number of different
ways. Thus the expected length of the game is infinite! The apparent
contradiction between this result and the one stated just above is merely one
of a large number of paradoxes associated with this .game. Feller discusses
many more. As he says, "we reach conclusions that play havoc with our
intuition".

We can only recommend that readers look more into the many
interesting things Feller has to say. The entire chapter is worth careful
study.
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Solution to Problem 26.5.2 (submitted by Colin Wilson)

The Problem read:
Show that for any triangle, the ratio of the square of its perimeter to

the sum of the squares of its sides is greater than 2, but not greater than 3.
For what type of triangle is this ratio equal to 3?

Solutions were received from Keith Anker, Sefket Arslangic (Bosnia),
J C Barton, Julius Guest and the proposer. The details differed somewhat,
but Anker and Barton submitted substantially the same elegant solution.
Here it is.

Use the standard notation in which the sides of the triangle are a, b
and c. The perimeter is then p = a + b + c. Now by the triangle inequality

a(a +b +c) > a(a +a) = 2a 2
,

so that ap > 2a 2
• Similarly bp > 2b2 and cp > 2c 2

• Add these three
inequalities to find that p2 > 2(a 2+b 2 + c 2), which is equivalent to the first
of the statements to be proved. But now

3(a 2 +b2+c 2 )-(a+b+c)2 =2(a 2 +b2+c2 -ab-bc-ca)

=(a-b)2 +(b-C)2 + (c-a)2 ~O.

The second result follows. It is also clear that we can only have equality in
the final line if a = b = c. That is to say, if the triangle is equilateral.

The· proposer also noted .that if S = a 2 +b 2 +c 2
,- and if y = p2 / S ,

then y may take any value in the interval 2 < y ~ 3, and indeed it is possible
to find an isosceles triangle such that any value of y in this· range may be
achieved. He did send in proofs of these assertions, but he also noted that
the reasoning was somewhat subtle. We are th~refore leaving this further
aspect of the problem to readers who may wish to follow it up.
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Solution to Problem 26.5.3 (submitted by Jim Cleary)

This problem read:
The cells of a 4x 4 grid are to be filled with noughts and crosses.

There are to be exactly 2 noughts and 2 crosses in each row and exactly 2
noughts and 2 crosses in each column. In how many different 'Nays can this
be done?

We here print the solution that Mr Cleary sent to accompany his
problem.

Begin with an example of an arrangement satisfying all the
constraints:

x 0 0 X

X X 0 0

0 X X 0

0 0 X X

is one such.

Now consider the number of such possibilities. There are 4C2

different ways in which 2 objects may be chosen from a set of four. This

number is also often represented as (~) and this is the notation we used in

our discussion of Problem 26.5.1. In any case, the value is 6. Thus the top
row may be filled in 6 different ways. Whichever way we choose, there is
still no restriction on the second row, which may also be filled in 6 different
ways. Thus there are 36 different ways in which the top two rows may be
filled. ..

If we consider the vertical columns made up from the top two rows,
these are of 4 possible types:

A=[~J B=[~J c=[~] D=[~]
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We may arrange these in various ways and still be consistent with the
constraints imposed. There are 6 arrangements consisting of A and B onlYr
Call· these Type 1. There are a further 6 arrangements consisting of C and D
only. ·Call these Type 2. Finally there are 4! (=24) possible arrangements
using all of A, B, C and D. Call these Type 3. Note that the three numbers
6, 6 and 24 add to 36, as they ought to.

Now consider the bottom two rows. If A occurs in the top two rows,
then B must occur in the bottom two, and vice versa. Thus there are 6
possible valid arrangements of these forms (involving Type 1). Now
consider the possibility that a C or a D occurs in thetop two rows. Then a C
or aD must occur in the bottom two. Thus there are 6x6 (=36) valid
arrangements of these forms (involving Type 2). Finally if the top two rows
contain all four types, then A must lie above B, B must lie above A, C must
lie above either C or D and D must lie above either C or D. As there are 24
possible arrangements of the letters A, B, C, D, there are a total of 48
patterns involving Type 3.

Adding up all the possibilities gives a total of 6 + 36 + 48 = 90
possible arrangements.

Solution to Problem 26.5.4 (based on a problem posed by Carl Fischer)

This interesting problem read:
Q is a fixed point inside a rectangle. P is any other point inside the

same rectangle. It is desired to minimise the mean distance IPQI over all P
by appropriate choice of Q. Show that"Q must be the centre of the rectangle.

We received a particularly elegant solution from John Barton.

Let 0 be the centre, and take 0 as the origin of a rectangular co­
ordinate system with x and y axes perpendicular to one another. (It is natural
to have these axes parallel to the sides of the rectangle, but this is not strictly
necessary.) Let P be the point (x, y), and consider also a point p' whose co­
ordinates are (-x, - y). ThenP, 0, P' are collinear. Q is another point.

Represent all these points on a diagram (overleaf).
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y
Q

p'

'0

p

x

Now note that IpQI+lplQI~lpOI+lplOI, by the triangle inequality,
with equality if and only if P happens to lie on the line OQ.

Next suppose that, as we take the mean of /PQI over all the points P,

we do so taking the points in pairs, (P, pI). To do this, we must sum over
all points P, or equivalently over all point pairs (P, pI). Because of the
inequality just derived, this sum will be higher for any Q than it is for 0
(unless Q happens to coincide with 0), and thus the point 0 minimises this
sum and hence also the mean of /PQ/.

[This problem is one of a number of related problems, many with
practical applications; indeed it came to us from Carl Fischer, a River~na

farmer who was interested in minimising the time involved in liming a
paddock. (The saving in time if the lime is placed initially in the centre of
the paddock - rather than in a corner - is considerable. The distance to be

,covered in spreading it can be almost halved!) We may also remark that
Barton's solution is much more general than the original problem. Suppose
the points P form a .set S with the property that PES =:> p'E S. Then the
conclusion applies equally to any such "set (finite or infinite). If this
symmetry property is not satisfied, however, the problem becomes much
more difficult. Even the case of just 3 points P (known as the "Steiner
Problem") is far from simple. See for example Function, October 1987; a
related problem was discussed in our June 1985 issue. For. yet another
variation on the theme, see Problem 27.3.1 below. Eds]
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So now on to the next crop of problems.

Problem 27.3.1 (suggested by the considerations just advanced)

It is desired to site the hub Qof a cabling network serving four outlets
'at A, (0, a);B, (0, b); C, (c, 0) and D, (-c, 0) in such a way as to minimise
the total length of cable needed. Find the co-ordinates of Q.

Problem 27.3.2

A cone whose base radius is a and whose base-to-vertex height is h
rests with its base on a horizontal surface. It is desired to pick up the cone by
grasping it about its curved surface. Under what conditions can this be
done?

Problem 27.3.3 (from the 1962 Beijing Mathematical Olympiad, further
discussed in American Mathematical MONTHLY, Jan 2003, pp 25 ... )

A number of students sit in a circle while their t~acher gives them
candy. Each student initially has an even number of pieces of candy. When
the teacher blows a whistle, each student simultaneously gives half of his or
her candy to the neighbour on the right. Any student who ends up with an
odd number .of pieces of candy gets one more piece from the teacher. Show
that no matter how many pieces of candy each student has at the beginning,
after a finite number of iterations of this process all the students have the
same number of pieces of candy.

Problem 27.3.4 (proposed by Dan Buchnick, Israel)

Let ABC be a triangle and let D be a point on AB, E a point on BC~

and F a point on CA. Join DE, EF, FD. We have now divided the original
triangle into four smaller triangles: ADF, BED,CFE andDEF. Show that of
these four triangles, DEF can never have the smallest area.

ooooooooooooooooooooc>ooooooooooo
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