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THE FRONT COVER

Our front cover for this issue depicts the two cubics y=x’+x’—x

(black curve) and y= % (grey curve) on the same scale and related to the
same set of axes. -The scale extends from x = -20 to x = +20, which means
that the y-values go from about —8000 to +8000. This is a considerable
amount of graph: quite a lot more than is commonly displayed. If we take a
more typical view of these graphs we see something like this.

101

On this scale, the two graphs look rather more different from one
another. The simpler (grey) graph is symmetric about the origin in the sense
that we could imagine its being rotated through 180° about the origin and, as
far as we could tell, simply occupying its former position. (This is often
referred to as S-symmetry, and it may be expressed by means of the equation
f(=x)=-f(x). The other (black) graph does not have this feature and
moreover it has a maximum and a minimum instead of the point of
horizontal inflection at the origin; it also has three distinct real roots instead
of a triple root at the origin.

If we look at the same pair of graphs on a slightly larger scale, we get
the picture overleaf. Here the two graphs have become rather more alike,
but they are still readily distinguishable.
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The cover graph expands the scale even more, and now the graphs
have come to look remarkably similar. The features that distinguished the
more complicated graph are much less in evidence, as they all relate to small
values of x and y.

This material was suggested by an article “Asymptotic Symmetry of
Polynomials” by Paul Deiermann and Richard D Mabry in the US journal
Mathematics Magazine (April 2002), whose analysis however goes well
beyond that presented here.

The key to this feature is that, although the extra terms of the more
complicated graph actually get larger and tend to infinity as x itself tends to
infinity, they do so less rapidly then does the leading term x°. Another way
to say this is that the vertical distance between the two graphs increases as x
increases (as can be observed both in the cover diagram and also in those
above), the relative distance compared with the overall vertical scale
actually diminishes.

This is what in this context is meant by the term “asymptotic”.
" Readers may only know this word in another different but related meaning.
The graph of y = 1/x is asymptotic to zero as x— . The value of y
approaches but never attains the value of zero.
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In the case under discussion here, the two curves actually drift apart,
but nevertheless they come more and mote to resemble one another!

This property applies to all polynomials. However if the degree of the

polynomial is even, the asymptotic (simpler) curve exhibits T-symmetry
(f(=x) = f(x)) rather than S-symmetry, which applies if the degree is odd.

To illustrate this point, here are some graphs of the quartic polynomial
y=x'-5x"+x+4,
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This last one looks very like the graph of y= x*, you will probably
agree, while the first and even the second show a richness of behaviour that
fails to be evident on the larger picture.

Response to Unlikely Reports
(Cf. Borel and “The Miracle of the Typing Monkeys”, Function, April 2002)

Suppose someone tells you that a dog is running down the center of
Fifth Avenue [New York]. You might think it unusual, but it’s certainly
possible, and you would have no reason to doubt the story. If the claim is
that it’s a lion running down Fifth Avenue, it’s still possible, but you would
probably want some sort of supporting evidence — perhaps a report of a lion
escaping from the Bronx Zoo. But if someone tells you a stegosaurus is
running down Fifth Avenue, you would assume that he was mistaken. In
some sense it might be “possible” that he’s seen a stegosaurus, but it’s far
more likely that he saw a dog and thought it was a stegosaurus. Indeed,
most reasonable people would agree that the possibility that there really
could be a stegosaurus running down Fifth Avenue is too small to even
bother checking out.

Richard Wilson, quoted by Robert Park
in Voodoo Science (OUP, 2000)



41

CONTINUED FRACTIONS AND INDETERMINATE
EQUATIONS

David Shaw, William St , Geelong

The final pages of Hall and Knight’s Higher Algebra (Macmillan, first
published in 1887 and much reprinted since) contain 300 “Miscellaneous
Examples”, of which Number 111 reads as follows:

763
Express Eg as a continued fraction; hence find the least

positive integral values of x and y which satisfy the equation
396x — 763y = 12.

This is an example of an indeterminate equation of the first degree.
“Of the first degree” because both x and y appear only as first powers, and
“indeterminate” because there are two unknowns but only one equation.
There is however the further restriction that we are only looking for integral
solutions. Such equations are called Diophantine Equations.

The aim of this article is to introduce the theory and properties of
continued fractions and to show how they may be used to solve such
problems. Proofs of the various theorems are omitted in the interest of
brevity, but all are readily available either in Hall and Knight’s book or else
in C D Olds’ Continued Fractions (Random House, 1963).

An expression of the form
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is called a continued fraction. Here I will restrict consideration to “simple
continued fractions”, for which: (1) b, =1 for all values of i, (2) 4, is

integral, and.(3) @ is positive integral for i > 1.

If the sequence of 4; is finite, then the continued fraction is also
called “finite”. In such a case, we have an expression of the form

The values @, are called the “partial quotients”, or simply “terms” of the
continued fraction.

It saves spacé to write continued fractions more simply, and this
convention will be used here. Instead of the bulky expression of the
previous paragraph, write instead

1 1 1

a,+ a,+ a

a, +

1
+ a,

n-1
or better still -[al, a,,qs,...,4, 4, a,,].

Any rational number can be expressed as a simple finite continued

. . . L 14
continued fraction. Any positive rational number ; may be so expressed

43
by following the steps of the illustrative example 19° Then



Therefore
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Bl 2,y L
19 19 19
5
2: 3+_4;.= 3+_1_
5 5 5
4
_5_= ]+_1__= 1+1_
4 4 4
1
LA
1
By 11 =[2,3,1,4]
19 3+ L
1+—
4

The working may be arranged as on the left below (where HCF stands
for “highest common factor”: 1 is the highest common factor of 19 and 43; 3
is the highest common factor of 57 and 129).

19)43 (2 ¢ a, 57)129 (2 ¢ a,
38 114
519B —a, 15)57(3¢a,
45
4)5(1 ¢ a, 12)15(1 «a,
4 12

HCF— 1)4 (4 «<a,

HCF— 3)12(4¢a,



To the right is the working for -1;—79- (= %) The last divisor is the
highest common factor (HCF) of 129 and 57. The process used for
obtaining the terms of the continued fraction is identical with that used for
obtaining the HCF of two numbers by Euclid’s algorithm: (Euclid’s
algorithm is a method for determining the highest common factor; it is
explained in (e.g.) the Hall and Knight book referenced earlier.) The process.
shows that a continued fraction representation of a rational number must be
finite because the remainders (i.e. the divisors) form a decreasing sequence

of natural numbers.

At this stage, there are two further points worth noting about the first
and last terms. The first point is that

a, =0 if 0<£<1,
q
The second is more significant. If the last term, a,, is greater than 1, we can
write
it
a - 1
" (a,, - 1) + '1‘

so that p/q=la,,ay,...,a,:,0,]=la, a,,...,a,,,a,-1,1] and if a, =1,
we can add 1 to the previous term a,_;. Therefore a simple finite continued

fraction may have either an even or an odd number of terms, whatever we
wish. Otherwise the representation is unique.

Now go back to our earlier eXample,
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and calculate the fractions formed by cutting off the continued fraction, one
step at a time, starting from the left (as indicated by the slanting lines drawn
across the continued fraction).

= C, == C;=—

2 7 9 43
-_— Cy=—
1 4 19

ie. ¢ =[2] ¢;=12,3] ¢;=[2,31] ¢, =[2314].

These fractions are known as the “convergents” of the continued
fraction, the last of them being the continued fraction itself.

Now to speak more generally, suppose that v

£ = [al’ aZ’ a, ..., an—l’ an] .
q

Then the first convergent C; will be equal to [‘11] Le.
Similarly, write

So

Continuing in this way, we find:
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C = [av az’a3]=wl—ﬂb‘
a,a, +1

_a, (a,a, +1)+al

- a,a, +1

_&ptp

a9, + 4,

P

qs

so that

D3 =a3p, + P, 4; =asq, +q;.

It would seem that the general rule is
Pi=a;piyt Pig =090t

and this result may be proved, for all values of i after the first two. The

problem with those early values is that Do, 9o» P-1> 4, are none of them
defined. However, we can force the fit by adopting the convention that

Po=19,=0,p =09, =1L
This ensures that the formulas hold for all values of i. v

It is left as an exercise to the reader to use these formulas to find the
convergents of 43/19 .

Back now to the general case, we have a theorem of great importance.
It states that

Pi9iqa—DPin4: = GV
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This fundamental relation implies that all the convergent fractions are in
their lowest terms. Moreover, each is a better approximation to the value of
the continued fraction than the one before it. They approach that value in an
oscillatory manner: if one is an overestimate, the next will be an
underestimate, and vice versa.

Now take the special case i = n, and write

pnqn-—l - pn—lqn = (_l)n .

763
And get back to the original problem which concerned the fraction 396 and
. 763 . .
the equation 396x — 763y = 12. If we express 306 252 continued fraction,
we find
18 _112,11.19],
396

. 1 225 27 52 79 763
The convergents are successively ~, —, —, —, —, —, — .
1 1 13 14 27 41 396

79
we now look at the second-last convergent 1 and the final (exact) value,

we have, by our formula,
763x41-79x396 = (-1)" =-1,

because, in this case, n = 7.
Therefore
79%396x12-763x41x12=12.
This gives us an immediate solution to the given equation:

x=79%x12=948, y=41x12=492.
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More generally, however, we may write

79%396x12 -763%x41x12 =12 =396x-763y,

which may be written as

396(x—948) =763(y —492),

so that

x—948 _ y—-492

= t (say).
763 396 (say)

We may note that ¢ must be an integer because 763 and 396 are relatively
prime. The general solution to the given equation is therefore

x =763t +948, y=396¢+492.
The least positive values of x and y are achieved for ¢ = —1, and this gives
x=185,y=96.

- This then provides the answer to the question posed by Hall and Knight.

APPROXIMATE FORMULAE

Recent emails to some of the specialist groups in Mathematics have
publicised some surprising approximations to complicated expressions. One
cluster of results comes from a renewed interest in the life of Benjamin
Banneker (1731-1806). Banneker was an amateur, and largely self-taught,
mathematician, the son of an American slave, and one of the first African
Americans to achieve mathematical prominence. In the 1790s he published
a number of almanacs that earned praise from (among others) Thomas
Jefferson.
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Two of his formulas have been the subject of recent emails. The first
is the approximation

which translates to

a result accurate to within 1%.

.Another is a nice approximation to the altitude of an equilateral
triangle. Many readers will have seen in their early brushes with
Trigonometry the use of the equilateral triangle of side 1 to reach the trig

ratios cos 60° =sin 30° =1/2, sin 60° =cos 30° =/3/2.

Banneker pointed out that if the side of the equilateral triangle was
initially taken to be 30, then its altitude was very nearly 26. As

3043

- =25.98..., this approximation is very good indeed!

Another series of emails concerned the perimeter of an ellipse. Rather
surprisingly there is no simple formula for this. Recall that an ellipse is like
a “squashed circle”. Its standard equation is

x2

P)
Here is its shape: O

By convention the longest diameter is called 2a and the shortest 2b. The
special case b = a is that of a circle. For this case, the perimeter is of course
known; it is 2za. For a long skinny ellipse, the perimeter approximates 4a,
as the reader may easily verify.

2
Y _
+ 2L =1,

Q
o
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In 1609, Kepler introduced the approximation for the perimeter p:
p=7n(a+b)
which is reasonably accurate if the ellipse is nearly circular. As Kepler was
interested in the elliptical paths of the planets about the sun, and as these are

indeed nearly circular, this approximation served him well.

At roughly the same time, the Japanese mathematician Sek1 (Seki
Takamazu) used the approximation

p =+J4n’ab +16(a-b)’
which also works well for almost circular ellipses, but as well in the case for
which b is very small compared to a. However, there are ratios of a/b for’

which Kepler’s formula is better.

Yet another formula is attributed to Sir Thomas Muir, 1844-1934). It

e a312_;_b312 273
P 2

There has been a suggestion that this formula was previously used in India,
but no details of this claim have been forthcoming.

is

A 1988 paper by Almkvist and Berndt (American Mathematical
Monthly 95, pp 585-608) lists a large number of approximations to p. They
attribute to Kepler another formula, this time using a geometric rather than
an arithmetic mean:

p= 2nJab .
The comments applied to the other Kepler formula apply also to this.

Of the other formulae listed by Almkvist and Berndt, two perhaps
deserve special notice. One, by Ekwald (1973), is notable for its simplicity:
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o2 ‘_aijz
Ja+b

Another is one of two attributed to the Indian genius Ramanujan (see
Function, Vol 1, Part 3). It goes:

3(a-b)? }

p=ni(a+b)+
10(a+b)+Va® +b* +14ab

This can hardly be called “simple”, but it is extremely accurate. It has been

used recently in a discussion of the respiratory physiology of insects.

(Insects breathe through minute pores in their shells. Throughout the

majority of the respiratory cycle, these pores are elliptical in cross-section.)

LETTERS TO THE EDITOR

Election Prediction Vindicated

Readers of Function may be interested to learn that the Law of Cubic
Proportions (see Function, Vol 17, Part 4, p 120) held exceptionally well
for the 2002 election to the lower house of the Victorian parliament.

Perhaps it is worth restating the law here:

In a reasonably homogeneous country with a two-party political system, the
ratio of the number of seats won by the two parties is approximately
proportional to the cube of the ratio of the total number of votes cast for the
two parties.

The law holds whenever the proportion of voters for a party (say
Labor) over the total population of seats has an approximately normal
distribution, with a standard deviation around 0.11-0.13. This situation has



52

occurred in some elections in the UK, in NZ and in Australian federal
elections since 1949,

For the recent Victorian election, there were 88 seats contested.
Taking out the two seats won by independents leaves 86. In these 86 seats,
the two-party preferred split for Labor : Coalition was 57.8 : 42.2. Applying
the law to this case, the number of Labor and Coalition seats would be in the

569
ratio (57.8/42.2)3 =2.569 . Thus we should expect '3—5_6_9_X 86 seats to go

to Labor. This works out to be 61.9 seats, or in round figures 62, with 24 for
the Coalition.

That’s exactly the state of the parties in the Parliament.

One may. add that the proportion of Labor voters ranged from 0.219
(Shepparton) to 0.817 (Thomastown), and the standard deviation was 0. 126.

Ravi Phatarfod
Monash University

COOOCO0OC 000

Sad News from Wales

I wrote a year ago telling readers of the latest news of my erratic
correspondent, Dai Fwls ap Rhyll. Dr Fwls has made a career out of his
challenges to accepted orthodoxy in Mathematics and Science. Many of his
analyses have been communicated to me and so passed on to Function.
However, last year I had strong reasons to believe that his health (never the
best) had taken a severe turn for the worse. The handwriting was pitifully
shaky, the text terse in the extreme. I was however able to deduce that he
had found an error of almost 18% in a widely accepted formula.

I now learn that my worst fears have come to pass. He has died. The
news reached me only recently, and there were few details. My hope is that
the mountain of scrappy manuscripts he left behind will prove to contain
treasures of insight and provide further challenge to established orthodoxy.

o —
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Here, as a memorial to him, I can only summarise his work over the
25 years of our acquaintance.

I first wrote of his research in Function in 1980, the year he won the
prestigious Prix le Bon for work on the nature of gravity. This remains his
most recognised achievement. Following this he became more and more
reclusive, never seeking to publicise his work, but rather sending it only to a
small circle of select friends, of which I am proud to have been a member.

Over those years, I have sought to share his discoveries with
Function’s readers. In 1982, 1990 and 1991, he challenged the laws of
Arithmetic, and in 1983 and 1999 those of Euclidean Geometry. In 1992,
2000 and 2002, he queried the accuracy of established formulae and
numerical methods. In 1996, Probability Theory was his target, and in 1995,
1997 and 2001 he turned his attention to the higher realms of Mathematics.
Although it never reached me directly, one of his discoveries turned up on
the Internet in 1995. I have no idea who posted it. In 1998, my friend Sue
de Nimmes discovered some work that she thought to be his, but this was a
mistake on her part. Back in 1986 he wrote directly to Function with a
speculation about comets, but I don’t know how this letter reached the
editor; it did not pass through my hands.

To give readers a flavour of his work, let me briefly recount one of his
early studies (1982). He set

S=1-1+1-1+1-1+...,
and determined the value of S in three different ways. He had

S=1-D+1-D+({A-D+..=0+0+0+..=0,
S=1-1-D-1-D-1-D-...=1-0-0-0~...=],
and

S=1-(1+1-1+1-1+..)=1-§.

From this last equation he deduced that § = Y2 so that 0 = 1 =1/2. The
conclusion Dr Fwls drew is that Arithmetic is inconsistent.

Kim Dean, Erewhon-upon-Yarra
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COMPUTERS AND COMPUTING

Solving Non-Linear Equations:
Part 4, Fixed-Point Iteration

J C Lattanzio, Monash University

The bracketing methods discussed in my last article contrast with a

number of other methods known as “open methods”. Here I will discuss the

so-called “one-point” or “fixed point” method. Other approaches will form
the subject of the next two articles.

Begin by rearranging the original equation into an alternative form:
x=g(x).

A solution of this equation is called a “fixed-point of the function g(x). In
most cases, this will be a solution of the original equation.

The procedure begins with a gnessed initial approximation x. We

might obtain this from a sketch-graph or some other information. The
calculation proceeds by successive improvements upon this initial estimate.
The method is to generaté a sequence from the iterative equation
Xy = g(xi), fori=0,1,2, ... The sequence of approximations terminates
when the relative difference is smaller than some previously specified small
quantity. This condition is usually expressed as

X —X;
£ = i+l i <€"
Xin

where £ is the pre-assigned small number.

If the sequence converges to a limit, then this limit will be the solution
to the equation.
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As an example, consider the solution of the equation x=e",
beginning with an initial guess x, =1. Successive approximations are

generated from the equations X;,; =€ . The table below gives the results

of the calculation, with the third column indicating the relative change, or-
difference. The process is to stop when this becomes smaller than 1%.

This is the same equation as was solved in my previous article, and
readers will note that the answer (0.57, to within 1%) is the same as that
computed before.

3 z; €
0 1.000 —
1 0.368 ° 1.720
2 0.692 0.469
3 0.500 0.383
4 0.606 0.174
] 0.545 0.112
6 0.580 0.059
10 0.568 0.006 < 1%

It is useful to look at a geometric interpretation of fixed-point
iteration. Figure 1 (overleaf) shows the first few iterations in the example
above. Note that we start at x, (=1) and then move up to the graph of g(x).
The y-axis now gives us the value of g(x,). We now need to locate this
point on the x-axis, because it is the value of the new estimate x,. To do
this, we “reflect” off the line y = x, as shown in the figure. We see that in
this case the method gives values that oscillate back and forth from an
overestimate to an underestimate and then back, but it is gradually
converging to the desired intersection, where y = x= g(x).

Consider now a more general case in which we begin with an equation
f(x)=0. There are usually many ways to recast this in the form x = g(x).
Unfortunately not all of these give rise to a convergent sequence of values.
Suppose that we begin with the equation x~e ™ =0. This can clearly be
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cast in the form x = e™*, as used above. But it could equally well be written
as x=-Inx. Of these two rewritings, the first (as we have seen) glves rise
to convergence. The latter does not.

1.4'7-r LR E L B

1.

—

2
0
8
6l o]
i _
2
0

0 2 4 6 8 1.01.2 1.4
X

Figure 1

There is a useful test to determine whether the process
converges or not. This will now be stated without proof. Let x be the
solution and suppose that the process uses estimates in the neighborhood of
x. Let g'(x) be the derivative of the function g(x). Then if: ‘

g'x)<-1, the sequence oscillates but diverges,
-1<g’(x)<0, the sequence oscillates but converges,
0<g'(n<1, the sequence converges directly,
g'(x)>1, the sequence diverges directly.

The second of these behaviours is that of our earlier example, the first
is that of the modification in which the logarithm was used. Note that the
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value of g’(x) in the exponential example was about —0.57, whereas in the
logarithmic modification it was about —1.8 in the neighborhood of the root.
This is consistent with the criteria given above.

In fact we can go further. - The successive relative errors form an
approximate geometric sequence with common ratio g'(x).

The .graphs below show the complete range of possible behaviour.

y=x

y=x \

P N

y=x

r-_- e emmceean

— - >

Finally, it should be noted that the criterion, if interpreted literally,
requires a knowledge of the value we are in fact seeking. However, because
we need the inequalities to apply over a range of values near the exact value,
it suffices to ensure that they hold near the root we are seeking.
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Here is a final example that demonstrates some of the pitfalls that may
arise. Suppose we want to solve the cubic equation

2 +4x*-10=0.

There are various ways in which this could be recast to allow the application
of the method:

12
x=x-x>—4x? +10, x=[£—4x) x=-2L(10'—Jca)U2
x
x_( 10 }"* Lo 2x +4x* 410
4+ x 3x% +8x

You should check that all these rewritings are possible, and then go further.
As you explore these different possibilities, you will find that the first two
diverge, while the others converge, but at very different rates.

S000COCO0ICIC

HISTORY OF MATHEMATICS
The First Hurdle

Michael A B Deakin, Monash University

The school geometry syllabus was for close on 2000 years based on
Euclid’s Elements, a standard textbook of its subject written back in about
300 BC. It was written in Greek, but is now available in English translation.
In all, it comes in 13 parts called “books™. At the very start of the first book,
we encounter Definitions, Axioms and Postulates. These form the basis of
the deductive edifice that is to follow. This takes the form of a sequence of
“Propositions”, or as we now tend to say, Theorems.
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The first of these that poses any real difficulty is the fifth in the first
book; L5 is thus its technical name, but it has acquired the nickname of the
Pons Asinorum, meaning the “Asses’ Bridge”. Look at the diagram below.
It depicts an isosceles triangle, one with two equal sides: AB = AC.

A

Figure 1
The theorem states that the two “base angles”, ABC and ACB, are equal.

Partly because Euclid’s proof is somewhat more difficult than it need
be, and partly because it produced a diagram rather reminiscent of a
cantilevered bridge, it was given the rather derogatory name I have just
quoted. “Asses” (weaker students) fell down at this bridge, which in our
vernacular we might perhaps rather call a hurdle.

Here is how Euclid proceeded to prove the proposition.

Figure 2
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Line AB was extended to a point F and Line AC to a point G." Then line
segments BD and CE were cut off from these extensions in such a way that
BD = CE. The triangles ABE and ACD were now compared. We have:

e AB (in the first) = AC (in the second), because of the initial data,
e AE (in the first) = AD (in the second), from the construction, and
e Angle BAE (in the first) = Angle CAD (in the second), obviously.

Thus, by an earlier proposition (1.4), these two triangles are congruent,
i.e. identical except possibly for position and orientation.

We may similarly show that the triangles BCE and CBD are
congruent, since from the first argument we deduce that BD = CE and

Angle BDC = Angle CEB.
From all this it follows that Angle BCE = Angle CBD and hence that
Angle ABC = Angle ACB.

This is certainly much more elaborate an argument than anything that
precedes it in the Elements, and this is probably what gave the theorem its
reputation for difficulty. The Eighteenth Century author Tobias Smollett has
Peregrine Pickle, the hero of one of his books, experiencing such difficulty:
“Peregrine ... began to read Euclid ... but he had scarce advanced beyond
the Pons Asinorum, when his ardor abated.”

As Peregrine advanced (a little way) beyond the Pons Asinorum, he
would have encountered Proposition 1.6 of the Elements. That is to say,
Proposition 6 of Book 1. This proposition is the converse of its predecessor.
It takes the equality of the base angles ABC and ACB as given and seeks
to prove that AB = AC. In this endeavour, it uses a reductio ad absurdum
argument. This is the first such use in the Elements, so that perhaps
Peregrine felt that confusions were coming thick and fast.

However we may sympathise also. The proof is unnecessarily
complicated. For a start, no use at all is made of the points F or G. We
could quite easily omit all reference to them.  Then also we could equally
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well put the points D and E inside the triangle rather than outside it. 1leave
it to readers to check that this leads to a minor simplification in the proof.

, But we can achieve a further simplification by allowing for a case -

intermediate between Euclid’s (AD > AB, AE > AC) and that just mooted
(AD < AB, AE > AQC), by allowing D and E to coincide with B, C
respectively: AD = AB, AE = AC. This version of the proof has reached us
via a commentary on The Elements by the later geometer Proclus, who
attributes it to another Greek geometer, Pappus.

Look again at Figure 1. Interpret it to be a picture of two triangles:
ABC and ACB. Now compare these two. We have

e AB (in the first) = AC (in the second), because of the initial data,
e AC (in the first) = AB (in the second), similarly, and
e Angle BAC (in the first) = Angle CAB (in the second), obviously.

Thus the two triangles are congruent and, in particular
Angle ABC = Angle ACB.

This proof has become the preferred one among mathematicians, but
it does require some mathematical sophistication to appreciate it. Indeed, at
least two mathematicians are on record as finding fault with it.

Charles Dodgson (better known as the children’s author Lewis Carroll
— see Function, February 1994) had this criticism in his book Euclid and
His Modern Rivals (written in the form of a dialogue, and in a rather
whimsical style):

Minos: It is proposed to prove L5 by taking up the isosceles triangle,
. turning it over, and then laying it down upon itself.

Euclid: Surely that has too much of the Irish bull about it, and reminds
one a little too vividly of the man who walked down his own
throat, to deserve a place in a strictly philosophical treatise?

Mines: 1 suppose its defenders would say that it is conceived to leave a
trace of itself behind, and that the reversed triangle is laid down
upon the trace so left.
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This leads us into some rather interesting waters. Euclid 1.4, which
we have been using in the congruence proofs above is proved by imagining
one triangle being picked up and “applied” to the other. It is a nice proof,
and I can recall appreciating its force when I first encountered it. Strictly
speaking; it is not a proof, because triangles are abstract entities, and can’t
really be picked up and “applied” like this. Still, it carries conviction.

And we can perhaps say the same of the “physical” version of the
Pappus proof as described by Minos in Dodgson’s dialogue. But the proof,
as I have given it above, does not require the physical interpretation at all.
Readers will find a nice discussion of the two (abstract and concrete) forms
of the argument in Ian Stewart’s Concepts of Modern Mathematics (Penguin,
1975).

The other place where the proof is (implicitly) criticised is in the UK
journal Mathematical Gazette where it was submitted anonymously as an
example of a student “howler” in 1937. This did, however, provoke a
response the following year from C Dudley Langford, a prominent
mathematical educator of the time. One hopes that the anonymous
contributor and the editor of the day were both suitably chastened!

Many of the proofs in vogue in the twentieth century in fact tried to
circumvent the Buclid proof and its variants altogether. They proceeded by
drawing an axis of symmetry AX in the triangle of Figure 1. The difficulty is
that this may be defined in any one of three ways (later found to be
equivalent, but we are not able to assume this at this point in the
development of the theory): AX could be

e The bisector of Angle BAC,
e The line joining A to the mid-point X of BC, or
e The perpendicular drawn from A to the line BC.

In my own introduction to geometry, we learned the first of these
from Hall and Stevens’ A School Geometry, and it was only after reading
Dodgson’s criticism that I realised that it involved a circular argument.
This I detailed in an earlier paper in The Mathematical Gazette (Vol 74,
1990), which also discusses all three variants in some detail.

Continued on p 68
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PROBLEMS AND SOLUTIONS

FIRST, A CORRECTION

In Problem 27.1.2, reference was made to a “set of five cards”. The word
five should have read six. Thanks to J C Barton and Julius Guest for spotting

the error.

SOLUTION TO PROBLEM 26.4.1

The problem began by defining a convex function f(x) as one for which

f@+fO) S f(x+yj
2 - 2

[It went on to give two examples that were, in fact wrong. However, two

simple functions that are convex are x° and e*. Our thanks to Keith
Anker for detecting this error.] The problem continued by defining a
strongly convex function as one for which

fX)+f(y) xty _
00 ez

whenever x >y. The challenge was to prove that no such functions exist.

Solutions were received from Keith Anker, Sefket Arslangi¢ (Bosnia)
and Carlos Victor (Brazil). The arguments were similar; we here follow that
of Anker. He putc = (a + b)/2,d = (a + ¢}/2, e = (c + b)/2. Then if fis
strongly convex, we have, by definition

f(c)zf-(f’-)-;ﬂﬂb—a)

f@+F©),b=a 3 @+f®) o
2 2 2

FO+f®) b=, f@+3F®) o
2 2 2

fd)z

fle)z
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It follows that

f@+fe_ b-a, f@+f®) 3,
fl)z > + 52 > +2(b a).

Now if we had started with the inequality

FO+FO) o AX+D)s are
. Zf[ . j+ﬂ(x »,

instead of the one actually given, then we could show by means of the same
argument that

f)+f(y) x+y), 34,
2 Zf(2J+2(x )

From this it follows, by replacing A by 34/2 over and over again that

fx)+ () x+y ﬁ) _
2 Zf(2)+(2 x=9).

for all n. Thus it is impossible consistently to assign a finite value to

=

and the definition is revealed as self-contradictory.

SOLUTION TO PROBLEM 26.4.2

Exactly one of the following four statements is false:

(a)  Audrey is older than Beatrice

(b) Clement is younger than Beatrice

(c) The sum of the ages of Beatrice and Clement is twice the age of
Audrey

(d) Clement is older than Audrey.
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Who is the youngest: Audrey, Beatrice or Clement?

Solutions were received from Keith Anker, Sefket Arslangi¢ (Bosnia),
Julius Guest and Carlos Victor (Brazil). Here is Arslangié¢’s solution, which
is the same as Anker’s and Victor’s, but slightly different from Guest’s.

Statement (b) must be false, because if it were true then both of
statements (c) and (d) would be false, contrary to data. Thus Clement is
older than Beatrice. Statement (a), which we now know to be true, tells us
that Audrey is older than Beatrice. So Beatrice is the youngest. [As

Statement (d) is also now established to be true, Clement is older than
Audrey, so Clement is the oldest.]

SOLUTION TO PROBLEM 26.4.3

This problem asked for the value of the integral

I{S(Sin3 2)6)”2 /sin® x}ix,
Solutions were received from Keith Anker, Sefket Arslangié (Bosnia),
J C Barton, Julius Guest (the proposer) and Carlos Victor (Brazil). Here is

Guest'’s.

Introduce the substitution ¢ = cotx, so that dr = —(1+¢2 )dt . Also

. 1
SIHX=W and COSX=W

so that the integral becomes ~1042 .[t Y24t = ¢~ 2% = ¢~ (2cotx)?.

SOLUTION TO PROBLEM 26.4.4

This problem asked for the value of the integral
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[lelt- )} ax

Solutions were received from Keith Anker, Sefket Arslangi¢ (Bosnia),
J C Barton, Julius Guest (the proposer) and Carlos Victor (Brazil).

Barton put ¢=x’, so that x=+/f and 2xdx/dt=1. This transforms
» 1.
the integral to 3 It 31 —t)m dt. He now put
dr  -3u’t

t=t —=
1- u® so thal T -(1+7)

The integral is thus further transformed to

__I3u3du _ lJ'd

1+u) =3 du(1+u ) udu

Integrating now by parts yields

%u(1+u3)_1 - -;—\J‘(l+u3)—ldu.

Barton now comments that f(l +u’ )_ldu may be regarded as standard.
1 1 1 2u-1
It reduces to glnll +uf- -6-111(1 —u+u’ ) + W] arCtan(—FJ . Finally,

putting all this together and restoring the original variable x, we end up with

#inf= (1) (7 -1
__%arctm{zx':/_;_ —1] ‘e

Barton comments “The chief merit of this problem is surely that it
turns out to be elementary. The actual calculation is, practically, drudgery.”

xl(x'2 : 1)“3 ——1 ‘1+ 1)”3
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Now let us move on to the next set of problems.

PROBLEM 27.2.1 (submitted by Peter Grossman)

In a well-known puzzle, you are challenged to draw four line segments
passing through nine points arranged in a 3x3 array (as shown below),
without lifting your pen off the paper. Most people know that the solution
requires some of the line segments to extend beyond the bounds of the array,
but a justification for this claim is rarely given.

Prove that no solution is possible in which all of the line segments lie
within the bounds of the array.

PROBLEM 27.2.2 (based in part on a problem in Mathematical Bafflers, ed
- Angela Dunn)

_The game of periwinkle is the same as noughts and crosses (tic-tac-toe)
except that the object is not to place three of your symbols in a row, but to
avoid doing so. Show that the player moving first can always avoid defeat.
Is the second player so lucky?

PROBLEM 27.2.3 (from Mathematical Bafflers, ed Angela Dunn)

ABC and DEF are two similar triangles, both with integral sides. Two of the
sides of ABC are equal to two of the sides of DEF. The third sides are
different from one another and the difference in their lengths is 387. Find
the lengths of all the sides of both triangles.
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PROBLEM 27.24 (from The Australian Mathematics Teacher, June 2002)

Hobson is in gaol but is given a chance of escape if he can make the right
choice. Three boxes are presented to him, one of which contains the key to
his cell, i.e. the means of escape. The three boxes are made of gold, silver
and lead, and each carries an inscription. One and only one of the
inscriptions is true. They are as follows:

On the gold box: The key is in this box
On the silver box: The key is not in this box
On the leaden box: The key is not in the gold box.

Meanwhile Jobson, in another part of the same gaol, is given a similar
- opportunity. However in his case, at least one inscription is known to be
true and at least one false. In his case they read:

On the gold box: The key is not in the silver box
On the silver box: The key is not in this box
On the leaden box: The key is in this box.

How should Hobson and Jobson decide?

Continued from p 62

Dodgson’s point is that if the angle bisector is to be used, then we
must be assured that it can be constructed. This is where Hall and Stevens

went wrong.

I will have more to say on this subject in my next column.

“Among [the Greeks] geometry was held in the highest honour;
nothing was more glorious than mathematics. But we [Romans] have
limited the usefulness of this art to measuring and calculating.”

Marcus Tulﬁus Cicero (106-43 BC)
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