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Function is a refereed mathematics journal produced by the
Department of Mathematics & Statistics at Monash University. The
journal was founded in 1977 by Prof G B Preston. Function is
addressed principally to students in the upper years of secondary
schools, and more generally to anyone who is interested in
mathematics.

Function. deals with mathematics in all its aspects: pure
mathematics, statistics, mathematics in computing, applications of
math.ematics to the natural and social sciences, history of
mathematics, mathematical games, careers in rp.athematics, and
mathematics in society. The items that appear in each issue of
Function include articles on a broad range of mathematical topics,
news items on recent mathematical advances, book reviews,
problems, letters; anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or ,without solutions)
and other material for publication are invited. Address them to:

The Editors, Function
Department of Mathematics & Statistics
PO BOX 28M
Monash University VIC 3800, AUSTRALIA
Fax: +61 3 9905 4403
e-mail: michael.deakin@sci.monash.edu.au

Function is published five times a year, appearing in February,
April, June, August, and October. Price for five issues (including
postage): $27.50* ; single issues $7.50. Payments should be sent to:
The Business Manager, Function, Department of Mathematics &
Statistics, PO Box 28M, Monash University VIC 3800,
AUSTRALIA;. cheques and money orders should be made payable
to Monash University.

For more information about Function see the journal home page at
http:~www.maths.monash.edu.au/-cristina/function.html

* $14 for bonafide secondary or tertiary students.
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The Front Cover

One of the classics of School Mathematics is the book
Mathenlatical Models by Cundy and Rollett. These authors were both
school teachers and their book first appeared in 1951. It deals with a
wide variety of subjects, but perhaps of especial interest is the list'of
"miscellaneous curves" on PI' 65-69.

Our Front Cover shows one of these. It is given by the equation

and because of its appearance, it is given the name "electric motor". A
close look at the scale on the graph shows that only a part of the curve is
shown. It has been cropped at x = ±10 and at y = ±10. This focuses on
the central section, which resembles the armature of an electric motor
fitting between the poles of the magnet that provides the field in which
the annature rotates.

For values of x and y beyond these, the curve is less interesting.
Readers should have no difficulty in showing that the -curves y = ±x are
asymptotes. (See the cover article to the pre:vious issue.) So very soon
beyond the closeup displayed on the cover, the curve "settles down" into
a simpler pattern.

Back when Cundy and Rollett wrote, there were no simple means
of producing curves like that shown. They had either to be laboriously
plotted or else sketched' by seeking their salient features and so trying to
display the overall shape and properties of the curve, but without the
onerous task of plotting.

Such skills are no longer cultivated, in part because they gave been
rendered redundant by the availability of good quality graphics packages.
The Front Cover was produced with the assistance of one such: MAPLE.
A few lines of instructions are all that is required. Here they are.

>with(plots):
>implicitplot((yA2)*(y"2-96)=(x"2)*(x"2-100),x=-10..10,
y=-l0.. 1O,numpoints=1OOOO,colour=black);

The computer does the rest!
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Our cover for Volume 19, Part 1 showed a stylised drawing of a
drawbridge. It was based on one published by an eighteenth century
military engineer, Bernard Forest de B6lidor. The illustration showed
how the task ~f raising and lowering the drawbridge was made easier by
the provision of a counterweight that ran up ~nd down a carefully
designed track. In an ideal case, the track turns out to be shaped like an
arc of a curve known as a cardioid, although in practice this is merely an
approximation. In the article accompanying the cover diagram, it was
stated that the connection with the cardioid was discovered only recently.

This now seems not to be" correct. There was an earlier analysis
that gives precisely this result. There are also several other aspects of that
earlier article that can now be updated. In the article" that follows, Klaus
Treitz gives the background and reviews the theory. A different version
of this article first appeared in the German magazine ·Mathematik in der
Schule, Vol 37 (1999), pp 30-33. What follows is an edited translation.

(Apfelmannchen, Little Apple Man, is the German name for a
prominent feature of the Mandelbrot Set.)

APFELMANNCHEN AT KONIGSTEIN

Klaus Treitz, Basler Str, Rheinfelden, Germany

Fort Konigstein lies in the Elbsandstein Mountains in the eastern
part of Gennany and is a well-known tourist destination. The website

http://www.festung-koenigstein.de/en

offers a first look and a virtual walk around the whole site. Apart from
many impressive ,views, there is something very special for visitors
interested in Mathematics. After crossing the first drawbridge and
passing through the Medusa gate, you will discover two elegantly curved
stone ramps behind the open doors. They begin just below the wheels
supporting the ropes that were used to pull up the bridge. What is the
purpose of these ramps?

It can easily be guessed. It was on these ramps that the counter
weights moved. The tracks were curved in such a way as to move the
bridge up and down with as little effort as possible. How did the tracks
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have to be shaped for thispurpos~? The largest force is needed when you
begin pulling the bridge up. The counterweights therefore must pull
straight down in this situation. Later on, when the bridge is in an almost
vertical position, the force required is almost zero. The counterweights
need not to pull any longer. In other words, the tracks should be level at
that point.

Ideally, the bridge should be in equilibrium throughout the lift; that
is to say that it is in balance in all positions, with no tendency either to
close or to open. Which curve ensures equilibrium in any position of the
bridge? There are several different approaches to this problem.

Figure 1

Figure 1 shows the bridge in a general position. AB represents the
movable span, hinged at A. AC represents the tower supporting the rope
BCM, whose right-hand point M gives the position of the counterweight,
running on the curved track shown at the right. The rope is supposed to
pass over a pulley situated at C. We assume that AB = AC. If the bridge
were fully lowered with the weight then at the top of the tower, in that
case M would coincide with C and the length of the rope BC would be

; AB.J2. This length is to be constant as the bridge moves; call·it a. Let
mB be the mass of the bridge and me the mass of the counterweight.

In the ideal case where there is no friction, the requirement of
effortless mobility means that the energy of the bridge-counterweight
system is to be constant. Suppose the centre of gravity is· situated at a
point S on AB. If the end of the rope between the pulley C and the
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counterweight M has the length r, then the length of the segment between
the end B of the bridge and the pulley is a - r.

Using this background, we may draw the system of bridge, rope
and counterweight with geometry software like Euklid. Thereafter it's a
fun to open and close the bridge on the screen with the help of the
dragging tool whilst the point M plots the required curve. The dynamic
software Euklid is available as shareware from the website

http://www.dynageo/eng/index.html

The figures in this paper have been generated by this tool. Euklid itself
provides descriptions of its constructions.

c,

Figure 2

Suppose that in Figure 2 the distance of point B from the support A
is k times the distance SA. Then from the geometry. of the case where the

bridge is fully down we have a = AB.J2. Furthermore, by analysing the
situation when the bridge is fully down it can be shown from basic

mechanics that we must choose me =m8 .J2 .
k

Now get back to the general case of Figure 2. Because the

triangles eVB and eTA are similar we have CV =CT and therefore
CB CA



CV = CBxCT
, CA

C
v _ (a - r) X t (a - r) _ (a - r) 2

i.e. - (at v0") - av0"
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Thus the point B will by lifted by the distance.

However the centre of gravity S is only lifted by a distance

On the other side the counterweight must move down a distance

cu= mB AW =~AW =~!AV =_1__1_(2r-~J=!(2r-~J
nlc J2 J2 k J2 J2 a 2 a

We have thus found the position of M. If M is distant r from the pulley

1( r

2

JC, it must be 2". 2r - -; below C. If we put LPCM =t/J, we then have

r = 2a(1- cost/J). (~)

Note that this result is independent of the total mass and of the position of
the centre of gravity, S, on AB.

Equation (*) is the equation, in polar co-ordinates, of a curve
known as a cardioid (from the Greek, meaning "heart-shaped curve").
We may produce this curve in the following way (Figure 3): let one circle
with radius a roll around another circle of the same size and follow a
particular point of the first circle during the motion. The rolling condition
ensures that the other two marked angles in the figure are also equal to rjJ.

From the isosceles trapezium CMNK we get the polar equation (*)
of the cardioid at a glance. Today this curve has become familiar as an
especially prominent part of the Mandelbrot set. In German it is called
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"Apfelmannchen" (little apple man). For the tracks supporting the
counterweights only the small portion CE of the curve is needed.

This theory was developed by an early exponent of the calculus,
the Marquis de l'Hopital and his teacher, Johann I Bernoulli, one of a
very famous family of mathematicians. Figure'4 is a copy of Bernoulli's
drawing. I'H6pital had found the curve in ,question for himself, but he
did not recognise what it was. He asked Bernoulli to translate his
solution into. Latin and have it published in the learned journal Acta
Eruditorum. This Bernoulli did in 1695, and he followed, the analysis up
with a geometric characterisation of the curve in question. The resulting
papers are now reprinted in Johann I Bernoulli's Opera Omnia (Collected
Works), Volume 1, pp 129-138. The correspondence between the two is
reprinted in Volume 1 of Bernoulli's Briefwechsel (Correspondence),
'starting on p 244.

Figure 3

In the first of the two papers, Bernoulli presented the equation for
the curve; in the second, he gave the geometric property that relates it to
the ~olling circle. He adopted some very clever simplifications, whose
details are omitted her,e, but the result can easily be given. In Figure 4,
put as he did CP = x, PM = y. (Note that this is somewhat different from
our modern convention, where x represents a horizontal and y a .vertical
distance.) His analysis then resulted in the equation

which is the same as Equation (*).
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E

Figure 4

Nowadays we can use computer software to plot curves such as
this, but back then things were different. So Johann Bernoulli was
justifiably proud to be the first to recognise' the nature of the curve in .
question: "I discovered, that this curve - and this is really noteworthy 
belongs to the genus of cycloids .... described by a wheel rolling around
another equal wheel". [The simplest cycloid for which one wheel rolls on
a line was the subject of Function's cover story for February 1990. Eds.]
Later on this particular curve was named the cardioid.

The oldest known bridge to be built along these lines was erected
in the ninth century in Corsica. The huge ramps .in the fortress of
Bonifacio are marvellous but they look more like cosine curves than
cardioids.

[In the 17th century fortress building flourished and different types
of hinged drawbridges were developed. Other methods of setting up the
required balance were also employed. One bridge built along these
alternative lines can be seen at the fortress of Belfort near Basel, and
another at the Port de Brisach, built by Sebastien de Vauban (1633-1707)
a contemporary of de l'Hopital.]

In the year 1684 Mathematics made an enonnous step forward
when Leibniz published his Calculus Differentialis. Now numerous
curves could be investigated and problems of architecture and mechanics
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were attacked with the new tool. The question of the appropriate curves
for the counterweights of a hinged drawbridge was raised by Joseph
Sauveur, a .friend of de I'Hopital in the year 1694. He confessed to the
Marquis that he had encountered great difficulties with the problem.
l'Hopital found the equation of the curve sought. But without the
knowledge of trigonometric functions and polar coordinates it was
difficult to recognise that the curve was a cardioid.

Bernoulli called the problem the "search for the curva aequi
librationis". The 1695/96 editions of the Acta contain no fewer than five
articles on the problem, by l'Hopital, Johann and Jakob Bernoulli and
Leibniz. Leibniz expressed his admiration for these "most beautiful
results". These matters are even mentioned in literature, namely in
Laurence Sterne's satirical book Tristram Shandy. The name cardioid
was coined by Johann Castillon (1704-1791) in 1741.

The Medusa gate of the Konigstein was erected between 1730 and
1760. The curves of its bridge are quarter circles with a. radius of 3.2 ffi.

Unfortunately there exist no historical documents, but the plan worked
out by a modem architect shows the great skill and knowledge of the
.builders and craftsmen in the 18th century

l'Hopital and Johann Bernoulli thought along theoretical lines.
They didn't pay attention to such complicating effects as friction. But
when operating a real bridge we have to deal with a heavy construction
which must be moved against large forces of friction. Circles instead of
cardioids help to overcome this difficulty.

At the endpoints of a quarter circle the equilibrium condition is
fulfilled, but halfway down the counterweights have a surplus of about
30% compared with the amount necessary. This helps to overcome
frictional forces when lowering the bridge.

Such bridges were soon forgotten in·Europe. But they experienced
a renaissance in Australia and America. In particular, in New South
Wales movable bridges were needed for roads crossing rivers which also
were used for navigation and a number were built. They consisted of
large steel or wooden frameworks and the curved tracks were composed
of circular arcs with different radii.· These curves were beautiful
approximations of cardioids. Some of them still exist today.

[For more details on these Australian bridges, see the earlier Function
article. Eds.] .
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The Mathematics of Elections

In the immediate aftermath of the controversial US presidential
election that saw George W Bush narrowly defeat Al Gore comes a book
on the Math~matics of elections. The author is Donald Saari, a US
mathematician whose recent research has been devoted to just this topic.
[The topic itself was briefly touched on in earlier issues of Function in
the course of articles on C L Dodgson (Lewis Carroll). See Function, Vol
7, Part 3 or Vol IS, Part 1. This is one of Dodgson's claims to fame asa
mathematician, but in truth his pioneering efforts did not go very deeply
into the matter.]

. Saari's new book is called Chaotic Elections, and one of its points
is that something very like chaos can emerge from various methods of
deciding the outcome of elections. It also aims to draw attention to the
difficult and challenging. problems that the social sciences can pose for
the mathematician. It goes deeply into its subject matter and makes for
lively reading at the same time.

While much of it is understandably devoted to the bizarre com
plexities of the US system, there is a lot of a general nature, applying
widely. Essentially, no system is perfect, but this does not gainsay the
fact that some are better than others. When it comes to making
recommendations of his own, Saari throws his weight' behind a method
first proposed by.E J Nanson.

And here we have an Australian connection. Nanson was the
second professor of Mathematics at the University of Melboume, active
in the last quarter of the nineteenth century. In 1882, he addressed the
question of elections in a paper read to the Royal Society of Victoria, who
later published by his analysis as a small pamphlet. The University of
Melbourne holds a copy in their Mathematics library, and it makes
interesting reading.

Suppose that several candidates all run for a single post. This is
the case for seats in the lower house in Canberra today (but it does not
apply to the Senate, which is more complicated). To. simplify the
discussion, suppose that three candidates are standing: L from the leftist
party, R from the rightist party, and C from the centrist party.
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What happens currently in Australia, is that voters fill in ballot
papers and put the numbers 1, 2, 3 opposite the names of these
candidates, so indicating their order of preference. Thus one voter might
well put a 1 opposite L, a 2 opposite C and a 3 opposite R. This would
be a typical vote for a person of left-wing persuasion, who would
probably prefer a centrist candidate to a right-wing one.

In the counting'process, first of all, all the primary votes (1' s) are
counted. If one of the three has more than half of all the votes cast, then
that candidate is clearly the winner, and there is no need to proceed any
further. But often this is not the case. When no clear winner emerges
from this first'count, then the candidate with the least number of primary,
votes is eliminated. That candidate's second preferences are then
allocated to the remaining two candidates and added to their existing
scores. Thus, unless the totals happen to be exactly equal, then one of the
two candidates will score more than the other and so will be elected.

Nanson attributed this method of deciding the outcome to W R
Ware, a Mathematics professor from Harvard, but he did not like it and
argued against it. The following example will show the source of his
dissatisfaction. Suppose that L received 47% of the primary vote, and R
48%. The remaining 5% went to C. As no candidate has so far received
50+%', we must proceed to the next stage. C is declared defeated and the
second preferences redistributed. Suppose that of the 5%, 80% (i e 4% of
the total vote) went to L and the rest to R. Then L now has (47 + 4)% of
the total and, as this is 51 %, is duly declared elected.

But Nanson raised an objection that we can demonstrate in terms of
this example. We may suppose that of the 47% voting for L, all or
almost all would prefer C to R. For simplicity suppose it is all of them.
Then the number preferring C to R is this 47% plus the 5% who directly
voted for C; this gives us a total of 52% who prefer C to R. But similarly
we find that a total of 53% prefer C to L! The compromise candidate,
who was eliminated, would be most acceptable to the majority of voters!

Indeed we may think that something very like this happens in
Australian elections, with the Australian Democrat candidate filling the
place of C.

Nanson thus favoured a different system, and Saari agrees with
him. This system would count every primary vote in a 3-candidate race
as worth 2 points and every second preference as worth 1 point. Thus
each voter allocates a total of 3 points. We can continue to talk in terms
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of percentages if we think of each primary vote as ~ %, and each second
3

1
preference as - %.

3

[More generally, if there were n candidates standing, a primary
vote would be worth n- 1 points, a second preference n - 2, etc all the
way down to last place, which would be worth 0 points.]

In our example, L received 47% of the primary votes and a further
4% of second preferences. This then gives L a total percentage of

of the overall points. In the same way, R receives

48X~+lX.!.=32.33%.
3 3

C's share is

2 '1
5x-+95x-=33.33%.

3 3

On this count, then, R is eliminated. This leaves Land C, and
essentially we conduct a' virtual runoff between them. R's primary votes
no longer count, and so (as in the system we in fact use) R's second
preferences count as primary votes. We now use a system as before, but'
with 2 candidates instead of 3. In this simple case, this does not affect the
outcome: C wins over L, 53 to 47. (Had we started with a larger slate of
candidates, things could get rather more interesting.)

The thing to notice about the Nanson method (or perhaps we
·should now call it the Nanson-Saari method) is that it does not really pick
the most-liked candidate. In our example, R is the most popular of the
three. 'What it does instead is to pick the least-disliked of the candidates.
Whether this is seen as "fair" depends largely on your point of view; a lot
of people would probably say not.

But after all that is hardly a mathematical question. Mathematics
can only decide things when we first agree on what it is we want to
achieve!
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HISTORY OF MATHEMATICS

Benford's Law

Michael A B Deakin, Monash University

One of the strangest observations in the recent history of Mathe
matics was frrst effectively published by Frank Benford in 1938, although
he himself said at the time that others had already noticed the same thing.
(Several of the various websites devoted to the topic draw attention to an
1881 account by the American scientist Simon Newcomb. It was
however Benford who brought the observation into general view.) Back
in those days, before the arrival of the electronic calculator, it was
customary to use tables of logarithms as computational aids. (For more
detail on this, see Function, Vol 22~ Part 2, p 57.) What Benford noticed
was that, after a lot of use, tables of logarithms became much more dog
eared and smudged near the beginning than towards the end. This story is
corroborated by Warren Weaver, author of Lady Luck: The Theory of
Probability.

Now had the tables been dreary novels that failed to hold their
readers' interest, then this is just what we would expect to see. Readers
would get so far and then give up, some sooner, some later, but only
rarely getting to the back of the book. But logarithmic tables?

What Benford deduced was that smaller numbers occurred more
frequently in calculations than did larger ones. The tables he examined
began with the number 1 000 000 and continued to 9 999 999, and of
course, each of the initial digits 1, 2, ..., 9 takes up exactly one ninth of
the total number of pages in the table-book. But clearly this simple
equality was not reflected in the natural occurrence of the numbers in
practice.

Indeed Benford investigated the matter and tabulated data from 20
sets of tables giving such data as the specific heats and molecular weights
of thousands of chemical compounds, the surface areas(!) of 355 rivers,
the street addresses ·of 342 persons listed in American Men of Science,
and other such. All in all, he classified over 20 000 such numbers
according to the first significant digit" in the table where the number
appeared. Then he calculated the frequency of each type, with the result
given in Table 1.
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The pattern strongly reminded Benford of another pattern, familiar
to almost all those back then, who made regular use of logarithmic tables.
This is given in Table 2.

INITIAL DIGIT

1
2
3
4
5
6
7
8
9

FREQUENCY

0.306
0.185
0.124
0.094
0.080
0.064
0.051
0.049
0.047

Table 1: Observed Frequencies as tabulated by Benford

INITIAL DIGIT FREQUENCY· LOG FORMULA

1 0.306 0.301
2 0.185 0.176
3 0.124 0.125
4 0.094 0.097
5 0.080 0.079
6 0.064 0.067
7 0.051 0.058
8 0.049 0.051
9 0.047 0.046

Table 2: Comparison between Observed and Theoretical Frequencies

The third colunm is calculated by taking logarithms (to base ten).of
each of the numbers (P) in the first column and then using the formula
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f(p) = log(p +1) -log p

(remembering that log 1 = 0).

(*)

Investigating further, Benford discovered that this formula worked
better for some lists of numbers than it did for others. Thus it did well for
the street addresses and for the areas of rivers, but it was not followed by
the specific heats (which tend to lie close to· 1) nor by the square roots of
integers, which are generated by a known formula. Benford excluded'
such cases from further consideration and concentrated on those other
numbers for which no theoretical basis could be given for their calcu
lation. He called these numbers "anomalous numbers".

He was thus led to announce his "Law of Anomalous Numbers",
according to which such numbers were distributed according to his
formula because that was how the world was made; it was a Law of
Nature like other logarithmic laws in Physics, Chemistry and Biology.

However, this was not the common view. Within a very few years,
there were various attempts to explain why Benford's Law holds. Most
such attempts fall into two main categories. One line of explanation
starts from the presupposition that there is some law or other that gives
the frequencies of the various initial digits, but then goes on to consider
the effect of change of scale on the outcome. Thus Benford, in 1930s
USA, would have used the old Anglo-Saxon system of weights and
measures, whereas we in Australia today use SI units.

So, for example, if we tabulated the surfaGe areas of rivers, one list
might give the result in square miles, another in square kilometres, yet
another in acres, etc. The numbers themselves would be different, but
would the distribution of their initial digits remain the same?

This was the question addressed by the statistician Roger Pinkham
in 1961. Pinkham proved that if there was an underlying law giving the
frequencies of the initial digits, and if that law remained the same when
the system of units involved was altered, then the underlying law had to
be Benford's Law, i.e. Equation (*).

The other line of attack was more subtle, and its general outlines
were indicated by Weaver in the book cited above. However, even before
this, some correspondence in the British journal Nature had sought
explanations along similar lines.
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Consider the case of the street addresses. Now Pinkham's argu
ment won't work for these because they are independent of our system of
weights and measures. But street addresses are drawn from a finite list of
integers. We in Australia have street numbers that often involve only two
digits; less commonly, but not uncommonly, they run into the hundreds,
and sometimes, just sometimes, they top the thousand mark. In America,
it is quite coinmon for street numbers to run to four or even five digits,
but six is uncommon. Many other such lists could be described in similar
terms, although the details would be different.

What Weaver pointed out was that if we put a "ceiling" on the size
of the numbers we have available, then the frequency of the various
initial digits can be calculated as a function of th~t ceiling (assuming that
the various numbers up to and including the ceiling each occur with equal
probability). Thus if 1 was the only number available, then 1 would have
to be the initial digit. No other would be possible; and so we would have

/(1)=1, /(2)=/(3)= ... =/(9)=0.

If we set the ceiling at 2, then the result would be

f(l) = f(2) =0.5, f(3) = f(4) =... = f(9) =0,

and so on until we reached a ceiling of 9, when we would have

f(l) = f(2) = f(3) = f(4) =... = f(9) =0.1111 .....

After this, the frequency of the initial digit 1 rises steadily until we
reach a ceiling of 19, when we have

[(1) =0.5789~ ..,[(2) =[(3) =[(4) =... =[(9) =0.0526..... "

And so we"proceed. For each ceiling N, there is a calculable probability
f N (p) that the initial digit will be p.

Weaver's idea was that if we let the value of the ceiling N tend to
infinity, then there would be a limiting distribution and that this would be
given by Benford's" Law (*). He even gave a nice graphical argument to
this effect. However, it was not precise enough to survive as a formal
proof. What was needed was an account of a method of taking the mean
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of each frequency as N gets larger, in such a way that a sensible answer is
produced.

Eventually this technical problem was overcome, by Mrs B J
Flehinger of IBM. Her work was published in 1966, and it showed great
ingenuity, although it was necessarily rather artificial. Her method of
attack was to consider the average value of (first of all) fN(2), which she
called AN' as N increased. This value varies between 1 (when N = 1) and
0.111 .... , when N = 9, and it fluctuates, but staying between these values
thereafter.

If we simply consider the means of all these values, we get other
numbers BN , whose values however also fluctuate, but a little less wildly.

What she did next was to take the mean values of the BN , to get a new set
of averages eN' which also fluctuated, but a little less wildly yet, and so
she continued, and eventually showed that if the means were taken
infinitely often, the answer would be log 2. A similar argument applied to
each other initial digit.

This argument improved on the earlier analyses by the corres
pondents to Nature. Fortunately, however, this whole line of argument
has since been greatly simplified. In 1969, another mathematician, R L
Duncan, found a way to compute the averages much more simply, so that
what took Mrs Flehinger so much time and effort could be done much
more straightforwardly. Essentially what Duncan did was to put
Weaver's somewhat imprecise argument on a finn footing, although he
may not actually have known of that earlier work, as he made no
reference to it.

At about this time, yet another attack was made on the problem.
Another mathematician, Ralph Raimi, noted that "most of the time",
geometric sequences, if carried far enough, gave results in accordance
with Benford's Law. This version of matters has appeared once before in
Function, and so here I will simply refer readers to Problem 3.3.5, whose
solution appeared in Volume 5, Part 3, pp 16-18. .

Raimi wrote a popular article on Benford's Law, and in this he was
concerned (among other things) to show the superiority of the "Flehinger
type" explanation over the "Pinkham-type". One of his most telling
arguments was that the "Pinkham-type" analysis does not apply.to the
case of the street addresses, whereas the "Flehinger-type" does.
"Addresses .... are artifacts of man, not nature, and have nothing to do
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even with the British or metric systems." And elsewhere, "one would
have to be a numerologist to' make sense out of the. operation of
multiplying every entry in Who's Who by some positive constant".

I tend to agree with the general point that he makes, but
nonetheless I took these remarks as a challenge. It seemed to me that
although we might not use. either system of weights and measures in
producing integer numbers like street numbers, but all the same we can
write such numbers in different bases. What if some other culture used a
base other than ten?

So I was able to show that if there is a law describing the
distribution of first digits, and if that law is to· depend on the base in
which the numbers are written in a natural way, then that law must be
Equation (*), but modified so that we now write the logarithms in the new
base b, rather than in base ten. Equation (*) uses base ten for the
logarithms precisely because we use base ten in our counting system.

So, for example, if we used base 2, then the first digit would
necessarily be 1, Le. 10g2 2. If the base were 3, the first digit would be 1
with probability log3 2 =0.631, etc. (Not dissimilar points were earlier
advanced by the authors of the early correspondence in Nature, and this
was a matter also taken up by R W Hamming in work described below.)

More recently, there has been renewed interest in Benford's Law. I
will cite only a single example. In 1970, a very great mathematician, R
W Hamming, who had introduced Pinkham to the possibility of research
in the area, himself wrote on the ·topic. Hamming was interested in the
efficiency with which numerical computations could be perfonned by
computers. He went on to give several examples of the way in which a
knowledge of Benford's Law could be put to good use in efficient
computer programming. The details are technical and I will omit them
here, but Hamming concluded that Benford's Law had practical
application and was "not merely an amusing curiosity".

References

I have relied most particularly on Warren Weaver's book Lady
Luck: The Theory ofProbability, published by Heinemann as Volume 24
in their Science Study Series (see especially pp 270-277), and on Ralph
Rahni's popular article "The Peculiar Distribution of First Digits" in
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Scientific American (December 1969). Either of these sources should be
quite easy for readers of Function to follow. More difficult are the
technical articles listed below.

Frank Benford's original article is available in the Proceedings of
the American Philosophical Society, Volume 78 (1938), pp 551-572. The
early correspondence in Nature is the work ofS A Goudsmit and W H
Furry (Volume 154, (1944) pp 800-801) and also of W H Furry and H
Hurwitz (Volume 155, (1945) pp52-53).

Roger Pinkham's result was published in The Annals of Mathe
matical Statistics, Volume 32 (1961), pp 1223-1230. Mrs Flehinger
produced her ingenious argument in the journal American Mathematical
Monthly, Volume 73 (1966), pp 1056-1061. Duncan's improvement on it
is less easy to find; it appeared in The Fibonacci Quarterly, Volume 7
(1969), pp 474-475. My own work was the subject of a note in the
Australian Mathematical Society Gazette, Volume 20 (1993), pp 162-163.
Hamming published his account in the Bell System Technical Journal,
Volume 49 (1970), pp 1609-1625.

LETTER TO THE EDITOR

More on Pell's Equation

I would like to comment on Julius Guest's article "An Elementary
Solution to Pell's Equation" in Function (June 2001).

Positive integer solutions to the second degree indeterminate
equation

where N is not a perfect square, can be obtained by using the theory of
continued fractions.

Briefly, when .IN is converted into an infinitely recurring
continued fraction, the penultimate convergent in each of the. recutTing
periods supplies a solution to the equation. Therefore there must be an
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infinite set of solutions. This topic is admirably dealt with in Higher
Algebra by Hall & Knight. (I have a well-worn and much valued copy of
the 1940 edition!)

Now to some comments on the particul~ equation chosen by Julius
Guest,

By inspection, x = 2, y = 1 are the simplest solutions. We obtain all the
others in the published list and as many more as we like by using the
formula

In this case, N = 3 and therefore

and so on. Further, the general solution to

is given by the two equations

for n =1,2, 3, ....
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Assuming that x =h, Y =k are the "simplest" solutions for

(found. by inspection or otherwise), what are the equations representing
the general solution?

David Shaw
Wellington St

Newtown, Vic

00000000000000000000000000000000

COMPUTERS AND COMPUTING

Winding Curves

Cristina Varsavsky

This column deals with a family of curves that appear very often in
nature: the spirals. Spirals are usually formed during the growth process
of organisms; they are present in some shells such as the nautilus shell, in
spider webs, and in the heads of daisies. Spirals are also the building
blocks of the living world, in the nucleic acid or DNA. But the most
amazing and spectacular spirals are visible only through a telescope
these are the nebulas and galaxies of the universe.

A spiral is a curve that winds around a point and gradually recedes
from that point. Here we will deal only with planar spirals, of which
there are several types. Spirals are best described with polar coordinates.
The relationship between the cartesian coordinates x and y of a point P in
the plane and its corresponding polar coordinates rand (J is given by

x =r cos ()
(1)

. y = r sin e,
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where r is the radial distance of the point P to the origin, and B is the
angle that the segment OP makes with the positive x-axis, as shown in
Figure 1.

xo

p
Y .......·..·..:·..··......··..·..·..

1

Figure 1

The simplest spiral is the spiral ofArchimedes, defined as

r = a B. (2) .

Let us create a spreadsheet to find·a few points on the curve. We put
angle values, spaced by say 0.2 radians, in column A, then the formula (2)
for r with a = 100 in column B, and the corresponding formulae (1) in

columns C and D respectively. Finally we copy down to several rows the
3 formulae in B, C and D. Figure 2 shows the first few rows of the
spreadsheet, and Figure 3 (overleaf) the graph of the points corresponding
to the x and y values calculated in columns c and D joined together with
a smooth line.

theta r x y
0 0 0 0

0.2 20 19.60133 3.973387
0.4 40 36.84244 15.57673
0.6 60 49.52014 33.87855
0.8 80 55.73654 57.38849-------------------------- .. -----------------------.----------_ .... _--

Figure 2
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You can play with different values of a, positive and negative, to see
the effect this parameter has on the spiral curve. You will see that this
type of spiral. always starts at the origin and that the coils are always
equidistant from each other. The spiral. could be interpreted as the result
of a uniform circular motion combined with a linear motion. Imagine a
bug on a revolving music record crawling at a·constant speed in a straight
line from the centre of the record and towards the edge. Seen from above
the record, the bug would describe a spiral of Archimedes.

----------------2Srn} --------------------

----300tT--l---------J

Figure 3

Formula (2) tells us that for every point on a spiral of Archimedes, r
is proportional to. () . Therefore a spiral of Archimedes could be used to
divide an arbitrary angle into any number of equal parts. For example, to
trisect the angle POA in Figure 4, we draw circles centred at the origin

with radii !.- and 2!-. These two circles intersect the spiral at the point
3 3

Q and Q'. The segments OQ and OQ' trisect the angle POA.
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The curve of the nautilus shell is known as the logarithmic spiral or
the growth spiral, and it was first discovered by Descartes. A logarithmic
spiral is described by the equation

which can also be expressed as

10gb r = a B (3)

(4)

Figure 5 (over the page) shows the logarithmic spiral log1.2 = ()
produced with a spreadsheet program using the same technique as shown
for the spiral of Archimedes. Use the same program to find out about the
effect the parameters a and b have on the shape t?f the spiral. In particular,
-what happens if a > O? What if a < O? What if a = 0 ?

A

Figure 4

The loops of a logarithmic spiral ate spaced farther and farther away;
the djstance between them follows a certain pattern. Given that the loops
of the spiral of Archimedes are equidistant, equation (3) says that in the
logarithmic spiral, the logarithms of successive radii are equally· spaced.
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So, if '1, '2, '3, '4, ... are the points where the logarithmic spiral cuts
the horizontal axis, then

. '3'2 '3 '2WhICh means that 10gb - = 10gb - and therefore - = -. Hence
r2'l '2 r1

the successive distances r1' r2' r3' r4' ... from the loop to the centre of
the logarithmic spiral form a geometric sequence.

As a final exercise, I invite you to investigate a few other well
known spirals: The hyperbolic spiral r () = a, where the radius is
inversely proportional to the angle, Fermat's spiral (also know as the

parabolic spiral) : ,2 = a (j, Fermat's spiral (also know as the parabolic

spiral) : r2 =a (J .

Figure 5

* * * * *
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PROBLEMS AND SOLUTIONS

SOLUTION TO PROBLEM 25.3.1

This problem came from Mathematical Digest, a South African
counterpart of Function. It read:

An adventurer who went in search of treasure on a certain small
island had as sole clue the following instructions:

From the middle of the hut (H) make a line to the ash tree
(A) and another to the beech tree (B). From A in the
direction. remote from B make a line AC at right angles to
and equal in length to BA. Similarly from B make a line ED.
The treasure is buried at the midpoint of the line CD.

The adventurer arrived at the island and was able to identify the
trees, but all trace of the hut had vanished owing to the ravages of
termites. How was the treasure found?

Solutions were received from Keith Anker and Carlos Victor, and
Mathematical Digest published yet another. What follows is a composite
of these various solutions.

Put the origin of co-ordinates at the mid-point of AB and suppose
that A is the point (-a, 0 and that B is the point (a, 0). Let the co-ordinates
of the hut be (h, k). There will turn out to be three separate cases
depending on whether k is positive, negative or zero. Consider first the
case k > O. Then HA and AC form two sides of a square and C has the co
ordinates (-a-k, a+h). Similarly'D has the co-ordinates (a+k, a-h). The
co-ordinates of the treasure are therefore (0, a). As we have taken k > 0,
the situation is that, when viewed from the hut, A is to the right and B to
the left. This corresponds to the case a > O. Had we had k < 0, the
situation would have been reversed, and in that case a < O.

We thus have that the treasure is buried on' the perpendicular
bisector of AB and is either on one side or the other at a distance from the
mid-point of the line-segment AB the same as the distance to either of the
trees.
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There are two points to investigate. They are given by (±a, 0) .
The treasure.will be at the one or the other.

It remains to consider the situation in which the hut is in line with
the two trees, i.e. k = O. The detail of this is left as an exercise for the
reader. It is ambiguous as to how the word "remote" is to be interpreted
in this case. Anker, in his solution, took the view that this rendered the
case vacuous (and in any case it is unlikely on other grounds). However,
the South African solvers tried to 'make sense of the instructions even
when this situation applied and found a third possibility in which the
treasure was to be found at the'mid point of AB.

The solution may be "cooked", as the jargon has it, in the sense
that one may find (it by a "cheating" method. The argument runs as
follows. Because the position of the hut is to make either no difference or
very little difference, We may place it almost anywhere. A good choice is
to put it on the mid-line between the trees, and this will simplify the
argument already given. And other such choices are possible. The reader
may care to explore these.

A similar "cooking" argument was noted in the case of Problem
25.2.1.

SOLUTION TO PROBLEM 25.3.2

This problem (submitted by Keith Anker) concerned a game played
between two players. A set of nine tokens is arranged in. a square as
shown on the next page.

A move consists of the removal of any or all of the tokens in any
one row or column. The players, A and B, move alternately with A going
first, and the game continuing until all the tokens have been removed.
The winner is the player taking the last of the tokens.

The problem asked which of the players can force a win, and what
is the winning strategy?

*

*

*

*

*

*

*

*

*
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Answers were received from Keith Anker (the proposer) and from
Carlos Victor. Again we print a composite.

The answer is that B (the second player) can always force a win.
To see this, consider first the similar but simpler game in which there are
four tokens:

* *

* *

Here player A has two possible moves. One is to take both tokens
from any row or column. (It is clear that it makes no difference which of
the four such possibilities is actually adopted.) In that case, B wins
immediately by taking .qll the remaining tokens. So A might resort to
taking just one token. (Again it makes no difference which!) In this case,
B takes the token diagonally opposite from the one that A has just taken,
and it becomes clear that B now has a forced win.

Now consider the problem actually asked. Again it makes no
difference which row or column we begin with. We may (actually or
notionally) interchange the rows (or columns) with one another, and rows
and columns interchange when we look at the pattern sideways. So begin
by supposing that A takes all the tokens in any row (or column). In this
case, B replies by taking all the remaining tokens in any column (or row).
This leaves the 2 x 2 variant, which we have already analysed to a win
for B.

A similar situation applies if A takes. 2 tokens from any row or
column. This necessarily leaves one column or row with 3 tokens, and B
takes that to reach the same situation as detailed above. Thus A's only
chance is to take a single token. To follow the analysis in this case,
number the tokens as follows:

1

4

7

2

5

8

3

6

9
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Because it makes no difference which row or column we ad~pt as.
our reference, it makes no. difference which of the tokens A actually ~akes.
The solution given below can be modified to cover all contingepcies,
merely by altering the labelling. Thus suppose that A takes token'3. B
may theI! force the win by taking tokens 5 and 6.

For then, however A moves, B wins. With obvious notation:

(1, 4, 7) is answered by 8
(7, 8, 9) is answered by 1
(1,2) is answered by (7, 9)
(1,4) and (1,7) are both answered by (8, 9)
(4, 7) is answered by (2, 8)
(7,8) and (7,9) are both answered by (1, 2)
1 is answered by (7, 8, 9)
2 is answered by 7 and vice versa (and an analysis akin to the 2 x 2 case)
4 is answered by 9 and vice versa
8 is answered by (1, 7).

SOLUTION TO PROBLEM 25.3.3

This problem (submitted by Garnet J Greenbury) read:

Let ABC be a triangle with its inscribed circle centred at 0 and one
of its three escribed circles centred. at P. The mid-point of the line
segment OP is D. Prove that D lies on the circumcircle of the triangle
ABC.

The proposer submitted three different solutions, and we also
received replies from Keith Anker,. Julius Guest and Carlos Victor. We
particularly liked Anker's solution, which went like this.

Suppose the excentres of the three escribed circles are P, Q, R
opposite A, B, C respectively. Now the internal and the external bisectors
of each of the angles A, B, C are at right angles to each other. Hence 0 is
the orthocentre of the triangle PQR. Thus the circumcentre of the triangle
ABC akthe 9-point circle of the triangle PQR. [For detail on the 9-point
circle, see the cover article to Function, February 1979.] Another of the 9
points is the mid-point of OP.
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SOLUTION TO PROBLEM 25.3.4

The problem asked for the final two digits of (20n - 15)m, where
m, n are positive integers. Solutions were received from Keith Anker,
Julius Guest and Carlos Victor. Here is· Victor's solution..

Put k =n - 1. If m =1, 20n - 15 =20k + 5. So then the possible
values of the final two digits are 05,25,35,45,65,85.

If m > 1, then (20k + 5)m = IOOr + 5m, where r is some positive
integer. It follows that the final two digits must be 25.

Here is a further set of problems for readers to try.

PROBLEM 25.5.1 (submitted by Peter Grossman)

Given any four-digit number in which not all of the digits are the same,
a sequence is generated as fo1Iows. The first term is the given number,
and each term is used to detennine the next tenn according to the
following rule:

1. Rearrange the digits of the number in.to decreasing order, to obtain a
four-digit number ABeD, and into increasing order, to obtain
another four-digit number DCBA (where A, B, C and 'D denote the
digits).

2. Subtract DCBA fromABCD.
(For example, starting with 5946, the sequence 5946, 5085, 7992, 7173,
6354, 3087, 8352, 6174, 6174, ... is generated.)

Prove that the sequence must eventually reach 6174, regardless of the
given number.

PROBLEM 25.5.2 (submitted.,by Peter Grossman)

Find all real number solutions in x and y of the equation x Y =1.

PROBLEM 25.5.3 (submitted by Julius Guest)

Sum the series
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2 9 28 n 3 -1
S =-+-+-+ +--+ .

I! 2! 3! n!

PROBLEM 25.5.4 (from an artlcle by Theodore Eisenberg in
International Journal of Mathematical Education in Science and
Technology)

Let a, b, c, d, e be digits in our usual decimal system. Prove that 7
divides the number abcde (71 abcde) if and only if it also divides the
number (abcd - 2e), i.e. 71 (abcd - 2e).

*********

The Drunken Walker and the Plastered Fly

Imagine a drunken person who starts wandering on the number line
at 0, and then moves left or right (+/-1) with probability 1/2. What is the
probability that the walker will eventually return to the starting point?

Answer: probability 1.

What about a random walk in the plane; moving on the integer
lattice points, with probability 1/4 in each of the coordinate directions?
What's-the chance ofretum-to the-starting point?

Answer: probability 1.

But what about a plastered fly, with 6 directions to move,
probability 1/6? Surprisingly, it is probable that the fly will never return
to its start.

In fact it only has probability around 1/3 of ever returning. This is
because there is so much "space" in dimensions 3·and higher.

Adapted from the Math Fun Facts website of Harvey Mudd College.
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