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EDITORIAL

Welcome to all readers our first issue of the millennium!

This. is certainly a very special year for mathematics ~ it was declared by
UNESCO as the World Mathematical Year. Celebrations are taking place all around
the world. Only a few weeks ago we had an exciting maths festival at the University
of Melbourne. We include here a report from one of our Function readers. If you
attended the festival, why don't you send us too an account of your experiences?

What does the number e have to do with the starsigns? Well, it is part of the
answer that Michael Deakin gives to the question of what is the probability that an
astrologer who enters in a room with twelve people inside, each of the twelve
having a clifferent starsign, and when asked to say which starsign goes with each
person got all of them wrong. .

We reproduce here the article by Brian Davey who introduces logic and
logical reasoning to explain what he does as a mathematician and how this comes to
be a very enjoyable activity and at the same time has extremely useful applications.

The History ofMathematics column is somehow related to the previous article.
It shows-through the example of existence theorems-how sometimes activities
undertaken by mathematicians which are regarded by many as of little value,
provide in fact the foundation to important results.

Increasingly many of us are used these days to pull down menus or other
images appearing on top of the current image on our computer screen. Have you
ever thought how this is achieved? You will find out if you read the article by Peter
Grossman about swapping values of variables.

Thankyou to the readers who sent the solutions to the problems. We include a
few more to keep you entertained until our next issue.

* * * * *
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STARSIGNS, STATISTICS AND lIe

Michael A B Deakin

Recently, as some of us sat "round after lunch, one of our number told a rather
curious story. Apparently an astrologer had entered (been invited to enter?) a room
with twelve people inside, each of the twelve having a different starsign, and asked
to say which starsign went with each person. According to the story, the astrologer
got all twelve wrong. We had a bit of fun with this, and a bit of a chuckle at the
astrologer's discomfiture, for none of us are the sort to take astrology's claims at all
seriously.

However, I got to thinking that, on a purely random basis, it is really quite likely
that this would be the-result. Think of things from the opposite angle, and for the
moment ignore the infonnation that the starsigns were all different. The probability
of getting every one of twelve starsigns right is one in 1212 , and tIlls is a very
small number indeed. In fact it works out to be 1.121566548 x 10-13 . [Here I am
assuming that each starsign is equally likely; this is not quite correct, but it is an
excellent approximation, and so from now on I will continue to use it without any
further comment.]

So if every identification had been right, the probability of this happening
purely by chance is minuscule, and we would have very strong evidence of the
astrologer's powers.

We can go beyond this simple calculation to find the probability of each number
of correct responses all the way from 12 down to zero. If n is the number of
correct identifications, then the probability of our seeing this is given by the
binomial distribution. The formula is

(12)( 1)k (1 T)12-kProb(k)= --
k 12 12

On the next page is a table of the probabilities.
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NUMBER CORRECT

12
11
10
9
8
7
6
5
4
3
2
1
o

PROBABILITY

1.12157E-13
1.48047E-11
8.95683E-10
3.28417E-08
8.12832E-07
1.43058E-05'
0.000183592
0.001731008
0.011900679
0.058181096
0.191997615

0.383995231
0.351995628

3

The table makes it clear that the probability of twelve incorrect responses is
actually quite high. In fact it's the second most likely outcome of such an
experiment. We can specify precisely this probability either by using the formula
given or else by working things out from' first principles. Either way we find

(
11 J12

Prob(O) = 12

and this number may be checked from the table above.

But we may write the number on the right of this equation in the form

and this in its turn is a special case of the number
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This last is a number that has long been studied in its own right, becaus'e as n
gets larger, its value tends towards the number lie, where e is the base of the
natural logarithms. (See the article in Function, Vol 22, Part 2, p. 57.) Now

1. =0.367879441, and this is to'be compared with the value given at the bottom of
e
the table. Although we have only reached the relatively small value n =12 we are
already within 0.016 of the limiting value of lie.

In a general scenario in which there were n houses in the zodiac, the chance of
getting all n wrong in an analogue of the experiment reported upon tends to lie as
n' gets larger and larger. This is quite a surprising result, because we tend to think'
that the probability of getting every guess wrong should be small.. In fact, it is the
second most likely outcome (after the event of getting exactly one right), whatever
the value of n.

But now let's get back to the original scenario which had twelve people in a
room and each of them with a different starsign. Let £1 be the event that all the

starsigns were different, and let £2 be the event that the astrologer got all the

starsigns wrong. We are interested in the probability of £2 given £1' The

understanding is that the astrologer will nominate 12 different starsigns.

First let us work out the probability of event £1' If we were to take 12 people

at random, then there would be 12 possible starsigns and so there are 1212 possible
combinations, as noted above. But if the starsigns are to be all different then the
first may be chosen in 12 ways, but the second in only 11, the third in 10, etc, so
that this time there are 12! allowable combinations, where 12! is an abbreviation
for the product of the first 12 natural numbers.

Although 12! is a very large number (479 001 600 to be exact), it is nonetheless
much smaller tha~ 1212 . The ratio of the two numbers, which is the probability of
event £1' is 0.000 0537 ... , so £1 is most unlikely to occur by chance. It sounds

very much as if the astrologer was being set up.

[Before we move on, it may be as well to pause here to notice a way iIi which
this probability could have been approximated quite easily. There is an approximate
fonnula for n! called Stirling's Fonnula and it goes like this.
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In our case, n = 12 and the right-hand side is 0.000 0533 ... , which is reasonably
accurate.]

Now consider the number of ways in which the 12 different starsigns· can be
redistributed among these twelve people in such a way that no-one has their correct
starsign. This is the problem known as "complete permutation" (or "derangement").
There is a formula for the number of complete permutations of n objects, and this is
what we need.

For a good discussion of complete permutations, see the website:

www.telospub.com/journal/MIER/PieleNoI5No2/piele52.html

which is part of the on-line advertising for the Computer Algebra package
Mathematica. The a'ccount given there is drawn from that published in the book
Introduction to Probability Theory and Computing by J L Snell (Prentice-Hall,
1975). Here, in different .notation, is the argument.

Let f(n) be the number of complete permutations of n objects. Then
f (2) =1, f (3) =2 and after that

f(n)=(n-1)[f(n-l)+ f(n-2)] (1)

The first two of these formulae are easy to see. Here is a paraphrase of Snell's
argument for the third.

Suppose we want to find the number of ways n peopl~ can have hats none of
which are their own. Suppose n -1 of these people have already arrived at the
"hat-swapping venue" when the last person, say Ann, arrives with her own hat, and
all the other n -1 people have other people's hats. Ann can change her hat with
anyone of the other n -1 people, and then everyone will have someone else's hat.
The n -1 people can have each other's hats in f (n -1) ways, and Ann has
n -1 people she can exchange with. Thus there are (n -1) f (n -1) ways that

this can be done.

,However, there are other possibilities. There could still be one of the group of
n -1 people with his or her own hat, but the remaining n - 2 all having other
people's hats. Thus Ann need only exchange hats with the person whose., hat still
needs exchanging and everyone will now have someone else's hat. This other
possibility can occur in (n -1) f (n - 2) different ways. There is no duplication· in

the two methods for Ann to give up her hat, since if we undo the proces.s, in the first
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case we end up with only one person (Ann) having her own hat and in the other case
two such people. These are the only ways that Ann can give up her hat; hence the
recursion relationship is proved.

This last technical description, "recursion relationship", describes how fen) IS

to be calculated. We begin with the known values f (2) =1, ! (3) =2 and then

proceed in a stepwise fashion to compute from equatio~ (1)

!(4)=9, 1(5)=44, 1(6)=265, ... ,1(2)=176214841.

Such a rule allows us to compute 1(n) for any value of n, but if n is large it

can become tedious, and moreover it lacks the immediacy and the theoretical
advantage of an explicit formula. In order to find such a formula, we Ipay proceed
as follows.

First, take as an estimate of the number of complete permutations the total
number of all permutations. This is 12! Now clearly, tbis is an overestimate as it
includes permutations that are not complete. So now let us adjust it. To do this,
consider the set of permutations that leave one element where it is (one hat with its
rightful owner) and ,scramble the rest. We may choose the single element in 12
different ways and scramble the remaining 11 in II! different ways. So our new

. guess is to be 12! - 12.11! This actually works out to be zero, so we are still not'
right. We now have too few possibilities.

It is easy to see the source of the problem In counting the permutations that left
one element in place, we also included twice all those that left two elements in their
right places. So we took away too large a number. So now we must add back in
the number of permutations that leave two -elements intact and permute the

. . W h hI· (12) 12!rernaImng ten. e may c oose t e two e ements In = ways
_ 2 (12-2)!2!

(compare the binomial formula given earlier) and permute the re~ning 10 elements

. 10' S dd b k· b 12! 10' . 12!In .. ways. owea ac In anum er (12-2)!2! ., le.2!.

But now we have gone too far the other way, because we have added in as well
those permutations that leave 3 elements unaltered and scramble the remaining 9.

12'
So now we must subtract a number that works· out to be 3!. But even now we

, 12'
have overshot our goal a~d must add back in a number that works out to be "4! .
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. 12' 12!
And now we must subtract -s!··. And so on. Eventually we add back in

12! '
and our wor1\ of correction is finally done.

Th d l' 12' 12 11' 12!. 12! 12! 12! 12! h· he en resu tIS . - . . + 2f - 3! + 4f - Sf + ... + 12r w' Ie we

can write more succinctly as I2!(!.-~+~_!+... +~J. (By convention,
O! I! 2! 3! I2!

O! =1.) More generally,

(
1 1 1 1 1 Jfen) = n! ---+---+ ... ±-

. O! I! 2! 3! n!

where the final term has a + sign if n is even and a - sign if n is odd.
Strangely this formula is not given at the website I listed earlier.

We can check that this result actually satisfies equation (1), although the
details are a little tricky. [One good approach is to use mathematical induction 
see Function, Vol 22, Part 3, p. 92.] It is, however, easy to check those extra
conditions J(2) =1, J(3) =2 .. And indeed, we can also see that J(l) =O.

So now we can answer the question asked earlier: what is the probability of
E2 given E}? (Given that the 12 people all had different starsigns, what is the

probability of the astrologer getting all 12 wrong?) The answer is
just f (12) /12! and this works out to be

1 1 1 I 1
---+---+ +-
O! I! 2! 3! I2!

a number that equals 0.367 879 to six decimal places.

More generally, we find fen) / n! and this is

!_l.+!_!+ +~
O! I! 2! 3! - n!

This number is known to tend toward IIe as n gets large. In fact it very rapidly
comes close to the limiting value of lie; to six decimal places we have
1/ e = 0.367879, the value found just a minute ago.



8 Function 1/00

So either way the poor astrologer was quite likely to be entirely wrong!

By setting up the situation so that all the starsigns were different, the probability
of total error was marginally increased, but not significantly so in the social context
here"described. However, notice that if we were computing lie, then the formula

gives significantly better accuracy than the formula

So, although the two expressions both approach lie as n gets bigger, one does so
more rapidly than the other.

* * * * *

... just as the astronomer, the physicist, the geologist, or other student
of objective science looks about in the world of sense, so not
metaphorically speaking but literally, the mind of the mathematician
goes forth in the universe of logic, in quest of the things that are there,
exploring the heights and· depths for facts-ideas, classes,
relationships, implication, and the rest; observing the minute and
elusive with the powerful microscope of the Infinitesimal Analysis;
observing the elusive and vast with the limitless telescope of his
Calculus of the Infinite; making guesses regarding the order and
internal harmony of the data observed and collocated; testing the
hypotheses, not merely by the complete induction peculiar to
mathematics,but, like his colleagues of the outer world, resorting also
to experimental tests and incomplete induction; frequently finding it
necessary, in view of unforseen disclosures, to abandon one hopeful
hypothesis or transform it by retrenchment or by enlarg.ement-thus in
his own domain, matching point for point, the processes, methods and
experience familiar to the devotee of natural science.

-Keyser, Cassius, J in Lectures on Science, Philosophy and Art
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YOU'RE A MATHEMATICIAN!

OH! I NEVER WAS MUCH GOOD AT MATHS

Brian A. Davey*

I wish I had a dollar for every time I have heard the title of this article or
something very similar to it. The fact that you're reading this indicates that you
would almost certainly not say this yourself. Nevertheless the unfortunate fact
remains that somewhere in their education most people have a negative experience
with mathematics-. which has a lasting effect upon them. Preventing this from
happening is probably the most important problem facing mathematics educators.

I don't intend to tackle this problem here. Rather, r d like to tell you about the
rest of the conversation. Typically, it goes something like this (since the natural
abbreviation for my name is BAD, let's call the other person GOOD):

GOOD:

BAD:

GOOD:

BAD:

GOOD:

BAD:

"What do you do for a crust?"

"ram a mathematician."

"You're a mathematician! Oh! I never was much good at
maths!"

"Unfortunately lots of people say that. Actually it's lots of fun.
I get a real kick out of my research."

"Fun, you've got to be kidding! And how can you do research
in mathematics? Surely it's all been done. What do you
actually do?"

"Ifyou've got three hours I'll tell you. Actually it isn't hard to
explain, but to do it justice would take a· bit of time even if
you'd already done some maths at unL If you'd really like me
to try, I'd be g~ad to; you can choose anything from a 10
minute snapshot to the full three-hour crash course."

* This article was published in Function Vol 12 Part 2.
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Some people decide not to go any further and the conversation quickly changes
to more important topics like "When will Collingwood win its next flag?" Most
people opt for the 10 minute snapshot. On three occasions I've been asked for and
delivered the three-hour crash course! What I'm about to give you is something in
between. I sh<?uld mention that I am a pure mathematician and the maths that I do is
closer to philosophy than to engineering. Consequently, somewhere along the way
GOOD usually asks, "What is all this goodfor?" I then explain that I do what I do
because I enjoy it and don't seek or expect any applications. It comes as a surprise
to me (and to GOOD) to discover that electronics engineers and computer scientists
are actually interested in these ideas-but that's not why I study them

Two-valued logic

In our everyday life we work with two-valued logic, by which I mean that any
statement which makes sense is either true or false. Statements like "Two plus
two equals four" or "There are seven days in a week" are 'true. Statements like
"Two plus two equals five" or uThere are six days in a week" are false. It might
be hard to decide whether a statement like "President Reagan is a good ,actor" is
true or false, but this is only because we haven't decided what "good actor" means.
Once this is decided the statement will be either true or false.

Let STATE be the (rather large) collection of all English statements which
make sense. Just as there are natural operations "+" (plus), "." (times) and "-"
(negative) on the number line which produce new numbers from old ones, there are
natUral operations on STATE which produce new statements from old ones: they
are "v" (or), "1\" (and) and "-," (not). Consider the following statements:

p: "] will play basketball tomorrow"

q: "It will rain tomorrow"

Then p v q is the sentence "I will play basketball tomorrow OR it will rain
tomorrow", and p /\ q is the sentence "I will play basketball tomorrow AND it
will rain tomorrow".
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Note that p v q is true provided p is true or q is true (or both): p 1\ q is
true provided both p and q are true; -.p is true exactly when p is false. This is
most easily expressed in some form of table. We let 1 stand for H is true", 0
stand for "is false"; then the truth tables for v (or), A (and) and -, (not) are as
given in Figure 1~

p q pv q
1 1 1
1 0 1
0 1 1
0 0 0

p q pA q
1 ·1 1
1 ·0 0
0 1 0

-0 0 0

p --,p
1 0
0 1

Figure 1

If you look at these tables they give us operations on the (rather small)
collection consisting of just 1 and 0: the first line of the v-table says 1 v 1
1, (which is said "lor 1 equals 1") the third line of the 1\- table says 0 A 1
0, etc. In this way we produce the more compact tables of Figure 2.

v 1 0
1 1 1
0 1 0

/\ 1 0
1 1 0
0 0 0

~
~

Figure 2

Finally we note that on 1 and 0, the operation v is just "maximum" and the
operation 1\ is "minimum" while --,x equals 1 - x. this gives us a diagramatic
way of visualizing the three operations v, A and -, on 1 and 0 as shown in
Figure 3. (The vertical line from the blob representing 0 to the blob representing
1 'is there to remind you that 0 is less than 1 when you do calculations like
o v 1 == max {O, I} == 1 and 1 1\ 0 == min (1, O} == 0.)

1

x v y == max {x, y}

x 1\ Y == min {x, y}

-,x == 1 - x

o

Figure 3



12 Function 1/00

The operations +, . and - on the number line satisfy certain natural laws

such as :

x + Y == Y + x,

x· (y + z) == x· y + x· x,

x· y == y'x,

x + (-x) == O.

Similarly the operations v, /\ and -, on the truth values 1 and 0 satisfy

certain laws known as the (rather pompous) Laws of Thought of Laws of the
Propositional Calculus and nowadays better known as the laws of Boolean
algebra. (These are named after George Boole who, in the middle of last century,
was the. first to attempt to give an algebraic formulation of the "laws of thought".)
Below are some of the laws, which hold for v, ,/\ and -, on the truth values 1

and 0: for all x, y and z we have

x v (y v z) == (x v y) v Z

xvy==yvx

xv x = x

xv(x/\y) == X

X V (y /\ z) == (x v y) /\ (x V z)

ov x == x, 1v x == 1

xv-,x == 1

X /\ (y /\ z) = (x /\ y) /\ Z (associative)

x /\ y = Y /\ X (commutative)

x /\ X == x (idempotent)

x /\ (x V y) == x (absorption)

x /\ (y V z) == (x /\ y) V (x /\ z) (distributive)

0/\ X == 0, 1/\ X == x (zero - one)

x /\ -; X == ° (complementation)

The laws state that no matter how you put in the truth values 1 and 0 for x, y
and 'z, when you calculate the left-hand-side and th~ right-hand-side they will be
equal. When checking the distributive law x /\ (y V z) == (x /\ y) V (x /\ z) there

are 8 possible ways of assigning 1 and 0 to the variables x, y and z; as the
truth table below shows, in each of these eight cases the left-hand-side and the right
hand-side are equal. (complete the proof by using Figure 2 or Figure 3 to calculate
the missing entries. Then go on and, construct the truth tables for each of the other
laws.) You should also be able to see what these laws mean back on the collection
STATE of statements. For example, the commutative law x /\ y == Y /\ X says

that if p and q are statements, then the compound statement p /\ q (ie H p and

q") has exactly the same meaning as the compound statement q /\ P (ie "q and
p").
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x y z X A (y V z) (x A y) V (x A Z)

1 1 1 1 1
1 . 1 0 1
1 0 1 1
1 0 0 0 0
0 1 1
0 1 0 0
0 0 1
0 0 0 0 0

13

This is where I come in~ I am an algebraist. I study algebraic systems like the
number line with its operations +,., and - (high-school algebra) .and equally

well the collection STATE with its operations v, A and -, or the much smaller

algebra of truth values 1 and 0 with the operations v, A and -, (Boolean

algebra). Most of the questions that I would consider are unfortunately beyond the
scope of this short article, but here are a couple of starters.

Question 1

We have listed 18 laws of Boolean algebra. Is this list minimal? (The list will
be minimal provided none of the given laws follows from the others.) The answer is
certainly "no". For example, the idempotent laws follow from the absorption laws:

x = X 1\ (x V x)

:. x v x = x v (x A (x V x»

= x v (x A y)

=x

(absorption with y = x)

(where y = x v x)

(absorption)

As a somewhat trickier exercise you might like to show that, given the
associative, commutative, idempotent and absorption laws, each of the distributive
laws follows from the other. Thus both idempotent laws and at least one
distributive law can be deleted. Reducing the list of 18 laws to a minimal list is a
non-trivial exercise.
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Question 2
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We. have listed 18 laws ofBoolean algebra. Is this list complete? That is,
given any other law of Boolean algebra (which has been shown to be true by
working our the corresponding truth table), does it follow (can it be proved) from
the 18 laws already listed? (For example, below on the left is the truth table
calculation (with some gaps for you to fill in) which shows that
(x /\ y) V (x /\ -. y) = x is a law of Boolean algebra, and on the right is a

proof that it follows from the original list of laws.) The answer to this question is
"yes". Again this is not at all obvious and required, for example, a careful definition
of what we mean by a "proof' like the one on the right-hand-side of the examples
below.

x y -y (x /\ y) V (x /\ -. y) x

1 1 0 1
1 0 1 1 1
0 1 0 0 0
0 0 1 0

yv(-.y)=l

:. x /\ (y v -.y) =X /\ 1

:. (x /\ y) V (x /\ -. y) =x .

At this state GOOD usually throws in the first "What's all this good for?" To
which I'm able to reply that a computer is "just" a massive collection of two-valued
switches. Each switch is either closed, and so lets an electrical current flow through
it, ( this corresponds to the truth value 1), or open, and so does not let the current
flow through it (this corresponds to the truth value 0). Connecting switches in
parallel corresponds to the operation v while connecting switches in series
corresponds to the operation /\. Thus Boolean algebra is used to determine the
flow of the current through the computer. Boolean algebra is fundamental to both
electronics and computer science. The mention of applications to computing always
seems to placate GOOD and we are able to continue.

Three-valued logic

I hope b.y now we have taken. two steps forward and you have some feeling for
the sort of mathematics which I, as an algebraist do. But we must also take one step
backwards, for I have to admit that everything we've discussed so far about 2
valued logic and Boolean algebra was worked our late last century and early this
century and .(therefore) dates from before my birth. (It is important to note that it
also predates the invention of the computer which to the modern pragmatist, like our
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friend GOOD, is Boolean algebra's raison d'etre). So what sort of algebra do I
actually do? Read. on.

There are various philosophical objections to two-valued logic. The most
contentious of our 18 Hlaws of thought" is

xv-.x=l

which says that is p is any meaningful statement, then either p or its negation -,p
is true. Put more simply, this says that any meaningful statement is either true or
false -this' is known as Hthe law of the excluded middle" since it allows no
middle ground between the two extremes of falsity and verity (= truth). Consider
again the statement

q: "It will rain tomorrow"

It could well be argued that, while we will know by the end of tomorrow whether
the statement q is true or false, at the moment it should be assigned some other
truth value which stands for "don't know". We shall return later to this three
valued logic in which the law of the excluded middle fails. First let's look at a more
subtle argument against the law of the excluded middle.

Consider the following proof that 1/0 is not a number. (In other words, you
can't divide by 0.) In this proof 0 and 1 are representing the numbers "zt?ro" and
"one", not the truth values "false" and "true". We need the following facts about
numbers.

(a) If y is any number, then y ·0 = O.

(b) If x and l/x are both numbers, then (1/ x) . x = 1.

Let p be the statement ((1/0 is not a number". We wish to prove that the
'statement p is true. Suppose that p is false; then 1/0 is a number. Hence

o = 1/0.0 by (a) with y = 1/0,

= 1 by (b) with x = 0.

Thus the assumption that p is false leads to the contradiction ° 1.
Consequently p is not false; that is, p is true.
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This fonn of argument is very common within mathematics but quite rare in
everyday arguments and so may seem a little strange to you. It is called reductio
ad absurdum or simply proofby contradiction. In order to show that a statement
p is true, we show that the assumption that p is false leads to a contradiction (like
o = 1) and hence p must be true. This definitely uses the law of the excluded
middle, since we need to know that if p is not false then it is true.

There is a school of philosophical thought known as intuitionism. Intuitionists
believe that if I wish to prove t~e existence of some thing ~r other, then I must
actually produce it; in a sense they insist that I be able to walk into the room and
show it to them - At first sight, that probably seems like a perfectly reasonable
viewpoint. But if you accept it then you must, in general, reject proofs by
contradiction (and consequently you must also reject the. law of the excluded
middle), as the following example illustrates.

In the game of Hex, which is marked by Parker Brothers Inc., two players, black
and white, take turns to place pieces of their colour onto a diamond-shaped board
with the aim of forming an unbroken chain of their pieces from one side to the
opposite side. It is quite easy to show that there can never be a draw. Our intuition
would tell tis that the first player should have an advantage and indeed it can be
proved that there is a winning strategy for the first player; that is, there is a set of
instructions which, if followed by the :first player, will always lead to a win for that
player. Unfortunately, the only known proof of the existence of this set of
instruction is a proof by contradiction-if we suppose that no such set of
instructions exists, then we can derive a contradiction. An intuitionist will not
accept such a proof, since the set of instructions has not actually been produced. (A
detailed discussion of the game of Hex along with a sketch of this proof may be
found in Martin Gardiner's "Mathematical Puzzles and Diversions", published by
Pelican).

The two-valued logic based on the laws of Boolean algebra is known as
classical logic; all others are known as non-classical logics. The non-classical
logic which replaces Boolean algebra in the intuitionist's view of the world is an
important one, but is too complex to describe here. Let's now return to the "non
classical, three-valued logic with truth values "true", 'false" and "don't know"
to which we alluded earlier.
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As before, let 1 stand for "is true" and 0 stand for "is false", and now let
Vz stand for "don't know". We still have the operations v, /\, -, standing for

"or", "and", u not" and our first task is to work out their three-valued truth
tables, as we did for the two-valued case back in Figure 1. On 1 and 0 the
operations v ,.1\, and -, should act exactly as they did for two-valued logic.

What about p v q if P is true and q is don't know, for example? Since p v q
will be true provided at least one of p and q is true, in this case p v q will be
true since p is true. Similarly, if p is true and q is don't-know, then p /\ q must
be don't-know, since p /\ q is true only if both p and q are true. If p is don't
know, then -.p must also be don't-know. Arguing in this way we obtain the truth
tables given n Figure 4. As in the two-valued case we can

p q pvq
1 1 1
1 Vi 1
1 0 . 1

Y2 1 1
Vz Vi Vz
~ 0 VZ
0 1 1
0 Vz Y2
0 0 0

p q P/\q

1 1 1
1 VZ ~

1 0 0
Vz 1 Vz
Yz VZ Vz
VZ 0 0
0 1 0
0 V2 0
0 0 0

p "p
1 0

Vz VZ
0 1

Figure 4

View v, /\ and -, as operations on 1, V2, 0 as shown in Figure 5.

v 1 Vz 0 1\ 1 Vz 0 1 Yz 0
1 1 1 1 1 1 Yz 0 -, 0 Yz 1

Vz 1 Yz V2 Yz ~ V2 0
0 1 V2 0 0 0 0 0

Figure 5

Note that, as in the two-valued cases, on 1, 1/2 and 0 the operation v is·
((maximum" and the operation /\ is {{minimum", while ...x equals 1- x. This

leads to the diagrammatic visualization of v, /\ and -, on 1, 1/2 and 0 shown

in Figure 6.
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x v y == max {x, y}

x A Y = min {x, y}

-.x == 1 - x
1/2

o

Figure 6

Function 1/00

The law of the excluded middle certainly fails here, since

1/2 y' -.1/2 == 1/2 y 1/2 == 1/2 -:1= 1.

Nevertheless the assocIatIve, commutative, idempotent, absorption,
distributive and zero-one laws still hold. (You ~ould check these laws and the
laws given below by writing down all the three-valued tables, but it's slicker to
observe each of these laws expresses a natural property of max and min.) In order
to obtain a complete set of laws for our three.:.valued logic (in the sense of question·
2 from the previous section), we must replace the complementation laws by

-,(x v y) = -,X /\ -,y -,(x /\ y) = -,x v -,y)

-,(--,x) = x

(x /\ -,x) /\ (y V -, y) = X /\ -, X

(de Morgan)

Cdouble negation)

"CKleene)

The de Morgan laws are named after the 19th century mathematician Augustus
de Morgan and may be familiar to you from set theory, while the Kleene law is
named after the logician Stephen Kleene, who introduced this three-valued logic
in 1938. As a slightly tricky exercise you might like to show .that from these 20
laws it follows that -,0 == 1 and -,1 = O.

In my research I have developed a general theory which applies, in particular,
to this three-valued logic and yields interesting and useful information about it.
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About now I either discover that GOOD is a closet philosopher and is
fascinated by the concept of many-valued logics (Why stop at 3?) or I hear yet
again "What's all this good for?" Well, as it happens, back in 1980·when I was
doing this research, I was amazed to discover that there was a Japanese electronics
engineer working on the same topic. Using completely different methods~ we had
obtained overlapping results. For me it was a piece of pure research motivated by
a simple quest for knowledge, while for him it was a practical piece of research
related to the building of computers based on three-valued switches rather than the
usual two-valued ones.

BAD: "So now you've got some idea of the sort of things I work on."

GOOD: "Are there many algebraists who work on non-classical logics?"

BAD: "There aren't many who work exclusively on them.. In fact I tend
to use non-classical logics as testing grounds for general algebraic
results. I actually spend most of my time doing research in
universal algebra."

GOOD: "What on earth is universal algebra?"

BAD: "If you've got three hours I'11 tell you ..."

* * * * *

Don't Be Anxious Be Subtle

"Histories make men wise; poets, witty; the mathematics,. subtle;
natural philosophy, deep; moral, grpve; logic and rhetoric, able
to contend."

-Francis Bacon

"Anxious inquiry into ... mathematical problems leads away from
the things of life, and estranges men from a perception of what
conduces to the common good".

-Juan Juis Vives

* * * * *
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NEWS

The 2000 Maths. Festival at Melbourne University

Andrew Thornton, Mt Eliza

I just don't know where to start! It's been four days of imagination, hands-on
activities, speeches across a spectrum of sheer earnestness to complete frivolity, and
throughout the "festival" the very enjoyment that this word suggests. The festival
was in the old arts building at Melbourne University; a building that took me an
hour to find, so I inform you that any theory abo~t mathematicians such as myself
'always' having good spatial map-reading abilities is apocryphal nonsense! The
festival is part of the wider World Mathematical Year 2000, in which similar
festivals and conferences will occur throughout the world.

The four days, from January 10 to 13 inclusive, had a theme unique to each day.
Monday, sponsored by the Australian Mathematical Society, covered pure and
applied mathematics in general. Tuesday, sponsored by the Institute of Actuaries
of Australia, was designated "young mathematician's day". for students from
primary and secondary school. .Wednesday, sponsored by Hewlett Packard, was
mainly about computer and calculator extensions for mathematics. Thursday's
theme, sponsored by the Australian Computer Society, was along similar
technological lines. Without any "cash for comments", I used one of. Hewlett
Packard's graphing calculators in a hands-an-lecture on the Wednesday.' I had
never touched one before, yet I was amazed at how easy it was to use! The lecturer,
who is a mathematics teacher in Brisbane, said that in Queensland schools it is
normal for year 9 students to use a graphing calculator daily in classes.

He was one of many teachers who lectured at the Festival. Indeed, if there was
one theme that occurred throughout all four days it was that of mathematics
education. Tertiary education-Professor Elijah Polak from the University of
California gave a tutorial about engineering mathematics; applications to thermal
devices for the treatment of prostate cancer, buildings that can withstand
earthquakes, aeroplane design and much more. The mathematics was extremely
advanced. It was too advanced for me at times! Secondary education-Bevan
Penrose, a math teacher at Marsden State High School, outlined a teaching method
th~t he'd developed. Marsden, a "rough, outer suburban Brisbane school" in which
he spends the majority of his time in "student crowd control" (newsspeak for a
bouncer?) sounds like quite a teaching challenge. Nevertheless, his method, which
he calls constructivism, is achieving astonishing results. Students who "have never
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which he calls constructivism, is achieving astonishing results. Students who
"have never handed in a single assignment in their lives" are, after his method has
been applied, actually asking for more assignments and passing their maths
subjects comfortably. Primary education - William Spear from the University of
Nevada discussed the subtleties of teaching mathematics at a primary school level.
For instance, he asked everyone in the audience to draw a rectangle.· Nearly
everyone drew the "standard" rectangle on its long side. We are all taught in
primary school that this is the premier rectangle! William Spear said correctly
that mathematically a square in also arectangle.

The 2000 Mathematics Festival was a thoroughly enjoyable experience! Every
person who attended received a compendium of all the lectures, so any missed
lectures can at least be read about. My favourite lecture was the "Coradi
Intergraph" talk. Before electronic calculators were available, in the 1940's, the
Coradi was a non-electronic manual device that performed calculus. I had never
heard of this device, which looks like a giant l metre long pair of compasses.
Melbourne University owns one such device and the lecturer placed it on the table
in front of us. A sheet of paper is placed underneath it, and a pencil is put into a
holder, and the pencil draws the desired integral answer upon the paper.

* * * * *

We mathematicians who operate with nothing more expensive
than paper and possible printer's ink. are quite reconciled to the
fact that, if we are working in a very active field, our discoveries
will commence to be obsolete at the moment they are written
down or even at the moment they are conceived. We know that
for a long time everything we do will be nothing more than the
jumping off point for those who have the advantage of already
being aware of our ultimate results. This is the meaning of the
famous apothegm of Newton, when he said, "If I have seen
further than other men, it is because I have stood on the
shoulders of giants."

-Norbert Wiener
in I am a Mathematician, Garden City: Doubleday, 1956.

* * * * *
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Letter to the Editor

Dear Editor,

I found D F Charles' article Ruler and Compass Constructions very absorbing
and enjoyed his last illustration in particular as I have not seen it before. His

construction for ,J; valid for 2 < x < 4 was also intriguing. But since two
further constructions were needed for 0 < x < 2 and x > 4, I was wondering
whether there could be a single construction which is valid for all positive x.
Indeed there is!

Construction

First draw a line segment BDC with BD =1 and DC =x. Next, bisect this
segment at . M. With BM as radius erect a semicircle with Be as diameter, as

shown in Figure 1. Lastly, construct DA perpendicular to Be and intersecting
the circle at A. Then· AD = ,J;. This is valid for all x > O.

b

M
.....-----x----..--.

4--,;.....-.-----a-------+

Figure 1
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We first realise that ~ ABC must be right angles at A as its hypothenuse is

the diameter of our semicircle. So we have three right angled similar triangles:

11 ABC, 11 ABD, 11 ADC

For 11 ABC we have by Pythagoras

(1)

similarly for Ll ABD we find

(2)

And in Ll ADC we obtain

(3)

Adding (2) and (3) yields

Using (1) in (4) provides

x 2 + 2x + 1 = 2AD 2 + x 2 + 1

which simplifies to AD = .JX , valid for x > o.

* * * * *

(4)

(5)

It is easier to square the circle that to get round a mathematician.

-A De Morgan in Budget ofParadoxes, London, 1872

* * * *' *
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HISTORY OF MATHEMATICS

Existence Theorems

Michael A B Deakin

It would be misleading to describe the biologist J B S Haldane as a
mathematician, but equally it would be a mistake to ignore his important and
interesting mathematical work. He lived from 1892 to 1964 and is usually referred
to as being a biochemist, a physiologist and a geneticist. In all these fields he w.as
concerned to place the Science on a firm mathematical footing, an endeavour he
himself would have referred to as "quantitative biology". We begin with one of his
biomathematical investigations. In a series of scientific papers published over the
years from 1924 onwards, he explored the consequences of natural selection in the
light of Mendel's genetic discoveries.

Suppose a gene can exist in either of two forms (the technical term for these is
"alleles"), A and a. Because individuals. each possess two copies of each gene,
three possibilities exist: AA, Aa and aa. Suppose (as often is the case in practice)
that the combinations AA and Aa give rise to indistinguishable and normal
individuals, but the combination aa is lethal. We then have the case of a fatal
genetic defect. To analyse this case further, suppose that of the genes present at the
nth generation, a proportion qn are of the "bad" type. We may now follow the
extinction of this form by means of a difference equation

This equation has the solution

where qo represents the initial proportion (before any generations have been

subjected to the force of natural selection).

However, this is a very special case, and in more general situations, the
difference equation has a more complicated form, and it is no simple matter to write
down a formula for the solution.
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It was this situation that Haldane later referred to when he wrote of his
disappointment with the mathematicians he consulted over his problem.

He wrote:

the few professional mathematicians who have interested
themselves in such matters have been singularly unhelpful. They are apt
to devote themselves to what are called existence theorems, showing .
that the problems have solutions. If they hadn't, we shouldn't be here,
for evolution would not have occurred."

There are problems in arguing (as Haldane here is) from applications of
mathematics to mathematics itself, but I won't go into this here. Rather let me
make the point that the general denigration of existence theorems is more than a
trifle unfair. Existence theorems have a very important place in mathematics.

To see this, consider the last two of these history· columns. My most recent
dealt with the attempts to prove Euclid's "parallel postulate" from his other
axioms, and we saw that it turned out that no such proof was possible. The
column before that described Wantzel' s proof that the classic problem of angle
trisection was likewise impossible in the terms in which it .had been posed; there is
no classic ruler and compass construction that can trisect a general angle.

We might refer to these results as "non-existence theorems"! They are
clearly very important and tell us not to waste our time in pursuits that ultimately
tum out to be futile.

One of the most famous of all recent mathematical advances could likewise
be characterised as a "non-existence theorem". This is Fermat's Last Theorem,
whose story John Stillwell told in Function, Vo118, Part 2. This tells us that if a,
b, c and n are positive integers, then there is no solution to the equation

if n> 2.

So an existence theorem at least assures us that we are not off on a wild goose
chase!
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At the high school level of mathematics, perhaps we see the need for
existence theorems first when we encounter surd equations, equations involving
square roots. Take as an example the equation

I leave it to the reader to solve this equation and to check that there is a single
solution x =1, and to check by substitution that this actually is a solution. But
now compare this with the equation

JX--Jx+3 =3,

which is readily seen to have no solution.

[When I first encountered surd equations, I read in the textbook we then used
the perceptive remark that equations were "statements of hope" rather than
"statements of fact". I now wish I could recall who it was that made this very
insightful remark, and where it was said. It is certainly very much to the point in
the context of this column: things we hope for have to be shown to be realistic
expectations.]

Readers will also be familiar with the situation with quadratic equations.
Suppose we have the equation

ax2 +bx + c =0 .

If we think of x as being a real number, then this equation has exactly two

(distinct) real roots if b2 > 4ac, one real root if b2 = 4ac, and none at all if

b2 < 4ac.

Ifwe move on to cubic equations, the situation gets more complicated. I will
not go into it in all its detail. However if we take the cubic equation

ax3 +bx2 +cx + d = 0 ,

we can easily show that there is necessarily at least one real root. The· simplest
way to show this is to divide through by a (which is not zero, because if it were
we wouldn't have a cubic!) and then to show that, as x increases from large
negative values to large positive values, the expression on the right-hand side goes
from negative to positive and so, for some suitabl,e x, must be zero.
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A similar argument shows that any polynomial of odd degree must possess at .
least one real root.

This information is of little immediate help in solvingthe equation, but it can
be used to assist in the search for solutions. But now con_sider what happens if we
look not for real solutions, but rather for complex ones. Take a general
polynomial equation

where we have written z in place of x to emphasise that it is to be thought of as
complex, and the symbols an' etc are just shorthand for "the coefficient of zn"

and so on.

In fact we may simplify this last equation a bit by supposing we have already
divided through by an (as we envisaged in the simpler, cubic, case) and so may
write the general polynomial equation as

(1)

We now have a remarkable existence theorem first proved by Carl Friedrich
Gauss (1777-1855), one of the very greatest of all mathematicians ever to live. So
important is this theorem that it is· now referred to as "the fundamental theorem of
algebra". It states that equation (1) necessarily possesses a solution. The proof is
difficult, but it has distant affinity with the earlier proof that cubic equations
possess real roots.

Once the fundamental theorem is proved, we may deduce some remarkable
and beautiful consequences. If equation (1) has a root, call this root a'I (short for

"first root"). It is now possible to factorise the left-hand side of equation (1), and
so reach

(That such factorisation is possible was known before Gauss, and is much easier to
prove than is the fundamental theorem.)

But now this new form of the equation may be split into the two possibilities

z =a l and zn-l + bn_2zn~2 + ... + bIz + bo = o. The first of these possibilities
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retrieves the root we have already found; the second is another polynomial
equation of the same form as equation (1), so that it too must obey the
fundamental theorem. So this new equation has· a root which we can call a

2
(for

"second root").

And so we may proceed, until we have found exactly n roots (not necessarily
distinct, however). We thus have the result:

In complex algebra, every polynomial equation of degree n has
exactly n roots.

I hope you agree with me that this is a very elegant result!

Indeed I hope you agree with me also on a more general point: that existence
.theorems have an important place in mathematics. . All the same, Haldane's
frustration' with them has some force. Let me illustrate this with a brilliant piece
of mathematics, which nevertheless contrives to leave us unsatisfied. It has
appeared before in Function, but it bears repeating.

We shall set out to show that there are irrational numbers a and b such that

ab is rational. The proof asks us to think first about the number .fi.J2. Now
either this number is rational or else it is irrational.

If it is rational, then we have found what we set out to discover and so we
need look no further.

If on the other hand, it is irrational, then we may set a =.j2J2 and put

b =- .fi, and then form ab =- (42.fi).fi ==.fi2
== 2. And this is clearly rational.

So either way, we are done.

However, this proof, elegant as it undoubtedly is, tells us nothing about the

number ..j2J2 itself. We are left wondering whether it is irrational (as we might
suspect) or is, after all, rational. The proof is silent on this matter, and we need to

use other (and difficult) means to discover that -J2J2
is, after all, irrational.

So perhaps we can retain a sneaking sympathy with Haldane· and his
impatience with existence theorem.
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COMPUTERS AND COMPUTING

An XOR-cise in Swapping

Peter Grossman

Swapping the values stored in two memory locations is a fundamental task in
computing. For example,- many of the algorithms used for sorting records (into
alphabetical or chronological order, say) operate by carrying out a sequence of
swaps, where each swap exchanges a pair of records.

Let's suppose we have two variables, x and y, whose values we wish to swap.
The first thing we might think of doing is the following:

1. x f- Y
2. Y f- X

The left-pointing arrow is used here to denote assignment: x f- y means "take
the value stored in y, and store it in x". (Many programming languages use an
ordinary equals-sign for assignment; however, the arrow serv~s as a useful reminder
that assignment is a process, not a statement that t~o quantities are equal.)

Of cours'e, this simple-minded approach won't work. The problem is that the
value originally stored in x is lost in Step 1 when x is assigned a new value. Then,
in Step 2, the value assigned to y will be the new value of x (i.e., the original value
of y), rather than the original value of x.

A solution to the problem is readily found: use a temporary variable, t, to store
the original value of. x. The modified algorithm looks like this:

1. tf-X

2. x f- Y
3. y f- t

This procedure is widely used, but is it the only way of carrying out a swap? In
particular, can a swapping algorithm be constructed that avoids having to use extra
memory by creating a temporary variable? If the only operation used in the
algorithm is assignment, then the answer to this last question is no. If other
operations are permitted, however, it turns out that it can be done. There is a method
for swapping two records without using any extra memory; it uses the fact that all
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data is stored in a computer as strings of bits (zeros and ones), and it employs a
logical operation known as an exclusive-or that can be applied to the bits..

The word "or" is used in .English in two ways. If someone offers you tea or
coffee, you naturally assume that you may have one or the other, but not both! This
is an example of "or" used in the exclusive sense. On the other hand, if a discount
is available to anyone who is a student or a senior citizen, you would expect the
discount also to be available to someone who is both a student and a senior citizen.
In this instance, "or" is used in the inclusive sense. In both computing and
mathematics, "or" is always understood to mean inclusive-or, unless the contrary is
stated explicitly. Thus,. if A and B denote any two propositions, then "A or B"
(denoted A v B) means "either A or B or both A and B". If we mean exclusive
or, we must say "exclusive-or". Exclusive-or is sometimes called "xor", and is
denoted by Ee: thus, A EB B means "either A or B but not both". The properties of
"or" and "xor" are summarised in the truth table in Table 1, in w~ch 1 denotes

true and 0 denotes false.

A B Av·B AEeB
0 0 0 0
0 1 1 1
1 0 1 1
1 1 1 0

Table 1

We have introduced the exclusive-or operation by giving 0 and 1 a particular
interpretation: the truth values "false" and "true". However, a 0 or a 1 stored· in the
memory of a computer could mean any of a number of things: it could be a bit in the
binary representation of a number, part of the code for a character in a piece of text,
part of a graphic image, or indeed one bit of information of any kind. Regardless of
whether 0 and 1 denote truth values or something else, we can use Table 1 to define
an operation, denoted by EB and still called "exclusive-or". That is what we will do
from here on.

Now suppose we want to swap two variables, x and y, where each variable
stores just one bit (0 or 1). The following algorithm does this, without using a
temporary variable:

1. x~xEey

2. y ~x Ee y
3. x ~x EB y
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You can convince yourself that the algorithm works, by checking each of the
four possible combinations of values of x and y. For example, if x =0 and y =1

initially, then x and y take the values shown in Table 2 as the algorithm proceeds.

x y
Initially 0 1

After Step 1 1 1
After Step 2 1 0
After Step 3 1 0

We can see from the last line of Table 2 that the values of x and y have been
swapped in this case. The other three cases are left for you to verify for yourself.

What should we do if x and y contain strings of bits, rather than just a single
bit each? (We assume x and y contain the same number of bits, because if they
didn't, it would not be meaningful to swap them) The answer is simple: apply the
algorithm "bitwise". In other words, if x and y contain the bit strings XIX2 ...Xn

and YIY2 .. ·Yn respectively, then xEBy is the bit string (X1EeYl)(X2EBY2) .. .(xnEBYn).

The exclusive-or method of swapping is not generally used in algorithms for
sorting. There is another situation, however, in which exclusive-or swapping is
commonly used. Suppose a temporary object (such as a menu, a message box, or
even the mouse pointer) is to appear on your computer screen on top of the current
screen image; As soon as the object is removed, the original screen image should
reappear. This is achieved in the following way. The screen image is stored in a
memory location called the screen buffer. The temporary object is stored in another
memory location called a backing store. To show the object on the screen, the
contents of the part of the screen buffer where the object is to appear is swapped
with the contents of the backing store. To remove the object from the screen, the
contents of the two memory locations are swapped again. For efficiency reasons,
this swapping is generally implemented in the computer's hardware. This is done
using the exclusive-or method, since an exclusive-or operation is simple to
implement in a digital circuit, and, unlike a purely assignment-based swap, it avoids
the need to use a third memory location.

* * * * *

Fair shares
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PROBLEM CORNER

PROBLEM 23.4.1 (from Crux Mathematicorum with Mathematical Mayhem)

Prove that if m, n are natural numbers and n ~ m2 ~ 16, then 2
n
~ n

m
.

SOLUTION

Let n, m be natural numbers with n ~ 1ft 2 ~ 16. Let x =~, ·we show that

x 2 s2x
• From this result it then follows that nm s(x2

) x s(2X
) x =2n

• In order to

establish x 2 ~ 2x we note that

2 21nx 2 x
x S 2x

¢::} 210gzx s x ~ -- s x ~ --" < --
In 2 In 2 - In x

Now if we define f(x) = x
, then f'ex)

In x-I
so that f' (x) is

lnx (In x) 2

certainly positive for x~4. But f(4)=~ so we have f(x) ~
2

--
In 2 In 2

for x :2: 4. This establishes the last inequality above and hence we have

established that x 2 ~ 2x for x ~ 4.

Other solutions were received from Keith Anker, Carlos Victor and Julius Guest.

PROBLEM 23.4.2 (from Crux Mathematicorum with Mathematical Mayhem)

A certain. country contains a (finite) number of towns that are connected by
unidirectional roads. It is known, that, for any two such towns, one of them can be
reached from the other one. Prove that there is atown such that all the remaining
towns can be reached from it.
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Let. S (n) be the claim that if a country has n towns connected by unidirectional
roads with the property that for any two towns one of them can be reached from the
other, then there is a town that can reach all other towns. We establish that Sen) is
true for all n by induction.

The resuI~ is immediate for the cases with n ~ 2.

For the induction step we assume that S (n) holds for all n < k and we show
that S(k) also holds. Let t1'" tk be the towns, and let M be the set of all towns
(excluding t1) that can be reached from t} , .and let N be the set of towns that

cannot be reached from t}. So every town in . N can reach t1 and there is no

route from a town in M to a town in N. If N is empty then t1 is the desired

town. If N is not empty then for any two towns in N, one can be reached from the
other and furthermore this route cannot include a town in M. The number of towns
in N is less than k so we can apply the induction hypothesis to give us a town t*
that reaches all towns in N. This town also reaches t1 so all towns in M can also

be reached from t*. This completes the induction step.

Other solutions were received from Keith Anker and Carlos Victor.

Problem 23.4.3 (adapted from Crux Mathematicorum with Mathematical
Mayhem)

An "n-m party" is a group of n girls and m boys. An "r- clique"is a group
of r girls and r boys in which all of the boys know all of the girls, and an "r
anticlique" is a group of r girls and r boys in which none of the boys knows any

of the girls. Show that there is a number rna such that every 9-mO party contains
either a 5-clique or a 5-anticlique.

SOLUTION

Since there are 9 girls present each boy can either nominate 5 girls he knows or
5 girls unknown to him.· Suppose that to each boy we associate an ordered pair, the
fITst member being a subset of 5 girls all of whom he knows or all of whom he does
not know, and the second member being a zero or a one according as the girls are
known to him or not known. There are 9Cs * 2 =252 possible pairs. Now if there
are more than 252*4 = 1008 boys present then at least 5 boys must be associated
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with the same ordered pair, and so that if rno = 1009 there must be either a 5-clique
, or a 5-anticlique.

Other solutions were received from Keith Anker and Carlos Victor.

PROBLEM 23.4.4 -(Part (a) proposed by Julius Guest, East Bentleigh)

(a) Evaluate

(b) Generalise the result for the integral in pan: (a) to

1 x2m-2
J 2 dx, where rn=1,2,3, ...
O(l+x )m

SOLUTION

(a) (Julius Guest, East Bentleigh)

4

The substitution x = tan () leads to the integral fsin 4 ede, and then using
o

sin 4 0 = !(cos40-4cos20+3), we find Isin 4 0dO
8 0

3Jr-8

32

Solutions were also received from Keith Anker, J.A. Deakin, Bill Tetley and
Carlos Victor.

(b) There were two approaches· to this problem, one using the substitution
x = tan (), the other employing integration by parts.

(i) Using the same substitution ~s in part (a) leads to the integral
1f

4 .

JSin 2m-2 () d (). This can readily be evaluated for any positive integer m by
o

the well known reduction fonnula for Jsinned () .
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(ii)
d 2 2x(1-m)

Observing that - (1 +x ) 1-m = 2.' for m > 1, we can write the
dx (l+x )m .

integral in the fonn 1m = 1 jx2m-3~(l+x2)1-mdx and then
2(l-m) 0 ·dx

integration by parts leads to the recurrence formula.

2m-3 1
1m = --I m-l m>l.

2m-2 2m (m-I)

This recurrence formula allows us to find 1m for m > 1 by using the case
1C

11 =-,
4

Solutions were received from Keith Anker, Carlos Victor, l.A. Deakin, Bill Tetley
and Julins Guest.

PROBLEM 23.4.5 (adapted from 1986 Qualifying Round of the Swedish
Mathematics Olympiad)

1 1

Prove that (19990 1999 < (2000!) 2000 .

SOLUTION (J.A. Deakin, Shepparton, Victoria)

Solutions were also received from John Barton, Carlos Victor, Keith Anker.
Another approach based on Stirling's approximation was proposed by Julius Guest.
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PROBLEMS

PROBLEM 24.1.1 (from The AMATYC Review)

Function 1/00

Let P be prime number. Prove that p is of the form 8n ±1 if and only if there
exists an integer k such that p = ..J48k +1 .

PROBLEM 24.1.2 (from Mathematics and Informatics Quarterly)

Let n ~ 2 be a positive integer and let Pen) denote the product of the positive

divisors (including 1 and n) of n. Find the smallest n for which Pen) = n10 .

PROBLEM 24.1.3 (from Mathematics and Informatics Quarterly)

Using my pocket calculator I divide one positive integer by another giving answer
0.5876578. Both integers were less than 1000. What were the two integers?

PROBLEM 24.1.4 (from Mathematical Spectrum)

f3 dx
Detennine the value of the definite integral

2-J(5-x) +-JCx-1)

* * * * *

And who can doubt that it will lead to the ·worst
disorders when minds created free by God are
compelled to submit slavishly to an ol)tside will? When
we are told to deny our senses and subject them to the
whim of others? When people devoid of whatsoever
competence are made judges over experts and are
granted authority to treat them as they please? These
are the novelties which are apt to bring about the ruin
of commonwealths and the subversion of the state.

-Galileo Galilei, in the margin of his own
copy of Dialogue on the Great World Systems

* * * * *
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