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EDITORIAL

Welcome to our readers to our last issue of this millennium!

In this issue of Function there are articles for all mathematical tastes. The
first article, by R King, deals with a not so well known ingenious geometrical
representation of reduced- fractions, and relates to a previous article on Farey
fractions; the diagram on the front cover is from this article. For those interested
in the mathematical aspect of games, we include an article by R D Coote, who
analyses the hierarchies of the different types of hands in the game of poker and
the likelihood of their occurrences. If you have a bent for algebra, then the
article -by Z Stare about inequalities involving the harmonic, geometric and
arithmetic means is for you. The last feature article is a discussion by Peter
Grossman about the controversial question of when does the millennium end;
his conclusion is that we should keep the fireworks and champagne packed
away for another year ...

The History ofMathematics' column is about Euclidean and non-Euclidean
geometries, and the remarkable results on geometries on curved surfaces given
by the riineteenth-century mathematician Eugenio Beltrami.

The last article of this millennium of the Computers and Computingcolumn
had to be about the so called Millennium Bug. You will find there some
background to the problem that has received so much media attention and is
costing millions of dollars to fix. Reference is also made to a website with
information about what you should do with your personal computer.

Finally, we also include solutions to previously included problems and a few
new problems to keep you entertained until the next millennium.

Happy reading!

* * * * *
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FORD CIRCLES

Rik King, University of Western Sydney

Readers would be familiar with the idea of reduced fractions - rational
numbers where there is no possibility of cancelling to a lower fonn (e.g. 3/7 but
not, of course, 3/9). Not so well known is an ingenious geometrical representation
of reduced fractions, which was discovered in 1938 by an American, L R Ford.
The diagrams constructed by him have become known subsequently as Ford
circles.

o

Figure 1

Let us begin to picture Ford circles in the following way. Suppose we have

some positive fraction ~ which is reduced, and that, without loss of generality
b

b > O. This fraction is laid out along the x-axis and a circle is drawn which is

tangent to the x-axis at the point (~, 0Jand lies above the x-axis. The circle is

chosen to be ofradius~, and consequently, it is centred on thepoint (~,~J.
2b b 2b

Such a circle, shown in Figure 1, is known as the Ford circle corresponding to the

fraction ~. In a similar way, for another reduced fraction ~, a circle of radius
b d

_1_ and centre (~_1_) is drawn with tangent the x-axis at the point
2d2 d' 2d2
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(:i'0). Note, from Figure 2, that the circle corresponding to the second fraction

~ has a larger radius, which means that, in the case of the illustration, the choice
d .
b > d has been made: the larger the denominator of a fraction, the smaller the
radius of its Ford circle.

o

Figure 2

1
2d2

c
d

What is the distance between the centres of the Ford circles for ~ and ~ ?
b d

Suppose we call this distance L. The following expression for L2 follows
from Pythagoras'theorem:

( )2 ( J22 a c 1 1
L = b-d + 2b2-2d2.

Now let us compare L2 with the square of the sum of the radii of the circles,
that is, we form the expression

1 1
L2 _S2 where S = --+--

2b 2 2d2



144

Thus

Function 5/99

All the numbers involved are integers, which means then that ad -be will also
be some integer. Furthermore ad - be '* 0 for if ad - be = 0, then ad = be ,
and so

ad be
-=-
bd bd

hence

a e

b d

which contradicts our assumption.

The inference which may be taken from the above is that the Ford circles
representing any two reduced fractions can never cross, which is, in its own right, a
quite interesting result. The circles, however, might be tangent to each other: the
special case when tangency occurs requires that the distance between their centres

is equal to the sum of their radii lengths, i.e. L = S, and so L2
- S2 should equal

zero, which in tum implies that Iad - be I = 1.

But as discussed in the June issue of Function on pp. 74-79 this is precisely
the same condition as found.for the adjacency of two fractions in a Farey sequence!
This special case where tangency of the circles occurs is certainly one of some

interest, so that although the reduced fractions ~ and ~ for our starting point
b . d

were chosen arbitrarily, for further investigation we now narrow the field so that
they are restricted to be the adjacent terms in some Farey sequence.
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Suppose that a third circle is inserted between the twocircles of Figure 2, one
that is tangent to both of them and the x-axis, as shown in Figure 3. Actually, this
configuration is a simplified version of a famous problem due to Apollonius, the
"Great Geometer", who was born in 262 Be in southern Asia Minor, and who was
a. pupil of Euclid. The mechanics of how to carry out the drawing 'of the new
tangent circle using just a ruler and compass is not the main concern here, and we
shall merely presume that the required circle has been drawn without inquiring into
the method used. The pertinent question here is: what will be the x-coordinate of
its centre?

o

1
2d2

Figure 3

Let the x-coordinate be ~ . Because of the adjacency of the newly created
f

circle to both of the circles tangent to the x-axis at (~ , 0) or (~, 0). plus the

Farey relationship, it is clear that !- is also some reduced fraction.
f

Recalling the previously derived tangency conditions, we have

ad -be = -1

and now re-applyill:g the same condition, because the new circle is also a tangent,
we have

af -be = -1

Subtracting gives:

a(d - f) - b(e - e) = o.
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so
a(d - f) = b(c - e)

Function 5/99

Now since we are dealing only with reduced fractions, since b does not divide a,
it must be the case that

b divides d - f

Therefore fmay be written as d plus some multiple of b Le.

f = d+nb,

where n is some integer, positive or negative. At this stage, in order t<? impose
simplicity on the final result, we make the decision to set n = 1, so that

f = d +b,

Substituting for f gives

a(d-d.-b)-b(c-e) 0

so that e = a + c. That is, we now have

e a+c

f b+d

This is, however, the 'mediant' of the Farey fractions ~ and ~ . The circle
b d

which is tangent to the circles correspondingto ~ and ~ has for its x-coordinate
b d

the mediant of !:: and ~. And, further, the mediant has been demonstrated
b d

previously to be also in reduced form.

What will be the radius of this new circle? Intuition would suggest that it might

be 1 2' and this is, in fact, correct. There are a few ways to prove this
2(b+ d) .

result, the use of Pythagoras' theorem being one of them, and it is left to interested
readers to find their own way through this proof.
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For those wishing to explore further, it needs to be remarked that a number of
simplifications were indulged in on the way through this article (e.g. the discarding
of absolute value signs, and the choice of the value of n). the purpose of these
shortcuts was to ensure a final result which was simple. With a more rigorous
treatment, it can be found that, for any Ford circle, there are, in fact, an infinity of
tangential Ford circles and whenever just a few of these are drawn, very intriguing
geometrical patterns are formed.

References

Rademacher, H., 1983. Higher Mathematics from an Elementary Point ofview,
Birkhauser, New York.

* * * * *

My idea of a joyful Christmas vacation was different [from my
father's]. I arrived at the cottage on the coast with my precious
[copy of] Piaggio's [Differential Equations] book and did not
intend to be parted from him. I soon discovered that P.iaggio's
book was ideally suited to a solitary student. It was a serious
book, and went rapidly enough ahead into advanced territory.
But unlike most advanced text~, it was liberally sprinkled with
"Examples for Solution". There were more than seven hundred
of these problems. The difference between a text without
problems and a text with problems is like the difference
between learning to read a language and to speak it ... I
started at six in the morning and stopped at ten in the evening,
with short breaks for meals. ... Never have I enjoyed a vacation
more.

-Freeman Dyson
in Disturbing the Universe, New York: Harper and Row, 1979.

* * * * *
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THE PITFALLS OF PLAYING POKER WITH A DEPLETED
DECK - OR THE CASE OF THE ELUSIVE FLUSH

R D Coote, Wentworth Falls

Some people are aware of the hierarchy of the different types of hands in the
game of poker: straight flush, four of a kind, full house, flush, straight, three of a
kind, two pairs, one pair, and high card.

By looking at the number ofways each of these hands can occur,. this order can
be seen to be justifiable and fair.

There are 52CS =2598960 different five-card hands that can be dealt and the
numbers of each of the above types are as follows:

Straight flush
Four of a kind
Full house
Flush
Straight
Three of a kind
Two pairs
One pair
High card

(Five consecutive cards in the same suit)
(Four cards of the same kind and one other)
(A three of a kind and a pair)
(Five cards from the same suit but not consecutive
(Five consecutive cards not all from the same suit)
(A three of a kind and two others)
(Two pairs and one other)
(One pair and three others)
(None of the above)

40
624

3774
5108 .

10200
54912

123 552
1 098 240
1 302 540

Here are three examples ofhow these numbers were calculated; we leave to the
reader to prove the rest:

• Straight Flush: five consecutive cards from the same suit (eg 3, 4, 5, 6, 7 all of
clubs)

10 x 4 = 40

(5 high through to A high) x (suits)

• Flush: five cards (not consecutive) from same suit (eg 2, 5, 6, 8, K all of hearts)

4 x [l3es - 10] = 5108

(cliff. Suits) x (combs. of 5 from 13 - straight flushes)
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• Three of a kind: three of a kind and any two other cards (eg Q, Q, Q, 4 S, 9C)

13 x 4C3 x 48 x 44 /21 =54912

(type of3 ofkind) x (combs. of3 from 4) x (1 st other card) x (2nd other card)/(unorder)

In this article I will only consider what is initially dealt. I will not take into
account discarding unwanted cards and drawing replacements.

Quite often the full deck of fifty two cards will be reduced to, say thirty two, by
only using cards of face value seven and higher, This is referred to as sevens low.

In the case of a deck reduced to sevens low there are only 32C5 =201376
different five card hands. The chance of being dealt a straight flush has increased
from 40 in 2 598 960 to 16 in 201 376. This is an approximate five-fold increase.
When we look at the number of ways all the various hands can occur, two
anomalies appear.

Straight flush
Four of a kind
Full house
Flush
Straight
Three of a kind
Two pairs
One pair
High card

16
224

1344
208

4080
10752
24192

107520
53040

Firstly, one is approximately twice as likely to be dealt a pair than to be dealt
nothing. Secondly we have the case of the flush. It is the second most unlikely
hand to be dealt but it is still fourth in the standard hierarchy.

These anomalies are not restricted to sevens low decks. In fact the hierarchy
"according to Hoyle" is only justifiable when using the intact deck. Even when
using a deck with only the twos taken out, one is still more likely to be dealt a full
house than a flush. Also in all but the standard deck and the threes low deck, one is
more likely to be dealta pair than nothing. With these problems should y.le change
the rules when playing with a reduced deck?

The results are set out in the table below.
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Full Deck 7sLow

Function 5/99

Type of hand Ways % of total Rank
Straight flush 40 0.0015 1

Four of a kind 624 0.0240 2
Full house 3744 0.1441 . 3

Flush 5108 0.1965 4
Straight 10200 0.3925 5

Three of a kind 54912 2.1128 6
Twopair~ 123552 4.7539 7

One pair 1098240 42.2569 8
High card 1302540 50.1177 9

Total 2598960

6sLow
Type of band Ways 0/0 of total Rank
Straight flush 20 0.0053 1

Fout:' of a kind 288 0:0764 2
Full house 1728 0.4584 4

Flush 484 0.1284 3
Straight 5100 1.3528 5

Three of a kind 16128 4.2781 6
Two pairs 36288 9.6257 7

One pair 193536 51.3369 9
High card 123420 32.7381 8

Total 376992

4sLow
Type of hand Ways 0A. of total Rank
Straight flush 28 0.0026 1

Four of a kind 440 0.0405 2
Full house 2640 - 0.2431 4

Flush 2275 0.2095 3
Straight 7140 0.6575 5

Three of a kind 31680 2.9171 6
Two pairs 71280 6.5635 7

One pair 506880 46.6737 9
High card 463645 42.6926 8

Total 1086008

Ways % of total Rank
16 0.0079 1

224 0.1112 3
1344 0.6674 4
208 0.1033 2

4080 2.0261 5
10752 5.3393 6
24192 12.0133 7

107520 53.3927 -9
53040 26.3388 8

201376

5sLow
Ways % of total Rank

24 0.0036 1
360 0.0547 2

2160 0.3283 4
984 0.1495 3

6120 0~9301 5
23040 3.5015 6
51840 7.8783 7

322560 49.0207 9
250920 38.1333 8
658008

.3s Low
Ways 0A. of total Rank

32 0.0019 1
528 0.0308 2

3168 0.1850 4
3136 0.1831 3
8160 0.4766 5

42240 2.4669 6
95040 5.5504 7

760320 44.4033 8
799680 46.7020 9

1712304

I would strongly encourage readers to investigate other popular games. Ask
yourself the question: What happens if you change the conditions?

This is real mathematics. You may even be doing some original research!

* * * * *
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WHEN DOES THE MILLENNIUM END?

Peter Grossman

As the year 2000 approaches, the debate about when the current millennium
really ends and the new one begins is becoming more heated. Many people argue
that we should wait until 1st January 2001 before popping the champagne corks.
Popular sentiment, however, favours 1st January 2000 as the start of the new
millennium, and those who insist otherwise are accused of being tiresome pedants
or party-poopers. The (admittedly ambitious) aim of this article is to lay the matter
to rest once and for all, at least as far as readers ofFunction are concerned. This is
not by any means the first article to appear on the subject, and it undoubtedly won't
be the last. However, perhaps its appearance in Function will lend it some
authority. If you have the misfortune to get into an argument with someone about
when the millennium really ends, at least you can defend your position by saying
you read it in Function!

Let's set the millennium question aside for a moment, and take a look at
centuries. The word "century" is used in two slightly different ways. On the one
hand, it can refer to any IOO-year period, so in that sense we could say the current
century started at any time we choose in the past 100 years. However, if we follow
the usual practice of referring to the current century as the twentieth century, we
are using "century" in its other sense: "one of the successive periods of 10d years
reckoned forwards or backwards from a recognised chronological epoch", as The
Macquarie Dictionary puts it.

For the calendar now in common use, the chronological epoch in question was
the birth of Jesus, as calculated by the sixth century monk Dionysius Exiguus,
using the infonnationavailable to him at the time. (Modem scholarship actually
puts Jesus' birth about five years earlier.) In this system, the year commencing with
the birth of Jesus was AD 1, and the preceding year was 1 Bel. (There was no year
0.) It follows that the first century was the lOa-year period beginning with the birth
of Jesus, i.e., from the beginning of the year 1 to the end of the year 100. Then the
second century was the next 100-year period (101-200), and so on. Continuing in
this way, we find that our own century, the twentieth, started on 1st January 1901,
and will end on 31st December 2000. The twenty-first century will begin on 1st

January 2001. In particular, the year 2000 clearly belongs to the twentieth century.

1 AD = Anno Domini (Latin for "in the year of our Lord"), BC = Before Christ. The ·alternative terms CE (Common
Era) and BCE (Before the Common Era) are also used.
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Notice that this conclusion is draWn from the fact that we refer to the current
century as "the twentieth century". If, instead, we called it "the 1900s", it would
run from 1st January 1900 to 31 st December 1999 (which, after all, is also a 100­
year period, so we are entitled to ~an it a century). A difficulty with this approach
is that the period immediately preceding the 100s (the OOs?) would comprise only
99 years. (Either that, or 1 Be would have to be included to bring the total up to
100 years, which would be even more awkward.)

The situation in regard to decades raises a difficulty ~ The problem is that the
popular nomenclature for decades is inconsistent with that used for centuries. By
analogy with centuries, we should call the current decade "the 200th decade", but
we rarely do; rather, we refer to it as the 1990s, or simply "the nineties". When the
1990s finish at the end of 1999, the 200th decade, will still have another year to run.
(If we continue to identify decades in this way, we will need a name for the decade
from 2000 to 2009. Any suggestions?)

Returning to our original question, the key to answering it is: how do we refer
to the current millennium? The fact is, we don't often'refer to it at all. For people
who choose to treat the period from 1000 to 1999 as the current millennium ("the
one thousands", by analogy with the nomenclature we use to identify decades), the
next millennium will start on 1st January 2000. No doubt this view enjoys popular
support because of the strong psychological impact made by the rare change in the
first digit of the year. If, however, we want to refer to the current millennium as the
second millennium (and the next one as the third), the ans·wer is unequivocal: the
third millennium does not begin until 1st January 2001.

So keep the fireworks and champagne glasses packed away' for another year.
And, let's face it, concerns about the millennium bug are probably going to put a
bit of a dampener on celebrations at the end of 1999 in any case. (Incidentally, even
setting aside the question of when the new millennium starts, the term "millennium
bug" is inappropriate for another reason. If computers had been around in 1899, we
would have had the same problem then, so "century bug" would be a better term.)
For now, those of us who are going to wait for the real tum of the millennium
might have to put up with being called pedantic killjoys, but our time will come.
When 31 st December 2000 rolls around, we'll be partying like there's no
tomorrow!

* * * * *
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TWO INEQUALITIES FOR THE MEAN

Zdravko F Stare, Yugoslavia

Let a, b be positive real numbers. Let us denote the harmonic meanof a
1 2 ab . ,--;-

and b by H = II lib ' the geometrIc mean by G = '\lab, the
a+ a + b'

2

a+b . ~a2+b2
arithmetic mean by A = -2- and the quadratic mean by K = --2-·

The following inequalities

that is,
H~G~A~K

are valid, and equ~litiesoccur foro, a = b.

In this note we shall prove the following inequalities

Le.

and

Le.

~
2

a+b. a +b +2ab .,.J;;b ~ 2ab,
2 2 a+b

AK + AG ~ 2G2

AG+HK ~ 2A2

(1)

(2)

We notice, that in the inequalities (1) and (2), equality occurs if and only if a = b.
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We need the following result:

Function 5/99

(3)

where equality occurs for Xl =x2 or YI =Y2' The inequality (3) immediately

follows from (Xl - X2) (YI - Y2) ~ o.

Letting xI = a+b, X2 = 2ab , YI = ~a2+b2, Y2 =.j;b in (3) we
2 a+b 2

obtain

. a+b r1 ~a2+b2 a+bIn the first case, by vIrtue of -- ~ '\j ab and -- ~ --
222

inequality (4) becomes (1). In the second case, by virtue of

the inequality (4) becomes (2).

* * * * *

(4)

the

Leibnitz believed he saw the image of creation in his binary arithmetic
in which he employed only two characters, unity and zerQ. Since God may
be represented by unity, and nothing by zero, he imagined that the
Supreme Being might have drawn all things from nothing, just as in the
binary arithmetic all numbers are expressed by unity with zero. This idea
was so pleasing to Leibnitz that he communicated it to the Jesuit Grimaldi,
President of the Mathematical Board of China, with the hope that this
emblem of the creation might convert to Christianity the reigning emperor
who was particularly attached to the sciences.

-Laplace
in Essai Philosophique sur les. Probabilites Oeuvres
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HISTORY OF MATHEMATICS

Going Non-Euclidean and being Euclidean all along

Michael A B Deakin, Monash University

Euclid's Elements (his major work on Geometry) begins with 23 Definitions
that give the meanings of the technical terms he uses, ternls like "point", "straight
line", "parallel", etc. It goes on to assert five Postulates (or Axioms) and a further
five Common Notions. The Common Notions are Axioms also in the sense that
they are assumptions that are not justified by reference to other material. They are
often described as "self-evident". The first says that "Things which are equal to
the same thing are also equal to one another", and I suppose we may think of this
as "self-evident". The other four are in similar vein. What distinguishes the
Common Notions from the Postulates is that the Postulates are specifically
geometric in character while the Common Notions are general principles.

For the most part, the' Postulates are also "self-evident". The first states that
"[it is always possible] to draw a straight line from any point to any [other] point".
The next two are similarly non-controversial. The fourth· states "that all right
angles are equal to one another", and this he need not have stated because it may be
proved by Euclidean methods from the other Postulates, the Definitions and the
Common Notions. So this too is non-controversial. It could even have been left
out!

But a problem arises with his fifth postulate, which has been the source of great
controversy and which has also led to much wonderful mathematics over the
centuries since Euclid wrote. That Postulate reads:

"That, if a straight line falling on two straight lines make the interior angles
on the same side less than two right angles, the two straight lines, if
produced· [ie. extended] indefinitely, meet on that side on which the angles
are less than two right angles."

Rather a mouthful. A diagram explains it better. It is given on the next page,
together with the relevant description.
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B

c

Function 5/99

A

D

If angles ABC and BCD, both lying to the right of the line BC, add to less than
two right angles, then the lines BA and CD will meet if extended far enough to the
right. On the other hand, ifthese angles addedto more than two right angles, then
it could be shown from the Postulate that the lines would meet if extended far
enough to the left.

In the case drawn, the angles add to exactly two right angles and so the lines
are parallel. It will be clear to readers that this Postulate is much more meaty stuff
than the other four. It strikes many readers as the sort of thing that really ought to
be proved. After all it's hardly self-evident; in fact it's considerably less self­
evident than many things Euclid did bother to prove (for example that any two
sides of a triangle are together longer than the third).

Nor is this merely a modem perception. From the days ofEuclid onwards there
have been attempts to prove the fifth Postulate either from the others or else from
some other simpler Postulate that Euclid failed to state. The later Greek
mathematician Proclus (411-485AD) wrote about the fifth Postulate: "This ought
to be struck out of the Postulates altogether; for it is a theorem involving many
difficulties".

It was Proclus who found a better expression of the Postulate:

"If any straight line cuts one of two parallels, it will cut the other also".

This is. equivalent to a much later version, now named in honour of the
Scottish mathematician and geologist John Playfair (1748-1819). Playfair's
Axiom, as it is now called, reads:

"Through any point not on a given line one and only one line can be drawn
parallel to the given line".

There are even those who profess to find this statement in the work of Ptolemy
(85-165AD), whose attempts to prove the Postulate are known to us from
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descriptions by Proclus. This is the fonn of the Postulate I will use for the rest of
. this article.

It is now known that Playfair's Axiom may be negated in two ways. Let the
given line be called 1and let the point be P. Euclid's assertion is equivalent to the
statement that exactly one line through P will be parallel to 1. All other lines
through P will meet I. The negation could take the form of saying either that no
lines through P are parallel to I, or else of sayingthat more than one line through
P is parallel to 1.

By the late 18th Century, and certainly by the early 19th, the suspicion began to
grow that it was not actually possible to prove Playfair's Axiom from the other
Postulates and that one or other or both of the negations might actually be po'ssible.
That is, we could deny Playfair's Axiom and yet produce self-consistent
geometries.

Ifwe suppose that more than one parallel may be·drawnthrough 1, then if there
are two such there are infinitely many because we may draw any other line through
P between these two lines and this new line can't meet I either. This possibility
leads to what is now called Lobachevskian Geometry, after Nikolai Lobachevski
(1792-1856), one of three founders of this research. (The others ,were Carl Gauss,
1777-1855, and Janos Bolyai, '1802-1860.) An account of this geometry was
published in Function, Volume 21, Part 4, p. 110, and for earlier articles on the
same topic, see Volume 12, Part 4, p. 107 and Volume 3, Part 1, p. 15.

The other possibility (no parallel lines) is' now the basis of what is called
Riemannian Geometry, after Bernhard Riemann (1826-1856)~ I will start with this
case. It may at first seem odd that we could deny the existence of parallel lines,
and if we stick to the familiar world of Euclidean Geometry, it seems quite silly.
But reflect that we live on a curved surface, that of our planet, which to a good
approximation may be regarded as a sphere.

Now, of course, there can be no straight lines on a spherical surface, but there
are curves that may be drawn that are the straightest possible. Such "straightest
c~rves" are .called "geodesics" in the case of a general curved surface, and "great
circles" in the particular case of the sphere. Great circles are those circles drawn
on the surface of the sphere, and whose centres coincide with the centre of the
sphere. On the earth, for example, the equator is a great circle,· as is any circle
drawn on the surface and passing through both poles. [For more on great circles,
see Function, Volume 4, Part 1, p. 16; Volume 6, Part 4, p. 19 and Volume 6,
Part 5, p. 8.]
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When we study the geometry of objects drawn on the surface of a sphere, it is
the great circles that take the place of the straight lines of ordinary flat (Euclidean)
geometry. This new, spherical, 'geometry is very like our familiar Euclidean
Geometry, but differs in one important respect. For there are no parallel lines as
any two great circles must intersect (twice in fact). All of Euclid's other
Postulates, however, apply to this new geometry, once we change the words
"straight line" to read "great circle".

The great .circles on a sphere, substituting for Euclidean lines, thus provide an
example of Riemannian Geometry. Because we have an actual model for this
Riemannian Geometry, we are now assured that it is self-consistent. Before we
knew about the application to the sphere, we had no way of knowing that someone
might not come along and find a contradiction in this new set of Postulates (and so
end up giving a partial proof of Euclid's fifth Postulate).

But this important insight can be generalised: it is only a small part of a much
larger story. In 1868, a mathematician called Eugenio Beltrami (1835-1899)
proved some remarkable. results concerning non-Euclidean geometries.

Beltrami was interested in finding how geometries could be set up on curved
surfaces. He reasoned as follows. Suppose we set up a surface and use on it some
sort of co-ordinate system embedded in that surface. This co-ordinate system will
have to use geodesics in place of our familiar straight lines, because in general
there won't be straight lines available.

So, on the sphere for example we could take the north and south poles and two
diametrically opposite points on the equator (call them for convenience the east and
the west poles). Then join the north and south poles by great circles (meridians)
and do likewise for the east and the west poles. This gives us a handy set of co­
ordinates for the sphere.

Beltrami then investigated measures of the curvature of the surface, and found
that, in the case of the sphere, along each of these "co-ordinate lines", the
curvature will be constant (equal in fact to the reciprocal of the sphere's radius).
As there are two such co-ordinate lines at each point of the surface, and both share
this property, this means that the product of the curvatures will be constant and
positive - positive because both in this case the co-ordinate "lines" bulge outward.
This product is called the gaussian curvature of the surface, after Gauss, whom we
met briefly above.
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Beltrami next considered other cases, and proved two remarkable theorems:

1. If the gaussian curvature of a surface is constant, then any geodesic can be
represented in a well-chosen co-ordinate system by means of an equation
y = mx + C, where x 'and yare the co-ordinates, but this cannot be done if the
gaussiaf? curvature is not constant. (In the special case when the gaussian
curvature is zero, we have the familiar x and y of co-ordinate geometry.)

2. If the constant gaussian curvature is positive, then the resulting geometry is
Riemannian; if the constant gaussian curvature is negative, then the resulting
geometry is Lobachevskian. If the gaussian curvature is zero, the geometry is
Euclidean.

The interesting point now is to try to find a surface on which the curvature is
such as to provide a model for Lobachevskian Geometry. This too Beltrami
succeeded in finding. Here is a description of what he found.

On our Front Cover of Volume 22, Part 5, we showed a curve known as the
tractrix. (For convenience it is reproduced below.) As was said then, the easiest
way to think of the tractrix is to imagine someone dragging a weight along .the
ground by means of a string. Suppose .the person set out from thepoint 0 and
walked towards X Suppose the weight was initially at A. When the person
reaches the point N, the weight will have reached the point Z. The distance NZ
remains constant and equal to OA, as it is assumed that the string does not stretch.
The path traced out by the weight (Le. the pointZ) is the tractrix. It is usual to
complete it by also including the mirror image fonned if the weight was dragged to
the left (toward X') instead of to the right.

A

z

x'---------------+-------~------- Xo N
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Now suppose the tractrix is rotated about the line X'OX; a surface is
generated. If we take any two points on this surface, it is of course not possible to
connect them by a straight line. However there will be a "straightest" path joining
them; this path will also be the shortest and these curves arethe geodesics. The
surface so constructed is today called the "pseudo-sphere".

Each point on the pseudo-sphere lies on both a copy of the original tractrix and
on a circle produced by the rotation. These are the co-ordinate lines we use. The
tractrix is concave from the point of view of the line and thus its curvature is
negative; the circle however has a positive curvature, as it "bulges outward". Thus
these curvatures have a negative product and it turns out that this product is
constant. The pseudo-sphere thus provides a model for Lobachevskian Geometry.

Beltrami's results showed that the non-Euclidean Geometries have the same
claims to mathematical truth as has the Euclidean. Because we can find (on curved
surfaces that exist in three-dimensional Euclidean space) cases of Riemannian and
Lobachevskian Geometries, we learn that these cannot entail any contradiction
(assuming that Euclidean Geometry itself is consistent, of course).

Since Beltrami's day there have been other theories reducing non-Euclidean
geometries to versions of the standard Euclidean one. See for example Function,
Volume 3, Parts 2 & 4. However, this is a nice and very convincing demonstration
of the validity of Lobachevskian geometry. We now know that the alternatives to
Euclid's fifth Postulate have exactly the same status as that postulate itself. And
along the way Beltrami showed us a lot more about the structure ofgeom~try itself.
Perhaps the surprising aspect of the story is the role of that unusual curve, the
tractrix.

* * * * *

Here I am at the limit which God and nature has assigned to my
individuality. I am compelled to depend upon word, language
and image in the most precise sense, and am wholly unable to
operate in any manner whatever with symbols and numbers,
which are easily intelligible to the most highly gifted minds.

-Goethe
In Letter to Naumann (1826)

Vogel: Goethe's Selbstzeungnisse, 1903.
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COMPUTERS AND COMPUTING

ThatBug:ru y2k ok?*

The Millennium Bug (also known as the "Year 2000 Problem" and the
"Y2K Bug") has received wide media attention and is costing millions of dollars to
fix.

It is the inability of "date sensitive" computer systems to operate before,
during or after Saturday, 1st January 2000. Most problems will occur as a,result of
the year-date values being internally handled' within the computer systems as only
two digits: e.g. 01/01/2000 may be stored in the computer system as 01/01/00.

However, the problem is not limited to devices that yoti would normally have
thought of as computers. Computer chips and computer technology are part of
many things we take for granted on a daily basis, including lifts, electricity supply
and supermarket checkouts.

In the 1950s and 1960s, memory for mainframe and "legacy computers" was
expensive and very small in comparison to today. So any programs written in this
era were optimised to require as little work-space as possible. By convention, dates
were written with two digits for the year instead of the full four digits, with the 19
assumed. For example, a date stored 'as 01/01/75 was assumed to be in 1975. The
developers of these early computer systems believed their systems would be
obsolete and no longer in use by the tum of the century. But the practice continued
well into the 1980s and 1990s.

A huge remedial effort has been under way across the world to fix the Year
2000 Problem and to check current computer. systems. A large number of the
computer programs developed in the 1990s are Year-2000 ready, but almost
everything has to be checked.

Like many other large organisations, Monash University has a Year 2000
project under way to check that our major computer systems and technology are
Year 2000 ready. You may care to check our website at:

http://www.adm.monash.edu.au/y2k/aware

• This articl~ is an extract from http://www.adm.monash.edu.au/y2k/aware.
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The millennium bug may cause a number of problems for your computers
and/or applications. These include:

Rollover:

Century:

Leap Year:

Computation:

Transfer:

Computers or applications may not be able to advance from
one date to the next. The most common example is December ­
31, 1999 to January 1,2000.

Computers or applications may not be able to deduce the first
two digits (of the four-digit year) given only the last two digits.
For example 02/14/01 would be read as February 14, 1901,
rather than February 14, 2001.

Applications may not be able correctly to calculate leap years.
The year 2000 is a leap year. [A leap year occurs if the year is
divisible by 4, but not if it is divisible by 100, unless it is also
divisible by 400. The year 2000 is one of those years divisible
by 400 and so is a leap year.] The complications involved in
the formula mean that there is some doubt about how computers
will calculate in the case of the year 2000.

Computer programs may not correctly determine the day of the
week or other calendar matters when the interval involved spans
across January 1, 2000.

Computers may not be able to exchange information when one
system is Y2K compliant and the other isn't, or if the two
parties involved have used different methods to fix their Y2K
problems.

Despite these problems, it is important to keep in mind that:

The World will not come to an end on 1st January 2000!

Monash University, like everybody else, will be faced with potential problems
associated with the way devices such as computers have been programmed to
handle dates.

Many of the problems will simp~y evaporate on closer inspection and others
may be trivial and able to be safely ignored. However, it is important to recognise
the scope of the problem and to be prepared.
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The Millennium Bug is not just computer related but has the potential to affect
all systems that use embedded microprocessors (in-built computer chips). This
includes many manufacturing, household and university items of equipment such
as research, medical and laboratory systems.

These systems are not confined to desktop pes and mainframe computers.

Rather, sipce the 1960s these systems ·have gradually crept into the routine of
our daily lives to a point where they are practically ubiquitous. Hidden away in
everything from FAX machines to machine control systems they are to be found,
and we have come to depend upon them. No one can determine with any accuracy
how many are "in operation around the world today.

For as long as the Millennium Bug has been recognised, nearly all the warnings
of its threat have been targeted toward data processing in the area of Information
Technology, predominantly in the banking and financial sectors. This has led to a
false sense of security within the manufacturing and processing industries. Many
manufacturers thought that because their machinery was controlled by a black box
that didn't even look like a computer, then it wouldn't be affected. Nowadays a lot
of effort is going into identifying and solving potential Y2K problems in such
embedded systems.

The types of system likely to be affected include land, sea, air transport and
traffic systems, industrial monitoring systems, operating systems, finance and
investment management systems, payroll systems, accounting systems, medical
systems and various industrial, business and domestic appliances.

There are several things you should do about your own home computer. For
more information check out the website given above. This gives information on
how to protect and if necessary to modify your hardware, your operating system,
your software, your spreadsheets and databases and your data files. It provides
links to free downloads and also information on commercially available software.
However, it should be noted that this material is for information only; Monash
makes no recommendations in this area.

Like all major institutions, Monash has had to invest a lot of time, money and
effort into minimising the impact of the Y2K bug. We are quietly confident that
we have done a good job, but the real test lies ahead of us! Time will tell!

* * * * *



164

PROBLEM CORNER

SOLUTIONS

PROBLEM 23.3.1 (from Australian Mathematics Olympiad 1999)

Points P, Q, Rand S lie, in that order, on a circle such that PQ is parallel
to SR and QR = SR. Point T lies in the same plane as the circle such that QT
is a tangent of the circle and the angle RQT is acute. Provethat

(a) PS = QR.

(b) angle PQT is trisected by QR and QS.

SOLUTION (by Ian Preston)

(a) Let angles SRQ = a, PQS = c, SQR = b, RQT = x

Due to PQRS being a cyclic quadrilateral, opposite angles add to 180 degrees
:. a + angle SPQ = 180.

When traversing parallel lines the same side interior angles add to 180
degrees,
.. a+b+c = 180
:. angle SPQ = b + c

Since the lines PS and QR are both at the same angle between 2 parallel
lines, PS = QR.
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(b) Angle RSQ is the corresponding angle to angle PQS
:. angle RSQ = c
RS = RQ (given)
... triangle SRQ is isosceles
:. angle RSQ = angle RQS = b
However angle RSQ = c
:. b = c.
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The angle between a tangent and a chord equals the angle subtended at the
circumference on the opposite side by the chord
Ifwe take RQ to be the chord,
Angle RQT = x = angle RSQ = e
.. x=b=c
... angle PQT is trisected by QR and QS.

Other solutions were received from Keith Anker, Carlos Victor and Frank
Castro.

PROBLEM 23.3.2 (from Mathematical Spectrum)

Show that no prime number can be written as the sum of two squares in two
different ways.

SOLUTION (Keith Anker)

We show that any number which can be expressed as the sum of two squares in
two different ways is necessarily composite.

Suppose that n = p2 + q2 = r 2 + S2.

If n is even, then it is already composite, for 1 + 1 is the only way of writing
2 as a sum of two squares.

Therefore, n is the sum of an odd and an even square. From here, we follow a
standard way of factorising an odd number expressed as a sum of two squares in
two different ways.

Take p and r as odd, and q and s even (without loss of generality).

Let p = ac + bd, q = ad - be; and
r = ac - bd, s = ad + be.
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We note that these definitions are reasonable, because with them we can check
that

Thus, we have four equations for the four values, a, b, C, d, .reducible to

ac = p + r bd = P - r ad = q + S bd = q - s
2 ' 2 ' 2 ' 2

Take a as the HCF of ac and ad. This establishes the values of all four
variables, each of which can be written as an HCF.

Now, (a 2 + b2) (e 2 + d 2
) = a 2e2 + a2d 2 + b2e2 + b2d 2 + 2abed -.2abed

= (ae + bd)2 + (ad - bc)2

=n.
Hence n is composite.

So no prime number can be written as a sum of two squares in two different
ways.

Other solutions were received from Carlos Victor and Frank Castro.

PROBLEM 23.3.3 (from Crux Mathematicorum with Math.Mayhem)

Find all real solutions of the equation

SOLUTION (Frank Castro, Brazil)

As - 1 :::; x :::; 1 we put x = cos0, 00
:::; 0 s 1800

•

So we get ~1- cosO = 2cos2 0 -1 + 2cosO~1- cos2 B, which gives us

~1- cosO = cos(2B) + sin(2B).

Squaring both sides of the last equality we have 1- cose = 1+ sine48)

which can be written as sine40) =. sine0 - 90°). The only solution in the range is

o = 54°. Hence x = cos 54° is the solution.
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[ It is possible to show that cos540= ~10~2-J5]

Other solutions were received from Keith Anker, Carlos Victor and Julius
Guest.

PROBLEM 23.3.4 (from Crux Mathematicorum with Math. Mayhem)
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ABCD is a square with incircle r. Let I be the tangent to r and let
A' , B', C', D' be points on 1 such that AA', BB', CC', DD' are all
perpendicular to 1. Prove that

AA'·CC' = BB'· DD'.

SOLUTION

Without loss of generality we cantake A(-1, 1), B(l, 1), C(l, -1), D(-1, -1),

and the equation of the incircle is x2 + y2 = 1. Let P(cost, sint) be any point
on the incircle, and the equation of the line 1 tangent to the incircle at P, is

(cost)x + (sint) y = 1.

Now given a line with equation ax + by - c = 0, the perpendicular distance

of a point (xo , Yo) from the line is given by

Iaxo+byo -cl
~a2 +b2

Then we calculate

AA' = d(A,/) = I-cost+sint-l!

BB' = deB, I) = I cost + sint -11

CC' = d(C,I) = I cost - sint -11
DD' = d(D,/) = !-cost-sint-1!

and we easily obtain

AA'·CC' = Isin2tl = l-sin2tl =-BB'·DD'.
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Solutions were received from C. Victor, Frank Castro and Julius Guest.

PROBLEM 23.3.5 (K.R.S. Sastry, Bangalore, India)

Determine conditions on the integers b and c so that the three quadratic

polynomials x 2 + bx + c, x 2 + bx + c + 1, x 2 + (b + l)x +c factor over the
integers.

SOLUTION (constructed from the solutions submitted by-K. Anker and
Frank Castro)

Let P(x) =x2 +bx+c, Q(x)=x2 +bx+(c+1) andR(x) = x 2 +(b+1)x+c.

Since both P(x) and R(x) factor over the integers we see that c must be even
since two odd factors of c will always add to an even number, but b ·and b + 1
cannot both be even. Since Q(x) factors over the integers and ·c + 1 is odd we
deduce that b must be even. Let c + 1 = m· n where m and n are odd, so
using Q(x) we have b = m + n.

Using P(x) we see there must be an integer k such that c = (m + k)(n - k)
so that the sum of the factors is m + n.

We now have

1 = c+l-c = m·n-(m+k)(n-k) = k(k+m-n)

and hence k = ±1 and m = n so that c = m 2 -1, b = 2m where m is an
odd integer.

Turning now to R(x), for integer factors we require that

.'~ = (b + 1)2
- 4c = S 2~

for some integer s. Since sand b + 1 have the same parity we have s = 2t + 1

for some integer t. Substitution of b = 2m, c = m 2 -1 in the expression for

~ yields m = 1- (s2 - 5) and hence
4 ,

m= t 2 + t -1, b = 2t2 + 2t - 2 and c = t 4 + 2t3 - t 2 - 2t .

The polynomials P(x), Q(x) and R(x) are then given by
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P(x) = (X+t 2 +t-2)(x+t2 +t)

Q(x) = (X+t2 +t-l)2 and

R(x) = (x + t 2
- 1)(x + 12 + 2t)
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The proposer also provided a solution, andJulius Guest provided an algorithm
for generating solution pairs (b, c).

PROBLEMS

PROBLEM 23.5.1 (from Mathematical Spectrum)

Let the complex numbers Q, b, and c correspond to points A, B, and C in the
Argand plane. Find an equation for the bisector of angle BAC.

PROBLEM 23.5.2 (from Crux Mathematicorum with Mathematical
Mayhem)

1
The fraction can be represented as a difference in the following ways:

6

111 11 1 11 1 1
"6 = "2 - 3"; 6" = 3" - 6"; 6" = "4 - 12; 6" 5 30

. 1
In how many ways can the fraction -- be expressed.in the form

2175

1
--=---
2175 x y

where x and yare positive integers?

PROBLEM 23.5.3 (from Crux Mathematicorum with Mathematical
Mayhem)

Let a =1991)1992. Which number is greater,

a
1992 times

or 1992?



170 Function 5/99

PROBLEM 23.5.4 (from Mathematics and Informatics Quarterly)

A spider crawls randomly around the edges of a cube. At any vertex it moves

to an adjacent vertex with probability.!.. The spider starts at one vertex. What is
3

the expected value for the number of moves it will take the spider to reach the
opposite vertex?

PROBLEM 23.5.5 (Julius Guest, East Bentleigh)

Determine

* * * * *

Irrationality

The easiest number for which a proof of irrationality is possible is
log23. For if

m
log2 3 = ­

n
then,

n

and so

But the left-hand side is odd and the right-hand side is even, which is
impossible.

* * * * *
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OLYMPIAD NEWS

Hans Lausch, Special Correspondent on
Competitions and Olympiads

The 1999 Senior Contest
Of the Australian Mathematical Olympiad Committee (AMOC)
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The AMOC Senior Contest is the first hurdle for mathematically talented
Australian students who wish to qualify for membership of the team that represents
Australia in the following year's International Mathematical Olympiad. This year
about seventy students took part in that four-hour competition on 11 august.

These are the questions:

1. Circle k} has its centre on another circle, k2 • The circles intersect at A and

C. From any point B on k2 , draw BC, intersecting kt again at D. Prove
that AB = BD.

2. Let x, y, z be integers with greatest comon divisor 1 such that

x 2 + y2 = Z2. Prove th~t exactly one of x, y, z is divisible by 5.

3. Let ao , at, a2 be real numbers such that -1 ~ ao + at x + a2 x 2
~ 1 holds for

all real numbers x which satisfy -1 ~ x ::;1. Prove that i

4. Let A, B, C, D, E be points in the x-y-plane, whose coordinates are integers.
Prove that among the line segments joining these points there is at least one
with a midpoint whose coordinates are integers.

5. Let ABCD be a cyclic quadrilateral whose diagonals intersect in a right angle
at E. Let U, v: W, Z be on AB, BC, CD, DA, respectively, such that
EU 1- AB, EV.l BC, EW.l CD, EZ 1- DA. Prove that the quadrilateral
UVWZ is cyclic.

* * * * *
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