
f't; ••~ 1+. B·Y~h

;"'k~••:ction

August 1999

;p

Department ofMathematics & Statistics - Monash University

Reg. by Aust. Post Pub!. No. PP338685/0015

bpolster
Rectangle



Function is a refereed mathematics journal produced by the Department
of Mathematics & Statistics at Monash University. The journal was
founded in 1977 by Prof G B Preston. Function is addressed principally to
students in the upper years of secondary schools, and more generally to
anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. The items that appear
in each issue of Function include articles on a broad range of math~matical
topics, news items· on recent mathematical advances, book reVIews,
problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and
other material for publication are invited. Address them to:

The Editors, Function
Department of Mathematics & Statistics
Monash University
PO BOX 197
Caulfield East VIC 3145, Australia
Fax: +61 3 9903 2227
e-mail: function@maths.monash.edu.au

Function is published five times a year, appearing in February, April,
June, August, and October. Price for five issues (including postage):
$20.00* ; single issues $5.00. Payments should be sent to: The Business
Manager, Function, Department of Mathematics & Statistics, Monash
University, Clayton VIC 3168, AUSTRALIA; cheques and money orders
should be made payable to Monash University.

For more information about Function see the journal home page at
http://www.maths.rnonash.edu.au/~cristina/function.html.

• $10 for bona.fide secondary or tertiary students.



109

EDITORIAL

Welcome to our readers!

This issue of Function has a rather geometric flavour with three articles
discussing geometric constructions, so we recommend you have a compass and
a straightedge (unmarked ruler) ready.

The Ancient Greeks were interested in objects than can be constructed by
means of a straightedge and a compass. The figure on the front cover is from the
article by our editor Ken Evans in which he presents such a problem solved by
Archimedes: the construction of a point halfway along a three-point journey.

The second feature article is by our reader D F Charles,who shows how we
can construct-again, using only a straightedge and a compass-any number
that involves the five basic operations: addition a~d subtraction, multiplication
and division, and finding the square root. In addition, the author also presents a
more complex example: the construction of a circle through two given points
and tangent to a given line. I

The Ancient Greeks were also interested in solving in the same manner the
problems of duplicating a cube, squaring a. circle, a~d trisecting an angle. Our
History ofMathematics editor gives an account ofhow only in relatively modem
times the almost unknown mathematician Pierre Laurent Wantzel showed-by
algebraic means-that it is impossible to solve these problems using only a
straightedge and a compass.

For the Computers and Computing column you will need three pegs and
some rings to solve the classic Tower of Hanoi and to develop an understanding
of recursion and recursive algorithms.

Finally, the Problem Corner editor includes solutions to the problems in the
April issue and new problems for the readers. He will also publish the best
solutions received by December 1.

Happy reading!

* * * * *
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A Construction of Archimedes

Ken Evans

Archimedes (e.28? BC-212 BC) lived in Syracuse in Sicily until he was killed
there during a Roman invasion. His extraordinary contributions to mathematics
have led to him being regarded as one of the three greatest mathematicians ever to
have lived (the other two being Newton and Gauss).

In this article, the following problem - just one of those solved by Archimedes
is presented. -

If you go from point A to point B via point D, devise a constru<?tion to find·
M, the point which is halfway along the journey (Figure l),i.e.construct the point
M such that

AM= MD + DB

D

A

M

Figure 1

B

In his construction of M, Archimedes followed the convention of Greek
geometry (formalized by Plato) that only a compass and ungraduated ruler are to be
used.

Construction

First construct the circumcircle, C1, of MDB (The centre, S, of C1 is the

point of concurrence of the perpendicular bisectors of AB, BD, DA.) Let P be
~

the point of intersection of the perpendicular bisector, SN, of AB and the,arc
ADB.
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~P

D

A~--+---~,..----+---1

Figure 2
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Case (1)

Case (2)

Proof

Case (1)

Case (2)

If D = P, then D is the required point M.

If D *- P, construct the perpendicular from P to the longer of the

sides AD, DB (AD in Figure 2) intersecting AD at M M is the
required point.

If D = P, then D belongs to the perpendicular bisector of AB.
Hence DA = DB, so M is the point D.

If D "* P an additional construction is needed.

With centre P and radius length PA, draw a circle C2• Note that B belongs to

C2 since PA = PB. Draw say AD to intersect C2 at E. Draw BE. Denote
the magnitudes of the angles by the letters shown in Figure 3.

(central angle of C2)

(angles in a segment of C1)

Now

Also
So

But
Hence

~ = 2a

J3 = Y
y == 2a.

Y == a +e (exterior angle of M3ED).

a + e == 2a, and so e == a.

Therefore in MJEB, DE == DB. (1)

In C2 , PM 1- AE, and since P is the centre of C2, M is the midpoint of AE.
That is,
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AM ='ME

MD+DE

= MD+DB
which completes the proof.

Function 4/99

(2)

Figure 3

E

Corollary

If a line segment is drawn from M to the mid-point, N, of AB (Figure 4),
MBD is divided into two parts of equal perimeter. This is easily demonstrated.

D

A

Figure 4
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From (2) AM = MD + DB
Therefore AM + AN + NM = MD + DB + BN + NM

I.e. perimeter of .dAMN = perimeter of quad MDBN

D
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A

Figure 5

For this reason, the segment MN is called, sOl11:ewhat graphically, a cleaver

of t1ADB. Triangle ABD has three cleavers and, remarkably, it can be shown
that the three cleavers are concurrent by showing that the cleavers are the angle
bisectors of triangle KLN (Figure 5).

Finally the reader is -left the task of constructing the halfway point, M, in the
~

cases (originally excluded) where D belongs to AB.

Reference:

Ross Horsberger Episodes in Nineteenth and Twentieth Century Euclidean
Geometry, Chapter 1, The Mathematical Association of America, 1995.

* * * * *

It is not knowledge, but the act of learning, not possession but the
act of getting there, which grants the greatest enjoyment. When I
have clarified and exhausted a subject, then I turn away"from it, in
order to go into darkness again; the never-satisfied man is so
strange if he has completed a structure, then it is not in order to
dwell in it peacefully, but in order to begi.n another. I imagine the
world conqueror must feel thus, who, after one kingdom is
scarcely conquered, stretches out his arms for others.

-Karl Friedrich Gauss in Letter to Bolyai, 1808.
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RULER AND COMPASS CONSTRUCTIONS

D F Charles

Although the Ancient Greeks undoubtedly possessed conventional rulers with
scales on them, they were interested in the proble,m of what geometrical objects
could be constructed by me~ns of a simple unsealed ruler, here called a
straightedge, and a compass. Many familiar objects can be so constructed, but
others eluded all attempts. Three problems in particular became notorious in this
regard. They were the Duplication of the Cube, the Squaring of the Circle and
the Trisection of an Angle. '

By the first of these is meant the construction, from a line-segment of length 1,

another of length Vi . The second was the construction of a square equal in area
to a given circle, or else (what can be shown to be equivalent) a line-segment
whose length is the circumference of that circle." [It is interesting to note that a
circular arc of this length may be so constructed, but not a straight line-segment, so
this problem could also be dubbed the straightening ofthe circumference.] In the
case of the third problem, it is possible to trisect any given straight line-segment,
but it is not possible to so trisect an arc of a circle. Note that this last comment
applies to general angles and arcs. Certain angles (e.g. 90°) may be trisected, but
others (e.g. 60°) may not.

In fact none of these problems can be solved by the means that the Ancient
Greeks sought to use. This has now been shown, but the proofs had to wait till
relatively modem times.

If we begin from a line-segment whose length we take" to be 1, then the
construction of other lengths can be represented as the construction of other
numbers. Call the initial length the unit.

We can construct any integr~l multiple of the unit, and it is also possible to
construct any rational fraction of it. Indeed we can construct any number that
involves the five basic operations:

• Addition and Subtraction

., Multiplication and Division

• Finding the Square-Root."
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These are called the five basic construction operations and they will now be
considered in turn.

Addition and subtraction of two given lengths may readily be c~rried out.
Represent each length by an interval and use the straightedge to extend one or other
of these and next use the compass to mark off an interval equal in length to the
other interval and so placed that the ends adjoin. See Figure 1.

A

A-B

A+B

Figure 1

B

Multiplication and division may be accomplished using similar triangle's. A
right angle can be constructed using straightedge and compass alone, and so we
may form two right-angled triangles as shown in Figure 2a (multiplication) and
Figure 2b (divisiqn).

A
x

B

B
AxB

A B

A+B
A

Figure 2a Figure 2b

The construction of a length .JX , if a length x is given, is more complicated.
There are three separate cases. The first has x < 2 , in the second 2 < x < 4, and the
last possibility is x > 4. [The special cases in which x =2 or· x =4 are easily dealt
with separately.] The full details will not be given here, but only the case
2 < x < 4 will be discussed, as an illustration. See Figure 3.
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1. Begin by constructing the length (x - 2)/2. Make this length one of the legs
of a right-angled triangle.

2. Because x < 4, (x - 2)/2 < 1, and so we can make the hypotenuse of the
right-angled triangle equal to 1.

"

3. The third side of this triangle is then .Jx - x 2
/ 4 .

4. From the right-angle so formed, measure out a length x/2 back along. the
base of the right-angled triangle, past where the hypotenuse meets it, and so
form a second right-angled triangle.

5. The hypotenuse of this new triangle will be .JX.

~.
VX-X2/4~·

....(X-2)/2~ 1
.. x/2 --+
• x -----'---.)lJ

Figure 3

Now consider a more complicated example.

Let two points P and Qbe given and let a line L be also given, and such that
L
p does not lie on L. We seek to construct a circle passing through both P and Q
and tangent to L.

Let us first investigate the matter algebraically. Set up co-ordinates with the
line L as the x-axis. Perpendicular to this draw the y-axis in such a way as to pass
through the pointP. The length OP will be taken as our unit, and so P has the co­
ordinates (0, 1). Let Q be the point (m, n) in these co-ordinates. The required
circle can be constructed if we can find the centre and the radius. See Figure 4.

From the figure we see that if (P, r) is the centre of the circle, then r will also
be the required radius. We may also note that the centre lies on a line L * which
passes through the mid-point M of PQ and is perpendicular to PQ. M is the point

(
m n + 1) * .-,-- so L has equation
22·
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y _ (n+ 1) = ::!!!...(x _m)
2 n-l 2

117'

and because the centre lies on this line then its co-ordinates. (P, r) satisfy this
equation. This tells us that

y
~""

Q(m,n)

'\:5'
P(O,l) .

........ ~

....···1 .
r\.C(p,r)

11\··············\ .

L

(A)

-o-+---.........,;;;;;~----...-.~-----. x

Figure 4

But we' also know that the point P lies on the circle and the circle has the

equation (x - p)2 + (y - r)2 =r2. So, substituting the co-ordinates of P into this
equation, we find

so that

Ifwe now substitute for r from Equation (B) into Equation (A), we find

(B)
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This is a quadratic equation in p, whose solutions are

-m±-In~(n-l)2 +m2

P= n-l

Function 4/99

We see that there are two different circles that satisfy the conditions, and this is
as we would expect from geometric considerations. Here concentrate on the
solution for which p > o.

Note that ~(n -1)2 + m2 is simply the length, I say, of the line-segment PQ,
so that we now have

-m+l-In
P= n-1

and so we have a recipe for constructing p.

It goes like this.

1. With ruler and compass, we may drop a perpendicular from Q to L. The
length of this perpendicular is n.

2. Using the process outlined earlier, construct -In.

3. Multiply -In by t.

4. The distance from 0 to the point constructed in Step 1 is m. Subtract m
from the result of Step 3.

5. Divide this latest result by n - 1.

We may now measure off a length p from 0 along L and erect a
perpendicular from the point found. On this perpendicular, measure off a length r,
which comes directly from equation (B). This gives both the precise centre and
also the radius of the required circle.
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It should be noted that the method outlined here, while it can always be made to
work if a straightedge and compass construction exists, need ,not represent the most
elegant way to carry out that construction. However, we readily see that if an
algebraic expression involves no. operations other than the five allowed, then the
number represented by the expression may always be constructed.

* * * * *

The Amen Bug

As midnight of 31 December turned into the first day of 1999,
computer crashes, which could be precursor of the much-forecast
Y2K disaster, occurred in different parts of the world. The
programming error, nicknamed "the Amen bug", affected
computer users from a Singapore taxi fleet to computers at
immigration desks at Swedish airports~

The error was quickly tracked down to a program which
interpreted "99" in the year field of the data base as an "end of
file" instruction.

Why the "Amen" .bug? Amen is a wqrd used at the end of
prayers. It comes directly from the Greek word (lJ.111V, meaning
"so be it". In classical Greek, letters also represented numbers,
and significance was attached to the "numerical value" of words.
Since (l denoted 1, Jl denoted 40, 11 denoted 8, and v

denoted 50, the numerical value of (lJ.111V was
1+ 40 + 8 + 50 =99. And so "99" was linked to "amen" in medieval
times. Much later, computer programmers adopted 99 as an "end
of file" instruction.

- From Mathematical Digest, }/J 115

* * * * *

A mathematician is a blind man in a dark room looking for a
black cat which isn't there.

- Charles Darwin

* * * * *
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HISTORY OF MATHEMATICS

T~isecting an Angle

Michael A B Deakin

Elsewhere in this issue, D F Charles discusses the problem of constructing
geometric objects with the aid only of a compass and a straightedge (unmarked
ruler). Many elegant constructions can be performed with the aid of just these two
simple instruments, but three problems (all posed in ancient times) continued to
elude the best efforts of all who tried to solve them. These were "the squaring of
the circle", "the duplication of the cube" and "the trisection of the angle".

As Charles discusses, the first of these problems amounts to the construction of

a length of either 1t or.Jn times a given length; the second amounts to the

construction of a length Vi times a given length. The third is rather more
complicated to describe in such brief numerical form and it will be 4iscussed in
more detail as this article proceeds. I will also talk further about the second
problem, but not about the first, which turns out to be rather different.

From a geometric point of view however, the third problem is easily
described- if an angle (30 we will call it for convenience) is given to us, we are
to use the compass and straightedge to construct the angle 0 with one third the­
measure of the given angle.

Now it was known in ancient times that any given angle could be bisected, i.e.
cut exactly in two, by such means. In fact, it is quite easy. If the angle isBAC,
formed by the intersection of two l~nes AB and AC at A, then we use the compass
to draw a circle with centre A and with an arbitrary radius r. This will intersect
AB in D, say, and AC in E, say. Now with centres E, F and the same radius r, draw
two further circles to intersect at G, say. The line AG now bisects the angle BAC.

Now notice three things about this construction. First, it involves only a finite
number of steps. Second, it produces an exact result. Third, it can be applied to
any angle whatsoever. And of course, we have an obvious fourth thing also: it
involves only the straightedge and compass.
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Now, trisection of an angle is quite possible if we relax anyone of these
conditions. Even if we merely allow our straightedge to be marked, then a simple
construction gives an exact result. This construction was the subject of a short
article in Function, Volume 2, Part 5, p. 20. Alternatively we may use curves other
than straight lines and circles. For example, our cover picture for Volume 20,
Part 1 showed the unifolium, a curve that trisects angles, and the use of conic
sections for this purpose has also been very long known. (See for example Victor
Katz's book A History ofMathematics - in the first edition, p. ·120.)

Then too there are a number of constructions that give excellent
approximations over a very wide range of angles. For some examples, see
Function, Volume 3, Part 5, p. 24. And it is also possible to get an exact trisection
by straightedge and compass alone if we allow an infinite number of steps. One
easy way to do this is to notice that the bisection construction allows us to take
quarters, eighths, sixteenths, etc. of any given angle. So if we begin with our angle
3B, continue to take quarters and then add, we find

3B(!+~+J-.+ ...) = B,
4 16 64

so that an exact trisection has been performed. Indeed we can stop after any finite
number of steps to get approximations that can be as accurate as we like, although
none of these will be exact.

We may also remark that some angles can be exactly trisected in a finite
number of steps using straightedge and compass alone. For example both the 90°
and the 60° angles can be constructed, and if we bisect the latter, we reach an angle
of 30°, so that the 90° angle can be trisected. By bisecting both these angles we
find that we can construct a 15° angle and so trisect the 45° angle. This last (and
important) example will be further discussed below.

But a method of trisection that satisfies all the requirements never was found
and mathematicians came to suspect that the task might actually be impossible.
This is now known to be the case, and we know this result because of the work of a
highly gifted but very little-known mathematician, Pierre Laurent Wantzel.

The best available biography of this obscure figure is that to be found on the
web at:

www-groups.docs.st-and.ac.ukl-history/MathematicianslWantzel
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It relies on what I suspect are the only primary sources in existence, the principal
one being an obituary notice by his friend and research collaborator Saint-Venant
(whose full name was Adhemar Jean Claude Barre de Saint-Venant - Barre de
Saint-Venant being the surname). [Saint-Venant incidentally turned up briefly in
an earlier Function article; see Volume 22, Part 1, p. 5.]

Wantzel was a highly gifted mathematician, engineer and also linguist. He was
as well almost certainly a drug addict, which may explain his short life. He died in
1848, about two weeks before his 34th birthday. In this short lifetime however, he
published over twenty pieces of research, some of it j oint work with Saint-Venant,
and his- final paper appeared after his death, having been found among the papers
he left behind.

As Saint-Venant said:

"Ordinarily he worked evenings, not lying down till late; then he read,
and took only a few hours of troubled sleep, making alternately wrong
use of coffee and opium, and taking his meals at irregular hours until he
was married. He put unlimited trust in his constitution, -very strong by

. nature, which he taunted at pleasure by all sorts of abuse. He brought
sadness to those who mourn his premature death."

[One might remark perhaps the way Saint-Venant seems to have put coffee and
opium on the same footing; Saint-Venant appears to have been a pious man and so
may well have disapproved of both, but there is also the consideration that both
medical knowledge and social attitudes have changed since 1848.]

The research paper that has assured Wantzel an enduring place in the history of
Mathematics is actually quite a short one. It appeared in 1837 and it showed the
impossibility both of a trisection construction and also of the duplication of the
cube.

In what follows, I shall describe the gist ofWantzel's 'argument. Nowadays,
although we tend to follow the same outline as he did, his insights have been more
carefully codified as part of the branch of Algebra known as Field Theory. The
best account of the modem theory I have seen is that in I N Herstein's Topics in
Algebra (in the second edition, see pp. 230-231). 'However, this still needs a lot of
specialist vocabulary and preliminary work that will be well beyond most readers
of Function.
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Much of this specialist background was established in order to formalise and to
extend Wantzel's work (an endeavour begun by Wantzel himself), but for the
purposes of this paper, I will try to give the flavour of whatWantzel did on the
trisection and duplication problems.

Essentially, he took the geometric problems and turned them ,into algebraic
ones. This he did by (in essence) setting up a co-ordinate· system. If we b~gin from
a given unit length, we can take its direction as that of the x-axis, with one end of
the unit as the origin and the other as the point (1, 0). Now the right angle is
constructible (as noted above), so we may also draw a y-axis. And now, because
we can a4d, subtract, multiply and divide (as outlined in Charles' s article), we can
build up a grid in which any given rational point may be constructed. That is to
say, we can use our tools to construct the point (p,q), whenever p and q are
rational numbers.

This I will call the starting position: whatever rational points we need, we may
assume to be already present. This much of the work is presumed done already.
So what follows next I will call Step 1.

At Step 1 we take a circle with some rational point (p,q) as its centre and some
rational number r (say) as its radius and we intersect this either with some other
such circle or else with a straight line passing through some two rational points.
[There is 'no need to consider the intersection of two such straight lines, as this will
merely give another point of the pre-existing grid, and so will come up with
nothing new.]

But intersections as introduced above will· involve the solution of a quadratic
equation that Wantzel wrote as

xl +Ax1+B=O,

where A and B are rational numbers. Any intersection of a circle with a circle or
with a straight line, as allowed by Step 1, results in such an equation.

[We may also remark that the solution of any quadratic with rational
coefficients may be achieved with straightedge and compass. The way to do this
was given in Function, Volume 3, Part 5, p. 24. Very briefly, to solve the equation
just given, construct the line-s~gment joining (0, 1) to (-A,B) and make it the
diameter of a circle. Then the roots of the equation are the intersections of this
circle with the x-axis. Readers may like to prove this detail for themselves.]
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We may thus construct all points (and thus all lengths) that are either rational or
else the roots of a quadratic equation such as that given above with. rationa~

coefficients. Our "grid" of points is now extended to cover all the rational points
and also all those points whose co-ordinates are rational multiples of roots of
quadratic equations with rational coefficients. Call these new points Type 1
points. The numbers giving their co-ordinates will be called Type 1 numbers.

Now move on to Step 2. This is the same as Step 1, except that now we have
a quadratic whose coefficients are not restricted to· be rational, but can also be
Type 1 numbers. Otherwise, we proceed as before; set up a quadratic equation

and so set up Type 2 points as the new points on an even further refined grid.

From our starting grid (the set of all rational points) we can in one construction
reach all Type 1 points; in two constructions, we can reach all Type 2 points.
And so on. We can continue the process to Type 3 points, Type 4 points, etc. At
each stage we have a new type of number: Type 2 numbers, etc.

Now notice that the construction of a Type 2 Point is the same as the solution
of two quadratic equations, and this is readily shown to be the same as the solution
of a quartic (degree 4) equation, a quartic equation whose coefficients will all be
rational; the construction of a Type 3 point is the same as the solution of an
equation of degree 8, and again the coefficients will all be rational; and soon. In
general, the construction of a Type n point is the same as the solution of an
equation of degree 2n

, and again the coefficients of this equation will all be rational.

It follows that any point or length that can be described as the solution of an
equation of degree 2n can be constructed as long as all its coefficients are rational.
In fact, these points are the only points that can be constructed, but this observation
does not entirely settle the matter. There is a complication.

To appreciate the nature of the problem, let us look in more detail at the
trisection question. What Wantzel did. was to look at the possibility of trisecting a
particular angle: the 60° angle. If we cannot trisect this then clearly no general
method is possible.

So in this special case we have, in our earlier notation, 3B = 60° which is to
say B = 20°. Wantzel now reasoned that if we can construct a length equal to
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cos 20°, then we can construct an angle of 20°, and so trisect the 60° angle. And the
argument works in reverse also: if we can do these things, then we can construct a
length equal to cos 20°. So it all boils down finding the equation satisfied by
cos 20°.

We may find this quite easily because in general

cos3B =4cos3 B- 3cosB

and in particular cos 60° = ~ so that cos 20° is a solution of the equation

(1)

This is a cubic equation, and so has not got an order of 2n for any integral value
of n. However this simple observation, as Wantzel recognised, is not enough
entirely to settle the matter. To see why, let's get back to our example of the 15°
angle.

Proceeding exactly as above, but using 45° instead of 60°, we reach an equation
very like equation (1), namely

3x 1 .
x 3 -----=04 4~ . (2)

But.now come at the problem another way, and think of 15° as the half of 30°
which is itself the half of 60°. To bisect an angle, we proceed algebraically by
noting that in general

cos2e = 2cos2 e-l

and that in the particular case of e = 60°, this reduces to making cos 30° equal

to ~, which we know to be the correct value. So now if () = 15°, we have

cos 15° as a root of

(3)
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This gives
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(4)

[You may care to check this last piece of working as an exercise.]

The point to notice is that the right-hand side of equation (4) is a Type 2
number, because the right-hand side of equation (3) is itself a Type 1 number.
If we are to get back to an equation with rational coefficients, then we need· to
square both sides of equation (3), and so produce aquartic equation. Similarly, the
removal of the square root from equation (2) produces asextic (degree 6) equation.
Now 6 is not a power of 2, but here it turns out that thesextic expression can be
factored into two simpler expressions, one of them a quartic and the other a
quadratic, and both with rational coefficients. In fact we find from equation (2):

so the sextic is actually reducible to two simpler equations, both of the type that
Wantzel allowed.

Thus Wantzel argued that if equation (1), a cubic with rational coefficients, is
to allow the construction of cos 20°, then the only way this could happen is that its
left-hand side be similarly factorisable, with this time the factors being on the one
hand a quadratic and on the other a simple (degree 1 or"linear") factor, and both
these factors must involve only rational numbers.

But in this case, if we set the simple linear factor equal to zero, we must get a
rational root, and so we must have:

If cos 20° is constructible, then equation (1) has a rational root.

But it is a relatively simple matter to show that equation (1) does not have a

rational root. The details are here omitted, but readers may find them (in slightly'
altered notation) on page 246 of W Dunham's The Mathematical Universe (New
York: Wiley, 1994).

.So finally we are done. Wantzel had shown conclusively that the age-old
problem was impossible.
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Because a very similar (actually somewhat simpler) analysis may be applied to
the equation

we also see that the duplication of the cube is likewise impossible. This too
Wantzel noticed. So his short (7-page) paper settled fully two of the oldest
questions in Mathematics!

It is a" pity that such an important contribution has been almost completely
forgotten. The result, of course, has endured, but Wantzel' s is now an almost
unknown name.

Perhaps the most telling instance of the neglect befalling him is this. One of
the basic tools that any historian ofMathematics uses is a reference work known as
Poggendorff's Handwdrterbuch. Volume 2 of this d~es give a brief notice to
Wantzel, but it misspells his name, queries the date of his death, and in its (very
incomplete) list of his published works completely overlooks his most enduring
work: the work I have just finished describing!

* * * * *

Diophantus' epitaph

This tomb" holds Diophantus. Ah, what a marvel! And the tomb
tells scientifically the measure of his life. God vouchsafed that he
should be a boy for the sixth part of his life; when a twelfth was
added, his cheeks acquired a beard; He kindled for him the light of
marriage after a seventh, and in the fifth year after his marriage
He granted him a son. Alas! late-begotten and miserable child,
when he had reached the measure of half his father's life, the chill
grave took him. After consoling his grief by' this science of
numbers for four years, he reached the end of his life.

-In Ivor.Thomas, Greek Mathematics, in J. R. Newman (ed)
The World o/Mathematics, New York: S~mon and Schuster, 1956

* * * * *
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COMPUTERS AND COMPUTING

About Towers and Recursion

Cristina Varsavsky

The Towers of Hanoi is a famous puzzle. It involves a set of rings of different
sizes and three pegs. Initially, the rings are all in one peg arranged from largest at
the bottom to smallest at the top_ The object is to move all rings to another peg
following two rules:

1. Only one ring can be transferred at a time;
2. A larger ring may never be on top of a smaller ring.

The recreational mathematics writer W Rouse-Ball attributes this puzzle to the
following legend.

In the great temple at Benares ... beneath the dome which marks the centre of
the world rests a brass plate in which are fixed three diamond needles, each a cubit
high and as thick as the body of a bee. On one of these needles, at the creation,
God placed 64 disks ofpure gold, the largest disk resting on the brass plate, and
the others getting smaller and smaller up to the top one. This is the Tower of
Bramah. Day and night unceasingly the priests transfer the disks from one diamond
needle to the other ... When the 64 disks shall have been thus transferred [i.e,
according to rules 1 and 2 above1 from the needle on which at the creation God
placed them to one ofthe other needles, the tower, temple, and Brahmins alike will
crumble into dust and then with a thunderclap the world will vanish.

Since the Towers of Hanoi is a knowledge-lean problem it is used by
psychologists to experiment with children's ability to solve problems, although
usually only in the simpler cases of 2 or 3 rings. University students are often
introduced to this puzzle as an example of a recursive algorithm.

In this column we have repeatedly dealt with algorithms, that is, definite
procedures to solve problems defined by a finite number of steps. But what is a
recursive algorithm?

Recursion is a process of defining an object in terms of itself. We can use
recursion to define sequences, functions and sets.
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Here is an example of a s.equence defined by recursion:

129

ao = 3 an =2an-l for n~l

The first tenn is 3, and the subsequent tenns are obtained by multiplying the
previous one by 2, generating the sequence

3, 6, 12, 24, 48, 96,

The famous Fibonacci sequence is also defined by recursion:

10 =1, 11 =1 and In = fn-l + In-2 for n ~ 2

to give
1, 1, 2, 3, 5, 8, 13, 21, ...

An example of recursive definition of a function is the factorial function
fen) =n!. We specify the initial value of this function as F(D) =1 and give a rule
for finding fen) from fen -1) :

fen) = n fen -1)

For example, 3!=3·2! ,but 2! =2·1! and I! =1·0! =1·1

3!=3·2! = 3·2·1 = 6

1. Therefore

Recursive definitions are often used to define sets. Such a definition starts by
giving an initial collection of elements, and then defining the rules. to be used in the
construction of new elements from other elements already known.

For example, the set defined by

1. 4 E A
2. If a and b E A then a + b E A

is the set of all positive integers multiples of 4.

In all examples above we defined objects in terms of themselves to produce
recursive definitions of sequences, functions and sets. Just· in the same way, a
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recursive algorithm is one that solves a problem by reducing it to a problem with a
smaller input.

For example, we could use the following algorithm to compute the nth power
of2:

Algorithm A
1. Input n

2. power = 1
3. For k= 1 to n

3.1 power = 2 . power

The nth power of 2 is calculated by iterating through a loop; it first computes

21 then 22 , 2 3 , 24 , etc. until it finally computes 2n. This is an iterative
algorithm. The same task could be achieved with the following algorithm

Algorithm B
1. Input n
2. procedure power(n)

2.1 If n =0 then
2.1.1 power = 1
else
2.1.2 power =2 . power (n - 1)

This algorithm includes a call to itself in line 2.1.2; it is therefore a recursive
algorithm.

Let us see how the algorithm goes about computing 22 , ie. power(2). Here
n = 2 and because n is not 0, execution is directed to the else clause. Now, the
computation of power(2) must be suspended until power(l) is known. Any
known information about the computation of power(2) is stored in the computer
memory to be retrieved when the computation can be completed. The algorithm is
invoked again with the input value n = 1. Again, the else clause is executed to
compute power(O) while the computation of power(l) is put on hold. This
time the then clause is executed returning power(O) =1 and this value is returned
to the previous invocation. Next power(l) is computed using the infonnation
stored in the memory, returning power(l) = 2 to the call by power(2) and
removing from the memory any information about power(l). Finally, using the
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returned value of power(l) , power(2) is computed as 4 and the memory is
cleared.

Although the recursive approach appears to be more complex and has the
disadvantage of consuming too much memory, it provides a natural way to think
about many problems, some of which would have very complex non-recursive
solution.

Now, let us go back to the Towers of Hanoi puzzle and its recursive solution.
Here the basic non-trivial problem is the one with 2 rings and 3 pegs. I am sure
many readers know how to solve this particular case. Figure 1 shows the procedure
to move the two rings from peg 1 to peg 2, using peg 3 as an auxiliary peg.

step 1

-:l
2 3

step 2

-1
2
1

3

step 3

-11
2 3

step 4

3

Figure 1

As shown in Figure 2, this same procedure could be applied to the tower with
any number of rings n, provided we know how to solve the problem with n - 1
rings.

n-l [ 4.S~~~1
rings .:: ",'..

nth ring
1 2 3

step 2

l..
2

.l.
et.

3

step 3

-1!
2 3

Figure 2

step 4

-4.
1 . .2 3
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First, we move the n- 1 rings to peg 3, then we move the nth ring from peg 1
to peg 2, and finally, we move the n -1 rings from peg 3 to peg 2.

This approach may be translated into algorithmic language where a procedure
calls itself. Since at each stage the auxiliary role will be taken by a different peg,
we need to be able to identify them each time. This is easily done by observing that
if p and q are the numbers of two different pegs, then the number of the 3rd peg
is 6 - p - q . Here is the recursive algorithm:

Algorithm Towers of Hanoi
1. Input n.
2. procedure hanoi (n, p, q)

2.1 If n =1 then
2.1.1 Move ring from peg p to peg q
else
2.1.2 hanoi(n-l,p,6- p-q)
2.1.3 Move ring from peg p to peg q
2.1.4 hanoi(n-l,6- p-q,q)

Does this algorithm solve the Towers ofHanoi problem? Let us check that this
works for n = 2, to move the two rings from peg 1 to peg 2, i.e. we invoke the
procedure hanoi(2, 1, 2) (p = 1 and q = 2). Since n is not equal to 1, the else
clause is executed, calling the procedure hanoi(l, 1, 3) (line 2.1.2). Now n = 1, so
the top disk is moved from peg 1 to peg 3. Con~inuing with the second statement in
the else clause 2.1.3, the largest disk is moved from peg 1 to peg 2; finally the ring
in peg 3 is moved to peg 2.

Readers make care to trace the algorithm for n = 3 to convince themselves
that it solv~s the puzzle and also to develop a better understanding of how
recursion works. Over to you!

* * * * *

The chief aim of all investigations of the external world should
be to discover the rational order and harmony which has been
imposed on it by God and which He revealed to us in the
language of mathematics.

-Johannes Kepler
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PROBLEM CORNER

SOLUTIONS

PROBLEM 23.2.1 (from Crux Mathematicorum with Mathematical Mayhem)

Suppose that a, b, c are the sides of a triangle with semi-perimeter sand
area A. Prove that

1 lIs
- + - + - < -.
abc A

SOLUTION

Let C be the angle opposite to side c of the triangle. We hay~

A == .lab sin C ::; .lab, from which itfollows that..!. ::; ~. The equality sign
2 2 a 2A

holds if and only if C is a right angle.

S· '1 1· 1 cIa h 1 lIb + c +a s
1m1 ar y - ~ -- - ~ - so t at - + - + - ~ ---

b 2A 'c 2A ' abc 2A A

But equality cannot hold simultaneously (a triangle has at most one right angle)
so we in fact have

1 lIs
-+-+- < -.
a. b c A

Solutions were also received from Carlos Victor (Rio de Janeiro, Brazil) and
Julius Guest (East Bentleigh).

PRQBLEM 23.2.2 (from Mathematical Mayhem)

N 11111
The quartic 5x 4

- ax3 + bx2 + cd - d = 0 has roots 2, 3, --. and
271 N

Determine the value of (a +b+ C + d).
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SOLUTION (Carlos Victor, Rio de Janeiro, Brazil)

Function 4/99

Using the relation between the roots and the coefficients of the polynomial we
find: .

(i)

(ii)

(iii)

~ = 2+3+ N + 11111
5 271 N

~ = _( 6N + 6(11111) + 5(11111))
5 271 N 271

(iv)
d

5

6(11111)
271

Adding (i) - (iv) we find

(a+b+c+d) = -399
5

and hence (a+b+c+d) = -1995

Another solution was obtained by Julius Guest (East Bentleigh).

PROBEM 23.2.3 (from ·Mathematical Mayhem)

Show that for all positive integers, a, b, c, d the polynomial

x 4a + x 4b
+

1 + X
4c

+
2 + X

4d
+

3 is divisible by 1+ x + x 2 + x 3
•

SOLUTION (Carlos Victor, Rio de Janeiro, Brazil)

Let P(x) = x 4a +x4b
+

1 +x4c
+

2 +x4d
+

3 and let Q(x) = 1+x+x2 +x3
.

If a, is a solution of Q(x) = 0, then 0,4 = 1; we now have

pea) = (a 4
)a +(a4

)b a +(a4 )C a 2 +(a4
)d a 3

= 1+ a + a 2 + a 3 = O.
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Hence all roots of Q(x) are also roots of P(x), and so P(x) is divisible by
Q(x).

A solution was also received from Keith Anker, and an incomplete solution
was received from Julius Guest (East Bentleigh).

PROBLEM 23.2.4 (from Crux Mathematicorum with Mathematical Mayhem)

Find the smallest integer in base eight for which the square root (also in base
eight) has digits 10 following the 'decimal' point. In base 10 the answer would be

199 with -J199 = 14.10673 ...

SOLUTION

Let n be a positive integer with the given property. If m is the integer part of

-f;z, let n = n-? + r. We will use the notation (X)8 . for the base 8 representation
of the number x. By assumption,

m + (0.10)8 S -f;z < m + (0.11)8

which is equivalent to

( m +~r s n < ( m + :4r
The last inequality may be replaced by the following stronger inequality by

taking into account that the expressions on both sides of the inequality above
cannot be integer.

2 m+l 2 9m
m+--~n<m+-

4 32

We now have that m+1 ~ r ~ 9m. To satisfy thts inequality we must have
4 32

m ~ 8. If 8 :s; m ~ 10 the lower limit of the inequality is greater than 2 but the
upper limit is less than 3, so no integer r can be found in this case. If
m = 11 then r = 3, hence the smallest m is 11 and the smallest n is

n = m2 + p = 124 = (174)8"
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Solutions along similar lines were received from Keith Anker, Carlos Victor
and Ian Preston.

PROBLEM 23.2.5 (from Crux Mathematicorum with Mathematical Mayhem)

An autobiographical number is a natural number with ten digits or less in which
the first digit of the number (reading from left to right) tells us how many zeros are
in the number, the second digit tells you how many 1's, the third digit tells you how
many 2's and so on. For example, 6,210,001,000 is autobiographical. Find the
smallest autobiographical number and prove that it is the smallest.

SOLUTION (Keith Anker, Mt Waverley)

Consider the leading digit.

The leading digit (in particular, only digit) cannot be zero; it would say that
there are no zeroes!

If the leading digit is "1" then~

there is one zero;
there cannot be just one"1", because we would then need another"1" in
second position to say so!

So there are at least two "1"s, and a digit in second place to say how many. It
can be "2", and the smallest autobiographical number with lead~ng "I" is 1210.

If the leading digit is "2", that accounts for three digits, and there must be at
least one more digit to say how many "2"s. Thus, such a number [is] > 1210.
(A possible number is 2020.)

If the leading digit is ~3, then there are at least five digits: "d", d "O"s, and
a digit to say how many "d"s.

Solutions were also received from Carlos Victor and Ian Preston.

PROBLEMS

PROBLEM 23.4.1 (from Crux Mathematicorum with Mathematical Mayhem)

Prove that if m, n are natural numbers and n ~ m2
~ 16, then 2n

~ n Jn
•
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PROBLEM 23.4.2 (from Crux Mathematicorum with Mathematical Mayhem)

A certain country contains a (finite) number of towns that are connected by uni­
directional roads. It is known, that, for any two such towns, one of them can 1?e
reached from the other one. Prove that there is a town such that all the remaining
towns can be reached from it.

PROBLEM 23.4.3 (adapted from Crux Mathematicorum with Mathematical
Mayhem)

An "n-m party" is a group of n girls and m boys. An "r-clique" is a group
of r .girls and r boys in which all of the boys know all of the girls, and an"r­
anticlique" is a group of r girls and r boys in which none of the boys knows any
of the girls. Show that there is a number rna such that every 9-mo party contains
either a 5;.,clique or a 5-anticlique.

PROBLEM 23.4.4 (Part (a) proposed by Julius Guest, East Bentleigh)

(a) Evaluate

(b) Generalise the result for the integral in part (a) to

12m-2 ,f x 2 dx, where m = 1, 2, 3, ...
o (1 + x)m .

PROBLEM 23.4.5 (adapted from 1986 Qualifying Round of the Swedish
Mathematics Olympiad

Prove that

1 1

(19991)1999 < {2000!)2000

* * * * *
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OLYMPIAD NEWS

The XL Internatjonal Mathematical Olympiad.
Australian student achieves second highest score

Between 10 and 22 July, the Romanian capital Bucharest was venue for this
year's IMO. Teams, usually having six members from 81 countries had to contend
with six problems during nine hours spread equally over two days in succession.
As IMO Jury members agreed, this contest was one of the hardest in the forty-year
IMO history. The top score, 39 out of 42 available points, was obtained by only
three students. Geoffrey Chu (Scotch College, Melbourne) reached the second
highest score (38 points), thus finishing fourth out of 450 students. Never before
has an Australian student been piaced higher at an IMO!

Here are the papers:

Problem 1

Determine all finite sets S of at least three points in the plane which satisfy the
following condition:

for any two distinct points A and B in S, the perpendicular bisector of the
line segment AB is an axis of symmetry for S.

Problem 2

Let n be a fixed integer, with n 2 2.

(a) Determine the least constant C such that the inequality

holds for all real numbers Xl •••• , x n 2 O.

(b) For this constant C, detennine when equality holds.
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Problem 3
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Consider an n x n square board, where n" is a fixed even positive integer. The
board is divided into n2 unit squares. We say that two different squares on the
board are adjacent if they have a common side. "

N unit squares on the board are'marked in such a way that every square (marked or
unmarked) on the board is adjacent to at least one marked square.

Determine the smallest possible value of N.

Problem 4

Determine aU "pairs of positive integers (n, p) such that

(i) p is a prime

(ii) n::; 2p

(iii) nP- 1 is a divisor of (p _1)n + 1.

Problem 5

Circles r l and [2 touch circle r internally in M and N. The centre of

[2 lies on rI · The common chord of r1 and r2 intersects r in A and B.
MA "and ME intersect [1 in C andD, respectively. Prove that r 2 is tangent
to CD.

Problem 6

Determine all functions f: R ~ R which satisfy

f(x- fey)) = f(f(y)) + xf(y) + f(x)-1

Australia came fifteenth, with 115 points our of possible 252, and one gold and
one silver medal as well as three bronze medals and one honourable mention.
Ahead of Australia were the teams from Russia "and China (182 points each),
Vietnam (177), Romania (173), Bulgaria (170), Belarus (167), Korea (164), Iran,
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