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EDITORIAL

In this issue you will find quite an interesting collection of contributions.

Do you still remember when you first learned about adding two fractions?
The usual mistake students make in primary school is to add the respective
numerators and denominators. Qur first feature article encourages you to “add”
fractions taking this usually unacceptable approach in order to generate rather
intriguning sequences known as Farey fractions which have some surprising
properties.

Have you tried to solve the Three Churches Problem presented in last year’s
April issue? The problem gives the position of a boy with respect to three
churches equally spaced from one another, and asks to determine the distance
between the churches. Peter Grossman présents here an interesting
generalisation of this problem. A nice article, specially for those readers who
like geometry. ’

Vexatious Arithmetic is the topic of this issue’s History of Mathematics
column. The article starts with an old anonymous lament which expresses a
mathematics student’s frustration with multiplication, division, the Rule of
Three, and Practice and looks at these techniques—some of which have already
been forgotten by most readers—from a historical perspective.

The von Koch’s curve on the front cover was generated with a computer
program developed in the Computers and Computing section. This section also
extends the related article published in the last issue of Function by describing
further characteristics of the fractal which are useful for the design of the
drawing algorithm. : '

The Problem Corner editor includes solutions to the problems in the
February issue and new problems for the readers. He will also publish the best

solutions received by September 1.

We wish you enjoy this issue of Function.

* ok ok ok X
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FAREY FRACTIONS

Rik King, University of Western Sydney

In your very earliest mathematical career in primary school you may perhaps
have been reproved for doing the following sort of operations on some rational
numbers.

.+_

FNEENY

3
6

N | —

No doubt you were not told then, but this is a perfectly legitimate way to define
an operation on rational numbers, since these numbers (as distinct from the natural
numbers) are our own creations, and any rules are applied solely at our own
volition. The following definition of addition however,

c _atc
d b+d

a
=+
b

does not produce results which agree with measurements in the real world. Thus, if

1 . 1 .
you were to eat B of a cake and your sister 5 according to the above scheme of

addition, you would have together have eaten only% of the cake, whereas you

know, in fact, that all the cake has been eaten. Thus the definition, while
mathematically permissible, is not useful because it is not descriptive of reality.
Oddly enough though, the subject matter of this article provides you with a little
scope to indulge in the kind of addition used above, and, at the same time arrive at
some quite interesting results.

John Farey was an English geologist of the early 1800’s, whose name is
forgotten in geology, but remembered in mathematics. In 1816 Farey published
observations on the properties of ordered fractions in reduced form—and, as you

would know already, a rational number % is in reduced form if the greatest

common divisor of @ and b is 1. More specifically, Farey wrote down the -
ordered sequence of all non-negative fractions with denominators limited by some
number of choice n.
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For the sake of simplicity, we confine our discussion to the interval
a . c e . ‘
0< 3 <1, although this restriction is not strictly necessary. Then, following

Farey, a table of fractions may be constructed in the following way:

For the first row write

0 1
1 1
for the second row write

0 ’ 0+1 1
1 1+1 1

that is,

Y 1 L
1 .2 1

for the third row write

0 0+1 1 1+1 1
1 1+2 2 2+1 1

The rows we have constructed so far correspond to # = 1,2, 3 and are as follows

0 1
1 1
0 1 1
1 2 1
0 L ! 2 !
1 3 2 3 1
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You can see that the rule we are using is this: from the n row by copying the

(n- 1)th row in order, but insert the fraction between the consecutive

b+d
fractions % and —2 of the (n— 1)th row, provided that b+d < n.
You should check that the 4" row will be

0 2
1 3

|t

1 1 1 3
4 3 2 4

Note that we have not included the terms % and % for the row n = 4, since

that would have violated the condition b+ d < n. Before continuing, you should
construct the 5% row and check you answer from the last page of this article.

The rows shown above are known as Farey sequences of order »n; and any
reduced fraction with a positive denominator smaller than or equal to n is known
as a Farey fraction of order n.

Farey observed the following feature of the sequences: the difference between
adjacent terms was always 1 divided by the product of their denominators e.g. for
n = 4 we have -

= — and S~ = —

1 2 1 1
23

W=
-
e
BN
w
()

By now you would have noted the occurrence of the following pattern: if

a

c . . . a+ce
> and 7 are adjacent fractions, we form a new fraction, and the value of

this appears to lie between % and % The new fraction, which is formed by the

process discussed at the start of this article, is called the mediant. Now it is
necessary to establish, for all values of , the relative value of the mediant i.e. is it
always the case that

ate _
b+d

< ?

oI Q
ale

Since we are dealing with positive numbers, we have that



Farey Fractions

< fl— implies ad <bc

o Q

Therefore

ad+ab < bc+ab

a+c

and then a(b+d) < b(a+¢). So .
b+a’

@la

77

Likewise, examination of the right hand side of the initial inequality returns us
to the starting point.. Thus, we can affirm that the value of the mediant always lies

between the values of the two original fractions.’

What of the property (1/product of denominators) observed by Farey, and
easily verifiable in the first four sequences; may this property be associated with a

general n?

. a c .
Let us assume that 2 successive terms Z and E do have a difference of the

form - . Thatis, $-% = L
bd i b bd

Since $-€ = 297bC 4 fllows that ad - be = —1.
b d bd

We are seeking to show that the mediant

property with both of its adjacent fractions.

a+c

b+d

< <

From the left hand side of the inequality, viz:

o Q
ST

_blatce)—a(+d) bc—ad

a+c

a
b+d b b(b+d) T b(b+d)

we have

and since bla+c) —a(b+d) = bc~ad =1

c
always shares the same
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at+c a 1 )
we have - = ——
b+d b b(b+d)
There will be a similar relation stemming from arte . ¢,
b+d d

Thus, the mediant does indeed preserve the form of the difference between

adjacent fractions, as noted by Farey.

A few more questions and uses of Farey fractions:

Is it the case that all proper fractions can be found by the process of forming
mediants? The answer to this questions is in the affirmative. It is easy enough
to prove but will not be followed through here.

Although interesting in their own right Farey fractions have also proved a
useful stepping stone to some higher theoretical results in number theory. Also,
with applied ends in view, they have been extensively tabulated and are very
useful in forming rational approximations, as the following example shows.

Suppose there is a practical problem of constructing a set of gears in the ratio of

—1—, but using fewer than 100 teeth on the smaller of the two gears. You can
i

i

easily check that the well known approximation for L , which is 572— , has an
. T

error of 10™%. The lesser known %—;—z is much better with an error of 1078 ,

but it has more than 100 on the top line and is therefore of no use in this
situation. Inthe n = 1025 Farey sequence however, there appears the ratio

-1—-1}- and, near it, the ratios 2 2 8 as well as a number of others,

355 311° 289 267 °

all of which are better approximations to L than 212-, and all of which satisfy
i

the requirements of the problem in hand.

. For a given value of n, how many Farey fractions are there? The exact answer

to this has not been found. It turns out that for the sequence of order n, the
number of fractions is about
2
(2
s
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and that the approximation gets better as n becomes larger; the exact answer,
however, is not known at the present time.
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1. Conway, JH, GuyRK, 1996, The Book of Numbers, Springer-Verlag,
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Answer to question on page 76 is: { ———————————

LI I I

A Minimum Problem
The Age “Odd Spot” recently consisted of this morsel.

“A British quiz show contestant won $A319,000 despite getting a
question wrong. He said 24 was the minimum number of strokes a
tennis player needed to win a set. The producers later said the answer
was 12 if the opponent double faulted every serve.”

In what sense were the producers right?

* ok % ok %

“l said, ‘Lincoln, you can never make a lawyer if you do- not
understand what demonstrate means’, and | left Springfield, went
home to my father’'s house, and stayed there until | could give any
proposition in the six books of Euclid at sight. | then found what
‘demonstrate’ means, and went back to my law studies.”

—Abraham Lincoln
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EQUILATERAL TRIANGLES AND THE THREE CHURCHES
PROBLEM

Peter Grossman

The following problem (Problem 22.2.3) appeared in Problem Corner in the
April 1998 issue of Function:

“Three churches 4, B and C are equally spaced from one another, ie., they lie at
the vertices of an equilateral triangle. George is standing at a point which is 8 km
from 4, 5 km from B and 3 km from C.

(a)  Show that George must be outside the triangle.
(b) How far apart are the churches?”

Part (a) is easily solved using the triangle inequality. Part (b) requires more
work, and eventually yields an answer of 7 km. (You can find a complete solution
to the problem in the August 1998 issue.)

Can we obtain a more general result? It turns out that we can, and the answer is
rather intriguing. The results presented here are based on information provided by
our regular contributor KR S Sastry.

In the general problem, we have an equilateral triangle,ABC, with side length
s.Let P be a point in the plane of the triangle, and let P4 = p, PB = g, and
PC = r. We seek a formula connecting the distances p, ¢, 7 and s. In order to
find such a formula, let Z4BP = «, sothat ZPBC = 60°-«. See Figure 1.

60°—
B s C

Figure 1
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We apply the cosine rule to the triangle 4BP:
P’ =q'+5 -2gscosa 1)
Likewise, applying the cosine rule to the triangle PBC yields:
¥ =g + s"~2gscos(60° — o) )

By applying the identity cos(a—b) = cosacosb +sinasinb to equation (2),
and using the exact values of cos60° and sin60°, we obtain:

=gt +s —qs(cosoc + 3sinoc) €)
Our task now is to eliminate o from equations (1) and (3). From (1), we get:

qz + 5 _ﬂpz,
2gs

CosSL =

Using the fact that sin’ o + cos’a = 1, we obtain an expression for sina. :
2 + 2 2 2
. s -
sina = |1 (q_p)
| 2gs

(We take the positive square root only, because we can assume that
0<a<180°)

These expressions for coso and sina. can now be substituted into equation
(3). The details are messy, but after simplifying as much as possible, we eventually
obtain: v

pr+g +rt+st = PP P+ ps gt RS+ “)
In fact, (4) can be expressed in the following remarkable form:
p'+q +rt+st) = (PP gt + 457 )

You can easily show that equation (5) is equivalent to equation. (4) by
expanding both sides of (5) and collecting like terms.
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It should come as no surprise that equation (5) is symmetric in p, g and r, the
distances from P to the three vertices of the triangle: permuting p, g and » in any
order does not change the equation. What is surprising is that the equation is
symmetric in all four variables. If we examine this in the light of the three
churches problem, this means not just that s =7 is a solution of (5) when p, ¢ and
r equal 8, 5 and 3 (in any order); it also means that we can construct three other
“three churches” problems with the same four numbers. For example, George
could be at distances 3 km, 5 km and 7 km from the churches, in which case the
churches would be 8 km apart. In geometric terms, we have the following result:

Any one of p, q, r and s satisfying equation (5) may be taken as the side length
of an equilateral triangle ABC. Then there is a point P in the plane of ABC such
that the distances from P to A, B and C are the remaining three values.

In order to obtain an explicit solution to the general three churches problem, we
need to solve either equation (4) or equation (5) for s. For this purpose, equation (4)
is easier to work with. Notice that it is a quadratic equation in s°, because
s' = (s*). We rewrite (4) as follows:

(SZ)Z_(pZ+q2+r2)sl+(p4+q4+r4_p2q2_pzrz_q2r2) - 0

We can now solve for s? using the quadratic formula:

sz:%(pz+qz+r2i\/(pz+qz+r2)2__4(p4+q4+r4_pzqz_pzrz_qzrz)) (6)

While this expression for s* is rather complicated, it does have an interesting
feature. The discriminant of the quadratic (the expression under the square root)
can -be factorised to 3(p+q+r)-p+q+r)p-g+r)p+q-r). By Heron’s
formula!, this expression equals 48 times the square of the area, A, of a triangle
with side lengths p, g and r. We may therefore write:

st = %(p2+qz+r2 + 4«/§A)

! Heron’s formula states that the area of a triangle with side lengths a, b and c, and semiperimeter s, is

Js(s—a)a-b)s—c).
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Equation (6) is a particular case of a theorem proved by H Eves in 1982. Eves’
theorem provides a formula for the side length of a regular n-gon, in terms of the
distances from a point in the plane of the #-gon to three consecutive vertices of the
n-gor. ’

Equation (6) actually gives two values for s?, depending on whether we take
the positive or the negative square root of the discriminant. How do we know
which one to take? Eves gave an answer to that question, too. We take the positive
root if the point P lies inside the circumcircle of triangle 4BC, and the negative
root if P lies outside the circumcircle. (The discriminant is zero if and orly if P
lies on the circumcircle. This is the case in the three churches problem in the form
stated at the beginning of this article.)

Can we be sure that the solution given by (6) is always real? The answer is yes;
this follows from a theorem proved in 1852 by A F Mbbius (the same
mathematician who gave his name to the well-known Mdbius strip). Mobius
proved that the distances from the vertices of an equilateral triangle to a point in the
plane of the triangle (our p, ¢ and ) must themselves be the side lengths of a
triangle or a degenerate triangle (the latter case occurring, for example, in the
original three churches problem). This is sufficient to ensure that all the factors in
the factorised form of the discriminant above are non-negative.

Rather than assuming at the outset that the equilateral triangle exists, we can
vary the problem a little by assuming only that we have been given three distances,
P, q and r. Provided that these three distances are the side lengths of a triangle (i.e.,
provided that the criterion proved by Mébius is satisfied), we can use equation (6)
to evaluate s. In this situation, however, we will generally end up with two values
of s, with no basis on which to choose between them. Eves showed that each of
these values is the side length of an equilateral triangle that satisfies the problem.

Let’s see how this works in a specific case. Let p =3, g = 5, and r = 7.
You will recognise these numbers as the example, from earlier in this article, of
another “three churches” problem, constructed using the same four numbers as in
the original problem. As expected, s = 8 is one of the solutions provided by
equation (6). The other solution is s = +/19. The two cases are depicted in
Figure 2.
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P
3
4
V19 5
J19
B Jg C

Figure 2

There are many ways in which you could explore this problem further.
Drawing careful diagrams of particular cases, especially of related cases involving
the same set of four numbers, may lead you to discover other patterns and make
some conjectures. We have not even touched here on the problem of finding
natural number solutions for p, g, » and s. One such set of solutions is
p=m-n’,q=2mn+n’, r = m+2mn, s = m +mn+n". The discriminant
is zero for all solutions of this form, because p+g—r=0. (Putting m = 2 and
n = 1 gives the values in the original three churches problem.) Can you find any
natural number solutions that are not of this form?

* ok ok ok ok

At a certain reception in his [Einstein’s] honor at Princeton,
when asked to comment on some dubious experiments that
conflicted with both relativistic and prerelativistic concepts, he
responded with a famous remark—a scientific credo—that was
overheard by the American geometer, Professor Oswald Veblen,
who must have jotted it down. Years later, in 1930, when
Princeton University constructed a special building for
mathematics, Veblen requested and received Einstein's
permission to have the remark inscribed in marble above the
fireplace of the faculty lounge. It was engraved there in the original
German: “Raffiniert ist der Herrgot, aber boshaft ist er nicht,”
which may be translated “God is subtle, but he is not malicious.”

In his reply to Veblen, Einstein explained that he meant that
Nature conceals her secrets by her sublimity, and not by trickery.
—Banesh Hoffman and Helen Ducas
in Albert Einstein, Creator and Rebel, New York: Viking Press, 1972
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HISTORY OF MATHEMATICS
Michael A B Deakin
Vexatious Arithmetic

“Multiplication is vexation,
Division is as bad;
The Rule of three doth puzzle me,
And Practice drives me mad.”

This anonymous 1570 lament encapsulates the reaction of a frustrated

mathematics student and in so doing tells us a lot about the mathematlcs studied
back then.

Four topics are mentioned — all unfavourably! However let me take them in
turn. -

Not all that long ago, certainly in my lifetime, calculating machines were not
only expensive, but also very cumbersome and not readily available. In order to
carry out even routine computations such as multiplications or divisions, one had
either to do them in one’s head (see my column of August 1995), or else use pencﬂ
and paper.

To assist with this, every primary school pupil was required to memorise the
“multiplication table”: the list of all the products of one-digit numbers by one-digit
numbers from 2x2=4 to 9x9=81. (In practice, the list was extended to
12x12 =144, as there were 12 pennies in a shilling in the old currency, but this
detail is not needed for the discussion that follows.) Learning the “times tables”
was a major preoccupation of the Year 4 Arithmetic syllabus in my own childhood.
They actually comprise only 36 different facts, as nxm=mxn. (I recall that it
greatly aided my own learning of the tables to be told this. My mother told it to me
with just this aim in view, but in so doing she also sparked my lifelong interest in
mathematics. Thanks Mum!)

Armed with these facts, one could multiply, first of all, multi-digit numbers by
single digit numbers (“short multiplication”) and later multi-digit numbers by one

another (“long multiplication™).

Here is an example of “short multiplication”.
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2345
x 7
16415

The calculation proceeded from right to left as follows. 7x5=35. The 5 was
written down (at the right of the bottom line) and the 3 was“carried”. 7x4=28.
28+3=31. The 1 was written down and again the 3 “carried”. 7x3=21.
21+3=24. The 4 was written down and the 2 “carried”. The final multiplication
was 7x2=14. 14+2=16, and this time the entire number was written down.
The rationale is:

7x2345="7x(5+40+300+2000) =35+280+2100+14000=16415.

“Long multiplication” proceeded by means of a number of “short
multiplications” with the successive results added up.

Here is an example of “long multiplication”.

2345

x 67

16415
14070_ .

157115

The third line is exactly the calculation shown above. The fourth is generated
by multiplying the first line by 6, but with an offset (to make the multiplier in fact
60). The results are then added.

Primary school students of old had a lot of practice in doing “long
multiplications”! Possibly many did indeed find this “vexation”!

Division was, for most students, not merely “as bad” but actually worse. It too
came in two flavours: “short” and “long”. “Short” division was the division of
(usually) a multi-digit number by a single digit number.

Here is an example of “short division™:

7)4321
617:2
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The argument proceeds by first noticing that 7 will not divide an integral
number of times into 4, but that we do have 43=6x7+1. The 6 is written down
and the 1 “carried”. This “carried” 1 is combined with the 2 to make 12, and now
12=1x7+5. The 1 is written down and the 5 “carried”. The next step is
51=7x7+2. The 7 is written down and a remainder of 2 is “left over”. The
calculation shows us that 4321=617x7+2. The rationale is:

T 4321=4200+70+494+2=600x7+10x7+7Tx7+2=617x7+2.

“Long division” was rather more tedious. Its general principle was much the
same as that of “short division”, that is to say the successive subtraction of integral
multiples of the “divisor” (7 in the above example) from the “dividend” (4321 in
that example). What made it “hard” however was that with a multi-digit divisor we
are taken outside the range of the memorised multiplication tables.

Here is an example.

The first step is to notice that 83=3x27+2=81+2. The 3 was written in the
top line, the 81 under the 83, and the 2 discovered by subtraction. Next the 9 was
“brought down” to form 29 and the process repeats. This time
29=1x27+2=27+2, the 1 is entered into the top line, the 27 at the bottom of the
calculation and the 2 discovered by subtraction. The 1 was“brought down, but the
final number 21 remains less than 27 and thus forms the remainder. So we end up
with  8391=310x27+21. In this example the product 81=3x 27 might perhaps
have been known to some of the better students, but where such products were not
known they had to be derived by subsidiary calculations in a “work column” or
scratch pad.

Now this much is not entirely unfamiliar. We all at least know what is meant
by “multiplication” and “division”. The processes I have outlined won’t be entirely
alien to readers of Function, even if (like me) they rarely use them today.
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But “the Rule of three” and “Practice”. What are these?
Well I learned of both when I went to school, even if today it’s hard to find any
textbook which discusses either. They are closely related, and both refer to the

study of Ratio and Proportion.

The basic equation of the Rule of three is the equality

(D

o8
Qo

although this fact was often somewhat obscured by the use of an older notation that

read
a:b:c

_ This old notatjon was still used in my childhood, but by then it was recognised
as obsolete. It is easier in what follows to use our more usual one. However the
older notation explains why a and d were referred to as “the extremes” and b and
¢ were termed “the means”

According to Webster’s Dictionary, the Rule of three is the simple theorem that
if Equation (1) holds, then

bxc=axd,

“the product of the means equals the product of the extremes”. However,

Webster’s is the only dictionary in which I have managed to find precisely this

definition. Webster’s goes on to say that the term refers to the method of finding

the fourth term in a ratio when three are given; that is to say to the solution of

Equation (1) for any one of a, b, ¢ or d when the other three are given. The

Macquarie Dictionary gives this latter as the meaning of the term and goes on to §
say that it is also referred to as “the golden rule”. There are old Arithmetic books
that use this term, but Webster confines it to its moral sense' and to popular
derivatives of that. The Oxford Dictionary tells us that one of the meanings of
“golden rule” is the rule of Three, and it attributes this terminology to Robert
Recorde (15107-1558), whose Arithmetic text was one of the first such in English.

»

"“Do unto others as you would have them do unto you.” The maxim derives from two passages in the Gospels,
Matthew 7:12 and Luke 6:31. It became abridged to “Do as you would be-done by” and under this form provides
the name of a character in Charles Kingsley’s children’s classic The Water Babies, which carries a strong line in
Victorian morality (Kingsley was a parson).



History of Mathematics 89

A somewhat later text, Baker s arithmetick (1670), has this to say:

" “The rule of Three, is the chiefe(t, the molt profitable, and the moflt
excellent Rule of all the Rules of Arithmetick. For all the other Rules have
need of it, and it uleth all the other, for the whichcaule it is said, that the
Philo[ophers did name it the Golden Rule.”

By the time I studied Ratio and Proportion in school, the term “Rule of three”
was still around, but only just. It was rarely mentioned. Even earlier, it was seen
as already out of date. The I(nternational) C(orrespondence) S(chools) Reference
Library’s Arithmetic (1922) says, “In the arithmetics of our grandfathers it
[Proportion] was called ‘The Rule of Three’”.

However, if the term “Rule of three” was almost dead in 1952 in Tasmania,
where I studied the subject, certain other terms were still very much current. These
were wonderful-sounding Italian words, and our Arithmetic text gave them all.

They referred to the equivalence of equation (1) to other, related equations.

é_ a+b_c+d a—b_c—d a+b_c+d
d’ b d b d a-b c-d-

These results were known respectively as invertendo, alternando, componendo,
dividendo, and the magnificent componendo e dividendo. The results were known
to Euclid and appear in Book V of his Elements. Heath, the editor of the standard
English version of this work, notes that componendo corresponds to what Euclid
called synthesis; however Heath uses the term separando in place of dividendo
and he makes it the equivalent of Euclid’s Greek term diairesis.

These rules and the Rule of three itself may be proved by straightforward
algebra, but the next rule has a little more oomph to it. It considers an equation
more elaborate than equation (1). Suppose we have a whole string of equal ratios
(numbers in proportion)

SHES
~le

<
d

and suppose that m, n, p, ... are any numbers. Then
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_ _ma+nc+pe+...

e
f 7 mb+nd+pf+..

This may be proved by setting each of the original ratios equal to ¢ (say), so that
a =bt,c =dt,e = fi, ... . Then the extreme right term is also equal to &

[I needed to teach this relation, which seems to have dropped out of the school
syllabus, to a class of Final Year Honours students some years ago. It is needed in
the solution of certain advanced problems in the calculus.]

If the Rule of three was the “Pure Mathematics” behind all this, Practice was |
the Applied Mathematics. It concerned the commercial applications of the Rule of
three. Baker introduces Practice as “Certain brief Rules, called, Rules of Practice: J
With divers nece([ary Questions profitable not only for Merchants, but alfo for ‘
other Occupiers [i.e. people in other occupations]”, and Chambers’ Cyclopedia, in
its 1727-1741 edition, has this to say:

“Practice, in arithmetic, Practica Italica, or Italian usages; certain
compendious ways of working out the rule of proportion [i.e. the Rule of
three] ... . They were thus called from their expediting of practice and
business; and because first introduced by the merchants and negotiants of
“ Italy [this explains the Italian in the names of the theorems above].”

Much of the thrust of Practice, and the need for it, arose from the complicated
systems of money and of weights and measures then in use. In the case of money,
twelve pennies (or pence, abbreviated as d) made one shilling (abbreviated as s),
and twenty shillings made one pound (£, an archaic form of the letter L).> When
decimal currency was introduced, the value of the dollar was set at ten shillings.

All the measures of length, weight, volume, and the like were likewise
complicated. When it came to length, for example, twelve inches made one foot,
three feet made one yard, and the loveliest one was that five and a half yards made \
one rod, pole or perch. Four of these things made one chain, ten chains made one
furlong and eight furlongs made one mile. [The Australian Government, i
incidentally, abolished the “rod, pole or perch” some considerable time before it
took the bolder step and introduced the metric system.]

* The d stood for denarius, a coin used by the Romans, the s stood for shilling and the £ for librum, a Roman
measure of weight, translated as “pound” and here applied to precious metal. The term £5d was pronounced as
LSD, and meant “money”. It did not refer to drugs — unless you count money as a drug!
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~ The measurement of area was in part related, but only in part. While 30.25 (i.e.
5.5 x5.5) square yards made one square rod, square pole or square perch
(abbreviated sq po), the table then went on a detour. 40 of these things made one

" rood (r) and four roods made one acre (ac). After this 640 acres made up one

square mile..
Practice was the costing of various quantities of material when a unit price was
given. It came in two forms, as with multiplication and division. These were

“Simple Practice” and “Compound Practice”.

Here is an example of Simple Practice. Both it and my next come from the ICS
Arithmetic referred to earlier.

Problem:  Find the cost of 562 articles at £12 3s 4d each.

Solution: £ s d
562 0 0 = costat £1 each
x12
6744 0 = cost at £12 each
35 4d = é of £1 93 13 4 = cost at 3s 4d each
6837 13 4 =total cost.

The total cost was £6837 13s 4d. This example made use of the then well-
known fact that 3s 44 made up exactly one-sixth of a pound. The School
Mathematics classes of my youth made great play with many such special (and in
context useful) details. I still remember most of them, but today they have
curiosity value only.

Back then, it was possible to exercise great ingenuity and skill in using such
“aliquot parts” as they were termed, and many sales assistants even could do so in
their heads, combining speed of calculation with accuracy in the result.

Compound Practice combined the complexities of the monetary system with
those of one or other of the weights and measures. Here is an example. It concerns
the price of a block of land and proceeds by using aliquot parts of the area. It
would also have been possible to do it otherwise by (as above) making use of
aliquot parts of the price. If the calculation had been set out from this point of
view, then one way to get the Ss 4d into the story would have been to use, as above,
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3s 4d = é of £1 and the further relation 2s 0d = % of £1. But there are also

several other ways the calculation could proceed. See if you can sort out the logic
of the calculation as it is presented.

Problem:  Find the cost of 60ac 3r 20 sqg po of land at £6 5s 4d per ac.

Solution:

£ s d : ac r 5q po

6 5 4 = costof 1

x 60
376 0 0 = costof 60 0 0

% of 1 ac 3 2 8 = costof 0 2 0
%0f2r 1 11 4 = costof 0 1 0
% oflr 0 15 8 = costof 0 0 20

381 9 8 = costof 60 3 20

So the total cost was £381 9s 84.

I am sure that after all this, you are grateful for your pocket calculators for
Multiplication and Division, and to Decimal Currency and the Metric System for
the demise of Practice. How the writer of the dismal little rhyme would have
appreciated these modern advantages! But I’m afraid that none of this would have
stopped the Rule of three from still puzzling him. Even today we need to
understand the basis of the Mathematics we study. Machines may help us but they
can’t do the understanding for us!

* %k %k %k sk
The uitimate inflation
“Infinity rose by 8% last week.”

~Magnut Heystek, Cape Talk 567

* %k %k ok ok
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COMPUTERS AND COMPUTING
Programming a Snowflake
Cristina Varsavsky

In the last issue of Function, Anthony Sofo presented some very well known
and interesting fractal shapes, which included the von Koch’s Snowflake, also
known as von Koch’s Island. This curve is generated on the perimeter of an
equilateral triangle by successive stages of removing the middle third of each side
and filling the gaps with the upright sides of equilateral triangles.

I am sure that some of our readers with a bent for programming might have
asked how could such a curve be drawn on the computer screen to any desired
accuracy. -As the author showed in the article, it is impossible to draw the von
Koch’s curve accurately; the curve has infinite perimeter and such a task would
take for ever. We can only approximate the curve with a polygonal formed with
very short line segments; however, this curve does not contain any line segments.

Ay

0 173 313 T
Figure 1

We will need to make some further analysis of the geometric properties of the
segments —their length and position— before we set out to write the program. Let
us focus only on one side of the triangle. At the first iteration we have a curve
made of four segments which we label a, b, ¢, and d as shown in Figure 1. If we
use a set of cartesian axes x and y and we place the starting point at (0,0) and the
" end point at (1,0), then the line segment a joins the points (0,0) and (1/3,0).
The line segment & makes an angle of 60° with the x-axis, therefore the
coordinates of the second endpoint can be obtained by adding to the coordinates of

(1/3,0), one third of cos60° and sin 60° respectively, that is,i

(1/3+1/3c0s60°,0+1/3sin60%)~ (05,0288).
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Similarly, the direction of the segment ¢ is at —60° with respect to the x—axis, so

its endpoint is calculated by adding one third of cos(~60°) and sin(—60°) to
the previous coordinates to obtain

(05 + cos(~60°), 0.288 + sin(-60°) ) ~ (0.67,0).

Finally, the endpoint of the line segment d is obtained by adding 1/3 to the first
coordinate of this last point. In summary, we start from (0,0) and we draw the
polygonal with segments of length 1/3 at angles 0°, 60°, -60° and 0° respectively
with respect to the x—axis.

At the second iteration, the polygonal will consist of 47 line segments of
length 1/9, and each of them will be of one of the four types a, b, ¢ or d. The 16
segments are shown in Figure 2 numbered from 0 to 15. As before, we draw the
polygonal from left to right. In order to determine how to draw each segment we
have to see how it was generated. For example, segment 7 is a segment of type d
constructed over a segment of type b from the first iteration. To find out the
direction in which the segment is drawn we add the angles corresponding to each
iteration: 60° in the first iteration, and 0° in the second one, giving and angle of
60°. The segment types a, b, ¢, and d are associated with the remainders—O0, 1, 2,
and 3 respectively— of the successive divisions of 7 by 4: the first division by 4
gives 1 with a remainder 3, and so the segment is of type d; next we divide 1 by
4 which gives 0 with a remainder 1, corresponding to type & in the first iteration.

Y

5 10
y\z 4 11 1ﬂ4
0 3 12 15

0 > X

Figure 2

This process of finding the direction in which each segment is drawn is applied
to iterations of any order. For example, suppose we have to draw segment 123 (of a
total of 256) in the fourth iteration in the construction of von Koch’s curve. We
find the remainders of the successive divisions by 4:
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123 | remainders

30 . 3
7 2
1 3
0 1

The two remainders 3 correspond to no vertical displacement, and the
remainders 1 and 2 correspond to angles of 60° and —60° respectively. Since we
have one remainder 1 and one 2, we simply add 60°+ (-60°)=0° and so the

segment 123 must be drawn parallel to the x—axis, so we simply add 1/ 3% to the
x~coordinate of the endpoint of segment 122 and leave the j—coordinate
unchanged.

This description of each line segment of an iteration of the von Koch'’s curve
construction forms the basis of the program included below which was written in
QuickBasic and you could easily adapt to any other programming language.

SCREEN 9: WINDOW (-.1, -.2)-(1.1, .7)
order = 5
DIM remainder (order): length = (1 / 3) * order
PSET (0, 0)
FOR n = 0 TO 4 * order - 1
aux = n
FOR L = 0 TO order - 1
remainder (L) = aux MOD 4: aux = aux \ 4
NEXT L
angle = 0

FOR k = 0 TO order - 1

IF remainder (k) 1 THEN angle
IF remainder (k) = 2 THEN angle
NEXT k

it
1]

angle + 1
angle - 1

|
]

x
Y

X + COS(angle * 1.047198) * length
y + SIN(angle * 1.047198) * length

"

il

LINE -(x, y)
NEXT n
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It should not be hard to understand the role of each variable. The order of
iteration is set to 5, but you can change it to any number. The array remainder
keeps the remainders of the division of the number of the segment to be drawn next
by successive divisions by 4, and the variable aux stores the integer part of the
division at each stage. The loop using the counter k determines the direction in
which the segment should be drawn, by adding 1 for each remainder 1 and
subtracting 1 for each remainder 2. Also, the number 1.047198 is the representation
of 60° in radians. Figure 3 shows the output of this program.

éwﬂm% e

Figure 3

This gives only one third of the von Koch’s Snowflake and 1 will leave it to you
to complete the remaining two sides of the triangle. You may also try other
variations to the construction presented here. For example, you could construct the
Anti-Snowflake Curve shown on page 44 of Function 22, Part 2 or you could
explore similar constructions with other shapes such as squares instead of triangles.

* % k % %

US President discuss Mathematics

“The investigation of mathematical truths accustoms the mind to
method and correctness in reasoning, and is an employment
peculiarly worthy of rational beings ... . From the high ground of
mathematical and philosophical demonstration, we are insensibly
led to far nobler and sublime meditations.”

—George Washington

from William Dunham’s The Mathematical
Universe, New York: Wiley, 1994

* ok ok % ok
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LETTER TO THE EDITOR
_ Dear Editor,

I was delighted to read Dr Fwls’ adventures in trigonometry [Vol 23,Part 2,
page 53]. By golly, it almost made sense ... . Goodness me, Pythagoras’ theorem in

tatters, together with geometry and algebra! Perhaps Dr Fwls slipped up
somewhere?

Well, let’s see.

I must agree with

bcosC = a — ccosB 1)
and
acosC = b—ccos 4 )

But from here on we part company.

If now a > b and cos C lies in (0, 1) then our doctor and me agree with
each other. Under those conditions

a® + b > 3)
However, if a > b and cos C liesin (-1, 0) then ‘

acosC < bcosC @
So, using (1) and (2) gives

b - ccosd £a — ccosB *)
Under these circumstances

a® + b < P ()
Ah, thank goodness. Pythagoras’ theorem still holds!

I can breathe again ... .
Julius Guest, East Bentleigh

* % % k %

If one be bird-witted, that is easily distracted and unable to keep his
attention as long as he should, mathematics provides a remedy; for in them
if the mind be caught away but a moment, the demonstration has to be
commenced anew. "
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PROBLEM CORNER

SOLUTIONS

Editors Note:- The problems in edition 23 were incorrectly numbered 22.1.1 to
22.1.5 instead of 23.1.1 to 23.1.5.

PROBLEM 23.1.1 (Adapted from New Scientist # 1597, submitted by Greg
Sheehan, Montrose, Vic)

A person has 2 pockets in their trousers and only carries amounts of
money such that the sum of money in both pockets is to equal the product of
the money in the right and left pockets (measured in dollars).

For example the person could carry a total of $6.25 since it is possible to
put $5 in one pocket and $1.25 in the other as 5 + 1.25 =5 x 1.25.

Given that the smallest unit of currency is one cent and that 100 cents
equals $1, how many different sums can be carried?

SOLUTION (Carlos Victor, Rio de Janeiro, Brazil)

Let the amount in dollars in the pockets be x, y. Then x+y = x.y, and
iflet x = 0.01X, y = 0.01Y we obtain

0.01X + 0.01Y = 0.0001XY

which can be written as
(X—-100) (Y—-100) = 10*

This last equation is to have positive integer solutions. The number 10*
has 25 divisors, so there are 25 pairs (X, ¥). For instance the pair of divisors
(2, 5000) corresponds to the solution x = $1.02, y = $51.00. The table
below gives a list of all such solutions and the corresponding 13 sums.
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X y Sum
1.01 101.00 102.01
1.02 51.00 52,02
1.04 26.00 27.04
1.05 21.00 22.05
1.08 13.50 14.58
1.10 11.00 12.10
1.16 7.25 8.41
1.20 6.00 7.20
125 5.00 6.25
1.40 350 - 4.90
1.50 3.00 4.50
1.80 225 4.05
2.00 2.00 4.00

A solution was also received from Julius Guest and a partial solution
from Ian Preston.

PROBLEM 23.1.2 (from Parabola)
In a family of 6 children, the five eldest children are respectively 2, 6, 8,
12 and 14 years older than the youngest. The age of each child is a prime

number.

How old are they? Show that their ages will never again be all prime
numbers {even if they live indefinitely).

SOLUTION (D. Garson, Leichhardt, NSW)

Let the age of the youngest child at any time be y, so that the six ages are

¥, y+2, y+6, y+8, y+12, y+14. ®
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Now, modulo 5 these ages are congruentto y, y+2, y+1, y+3, y+2,
y + 4. Butthe numbers y, y+1, y+2, y+3, y+4 are 5 successive
integers, so exactly one of these numbers is divisible by 5. If 5y+1 then
5|y +6 so that not all the ages in (i) will be prime. If Sy +2 then 3y +12.
Similarly if 5|y+3 then 5|y+8 andif Sy+4 then $|y+14. The only
possibility left for all ages in (i) to be prime is 5|y, in which case the
solution is :

5,17, 11, 13, 17, 19.
A solution was also received from Julius Guest and Carlos Victor.

PROBLEM 23.1.3 (Julius Guest, East Bentleigh, vic.)

Solve the system

it
=]

x+y+z

29
X+ +2 =99

xt+yt 42

SOLUTION (Colin Wilson, Rye, Vic.)

Let x = X+3, y = Y+3 and z = Z+3 so that the first equation gives

X+Y+Z=0 1)
The second equation together.with (i) gives

X+r+722=2 (ii)
and then the third equation gives

X+r+22=0 (iii)
Substitution from (i) into (ii) and (iii) gives

X+XY+7 =1 @iv)

XY+XY* =0 V)

and hence
XXY+Y) =X1-X) =0

from the last equation we see that X =-1, 0, 1.
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Then substitution into (iv) and (i) then gives the solutions for (X, ¥, Z) as
(-1,0,1), (-1,1,0), (0,1,-1), (0,-1,1), (1,0,-1) and (1,-1, 0).

Hence the solutions (x, y, z) are (2, 3, 4), (2,4, 3), (3,4,2), (3,2, 4),
(4,3,2) and (4, 2,3).

A solution was also received from the proposer, and a partial selution was
received from Carlos Victor.

PROBLEM 23.1.4 (K.R.S. Sastry, Bangalore, India)
Let P be a point inside a square ABCD.

Prove that P lies on the diagonal AC if and only if P4% PB?, PC? are
in arithmetical progression in that order.

SOLUTION (Julius Guest, East Bentleigh)

D c

A5 -'p

<¢

a
Choose A as the origin of cartesian axes along the direction of 4B and
AD.

(i) Let P(x,x) lieon AC. Then PA* = 2x*, PB* = x* + y(a —x)’,
PC* = 2(a—x)* and P4*+ PC* = 2PB? which establishes that
PA4*, PB* and PC? are in arithmetic progression.

(ii) Let P(x, y) be any point inside the square. Then P4’ = x*+)7,
PB’ = y+(a—x), PC* = (a~x*+(a— yP If PA+PC* = 2B,
then x* +)* +(a~x)*+ (a—y)* = 20+ (a—x)*) from which it
follows that x = y and hence P is on the diagonal AC.
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PROBLEM 23.1.5 (from Crux Mathematicorum with Math. Mayhem)

Suppose that g, b, ¢ are positive real numbers such that
abec = (a+b—c)(b+c—a)(c+a~b)

Clearly a = b = ¢ is asolution. Determine all others.

SOLUTION (Colin Wilson, Rye, Vic.)

We show that for all positive g, b, ¢ we have

abc = (a+b— c)(b+c—a)c+a->b)

with equality holding, ifand onlyif a = b = ¢. Without loss of generality
we may assume a@ = b > ¢ > 0 as the inequality is symmetric in q, b, c.
Then abc—(a+b+c)b+c—a)c+a—b)
=abc~(a+b-c)[c’ ~(a-b)]
=abc—(a+b-c)c’ +(a+b—-c)(a-b)
=(ab—ac—bc+c)c+(a+b-c)a~by
=(a—-c)b=c)c+(a+b-c)a-b)
20

with equality holding if and only if @ = b = c. Thus the only solution to
the equationis a = b = c.

A solution was also received from Carlos Victor, and an incomplete solution
was received from Julius Guest.

Editors note on problem 22.5.6

The problem was to give a plausible explanation of how a student arrives at a
‘solution’ x = 2.88539 of the equation Inx = 2. The published solution
although plausible is not the most plausible explanation. The proposer of the
problem gives the following explanation based on classroom experience.
The student divides both sides of the equation Inx = 2 by ‘In’ to give
x=2/In. Then, by entering the key sequence “2/In =", the value 2.88539
is obtained. In reality the calculator has evaluated 2/In2, but the student is
unaware of this fact in treating 1n just as a number!
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PROBLEMS
PROBLEM 23.3.1 (from Australian Mathematics Olympiad 1999)

Points P, O, R and S lie, in that order, on a circle such that PQ is
parallel to SR and QR = SR. Point T lies in the same plane as the circle
such that QT is a tangent of the circle and the angle RQT is acute. Prove
that

(a) PS = QR
(b) angle POT is trisected by OR and OS.

PROBLEM 23.3.2 (from Mathematical Spectrum)

Show that no prime number can be written as the sum of two squares in
two different ways.

PROBLEM 23.3.3 (from Crux Mathematicorum with Math. Mayhem)

Find all real solutions of the equation

x/l;x = 2x" —1+2x1-x .
PROBLEM 23.3.4 (from Crux Mathematicorum with Math. Mayhem)

ABCD is a square with incircle I'. Let 1 be the tangent to I' and let
A, B, C', D' be points on | such that 44’ BB, CC', DD' are all
perpendicular to 1. Prove that

AA'-CC" = BB'-DD'.

PROBLEM 23.3.5 (K.R.S. Sastry, Bangalore, India)

Determine conditions on the integers b and ¢ so that the three quadratic
polynomials  x*+bx+c, x> +bx+c+1, x’ +(b+Dx+c  factor over the
integers.

* ok ok ok ok
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OLYMPIAD NEWS

The 1999 Australian Mathematical Olympiad

The contest was held in Australian schools on February 10 and 11. On either
day 135 students in years 8 to 12 sat a paper consisting of four problems, for which
they were given four hours. As a result, 28 students were invited to represent
Australia at the Eleventh Asian Pacific Mathematics Olympiad, (APMO), a major
international competition for students from about twenty countries on the Pacific
Rim and Argentina, South Africa and Trinidad & Tobago. These are the two
papers.

First Day

Wednesday, 10" February, 1999

Time allowed: 4 hours
NO calculators are to be used
Each question is worth seven points

1. Points P, O, R and S lie, in that order, on a circle such that PQ is parallel
to SR and QR = SR. Point T lies in the same plane as the circle such that
QOT is a tangent of the circle and the angle RQOT is acute. Prove that

(a) PS = QR;
(b) angle PQT istrisected by QR and QS.

2. Atownhas99clubs C;, C,, ..., Cy, each of which has at least one member
and no two of which have exactly the same members. Determine the smallest
positive integer n such that one can be certain there is a set S of n people
with the property; whenever C; and C, 1 < i, j < 99, are different clubs
in the town, then there is either a person in S who belongs to C; but not to
C,, or there is a person in .S who belongs to C; butnotto C.

3. (a) Find positive integers aj ,ay, a3 and d3 such that

(i) ar—a,y =d; for k =2, 3, and
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(ii) there are integers m; > 1 and b; suchthat a; = b for
i=1,2,3.

(b) Show that for each integer n > 1 there exist positive integers
a,, a,...,a, and d, such that

(i) ap —ap.1 =d, for k = 2,3,...,n, and
(ii) there are integers m;, > 1 and b; such that a; = bimi for
i=1,2,...,n

4. Intriangle A the radius of the incircle is ». Prove that the sum of the lengths
of the altitudes of A is at least 97.

Second Day

Thursday, 11" February, 1999

Time Allowed: 4 hours
NO calculators are to be used
Each question is worth seven points

5. Let x > 1 beareal number and » > 1 aninteger. Prove that

1+£-_—1<3/;<1+x_1
nx n

6. Let ABC be atriangle and D, E, F points in its exterior such that A4BD,
ABCE and MCHF are cquilateral. The sides of these triangles are extended
to produce the following intersections; BE and AF intersect in K, DB and
FC intersectin L, and DA and EC intersect in M. Prove that DK, EL
and FM are parallel.

7. Let n be an integral and p a prime number such that 1 +#p is a perfect
square. Prove that n+ 1 isthe sum of p perfect squares.
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8. (a) Find one sequence {a,, a,, a,;, ...} of integeré with the following
properties:

(i) a, =1 or —1 foreach n;
(i) a,, = a,a, forall m andall #;
(iii) for no value of »n does a, = a,,, = a,,, hold.

(b) Determine all sequences {a,, a,, as,...} of integers with properties

(@), (i) and (iii).

The Eleventh Asian Pacific Mathematics Olympiad

On the basis of the AMO results, 28 students were invited to represent
Australia at the Eleventh Asian Pacific Mathematics Olympiad (APMO).. It was
held on 9 March. The APMO, an annual competition, was started in 1989 by
Australia, Canada, Hong Kong and Singapore. Since then the APMO has grown
into a major international competition for students from about twenty countries on
the Pacific Rim as well as from Argentina, South Africa and Trinidad and Tobago.

XI APMO
MARCH, 1999
Problem 1
Find the smallest positive integer n with the following property. There does not
exist an arithmetic progression of 1999 terms of real numbers containing exactly n
integers.

Problem 2

Let a;, a, .... be a sequence of real numbers satisfying a,, < a,+a, forall i
j = 1,2,.... Prove that

a d
@+ 2+ 4.+ > q
2 3

n

for each positive integer ».
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Problem 3

Let I and I', be two circles intersecting at P and (. The common tangent,
closer to P, of I} and I, touches I at 4 and I, at B. The tangent of
I'y at P meets I'y; at C, which is different from P and the extension of AP

meets BC at R. Prove that the circumcircle of triangle POR is tangent to BP
and BR.

Problem 4

Determine all pairs (g, b) of integers with the property that the numbers
a® +4b and b* +4a are both perfect squares.

Problem 5

Let S be asetof 2n+ 1 points in the plane such that no three are collinear and no
four concyclic. A circle will be called good if it has 3 points of S on its
circumference, n—1 points in its interior and » — 1 in its exterior. Prove that the
number of good circles has the same parity as ».

Time: 4 hours
Each problem is worth 7 points

i

The performance of students at the APMO as well as at the AMO was used in
selecting 25 students (12 senior and 13 junior students) for further training. - These
students participated in the ten-day Team Selection School of the Australian
Mathematical Olympiad Committee. Following a tradition, the School was held in
Sydney. Participants were offered a day-and-evening-filling program consisting of
tests and examinations, problem sessions and lectures given by mathematicians.
After two selection tests the team was selected that is to represent Australia at the
fortieth International Mathematical Olympiad (IMO) in July. Its venue will be
Bucharest (Romania). Romania is the country where in 1959 the First IMO was
held.

The Australian IMO Team Members are:
Andrew Cheeseman (year 12) Mentone Grammar School, Vic

Geoffrey Chu (11), Scotch College, Vic
Peter McNamara (10), Hale School, WA
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Allan Sly (11), Radford College, ACT

Kevin Sun (12), James Ruse Agricultural High School, NSW

Kester Tong (11), Lake Ginnindera High School, ACT

Team reserve: Thomas Sewell (11),.James Ruse Agricultural High School,
NSW.

Congratulations to all!

Taipei (Republic o,
for July There the " Aubtralian team cqnsisting of six
coutend
su{cde sion\ T
candidature respectively: g

****"k

Yet Another Proof

The History of Mathematics column for Volume 22, Part 2 considered a
number of different proofs of the irrationality of +2. William Dunham’s The

Mathematical Universe (New York: Wiley, 1994) gives yet another. If V2 is
rational, then

p2 :2q2,

where p, g are positive integers. Decompose p, g into their prime factors. Then
there will be an even number of such factors on the left (because each factor

necessarily occurs twice in p?) but an odd number on the left (because of the extra

2). Thus if v2 is to be rational, then an even number would have to equal an odd
number (to paraphrase Aristotle).

Note that this proof, like the second one given in the column, depends on the
unique factorisation theorem. But unlike that version, it does not require us to
express the ratio p/q in its lowest terms. If, however, we do this, we must have a 2
among the prime factors of p (to agree with the 2 on the right). But then there are
necessarily two of these on the left and so there must be at least one more on the
right (among the factors of g). But because p/q is in its lowest terms, g is odd. We
are back to the first of the proofs given before.

In Dunham’s version, we have an odd number of 2’s on the right and an even
number on the left. This amounts to a slight extra piece of precision in the
statement of Paragraph 1 above.
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