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Function is a refereed mathematics journal produced by the Department
of Mathematics & Statistics at Monash University. The journal was
founded in 1977 by Prof G B Preston. Function is addressed principally to
students in the upper years of secondary schools, and more generally to
anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. The items that appear
in each issue of Function include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.
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Articles, correspondence, problems (with or without solutions) and
other material for publication are invited. Address them to:

The Editors, Function

Department of Mathematics & Statistics
Monash University

PO BOX 197

Caulfield East VIC 3145, Australia
Fax: +61 3 9903 2227

e-mail: function@maths.monash.edu.au

Function is published five times a year, appearing in February, April,
June, August, and October. Price for five issues (including postage):
$20.00" ; single issues $5.00. Payments should be sent to: The Business
Manager, Function, Department of Mathematics & Statistics, Monash
University, Clayton VIC 3168, AUSTRALIA; cheques and money orders
should be made payable to Monash University.

For more information about Function see the journal home page at
http://www.maths.monash.edu.au/~cristina/function.html.

* $10 for bona fide secondary or tertiary students.



EDITORIAL

Welcome to all readers to our new volume of Function!

The front cover shows the first few terms of the sequence of the graphs of
functions generated by the composition of the function sin(x) with itself:

sin(x), sin(sin(x)), sin(sin(sin(x))), sin(sin(sin(sin(x)))), ...

We leave to the readers to analyse this sequence. Some features, like
periodicity, are obvious. What other features can you see? Can you explain them?
Are there any similarities with the sequence generated by the function cos(x)?

There are three feature articles in this issue: an article analysing the best
return strategy in a football-tipping competition; an example from optics to
illustrate the interaction between science and mathematics; and an article by our
young contributor Mark Nolan presenting his research on a sum involving inverse
tangents of integers which results in 7 .

i

In the regular History of Mathematics column you will find some insight into
the classical problem of determining the maximum area in a plane enclosed by a
string of fixed length. The Computers and Computing column gives a simple
example to show how parallel processing can be used to speed up lengthy
computing tasks. )

Finally, we include, as usual, problems and solutions prepared by our recently
appointed Problem Corner editor John Jeavons. We thank Peter Grossman for the
hard work he put in over the last five years to make the Problem Corner a success.
Also, we take this opportunity for thanking our former editor Bruce Henry for his
valuable contributions to so many issues of Function.

Happy reading!

* %k k k K
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BEATING THE ODDS

Michael A B Deakin, Monash University

This article was prompted by the News-Item in Function Vol 22, Part 2, p. 56
describing a football-tipping competition. I was also reminded of an article run in
Function many years ago.! Much of what I say here derives from that earlier
article, but it will be presented in a rather different way.

Suppose we place a bet of $1 on one team to beat another in a head-to-head
contest.” Call the teams 4 and B, say. The bookmaker will reward us with a
dividend $D, if we successfully back Team A4 or else a dividend $D, if we
successfully back Team B. Of course, if we back a losing team, then our dollar is
gone! ‘

I took the dividends in the following table from those published by National
Sportsbet just before AFL Round 4.

Collingwood $2.30 Geelong $1.70
Richmond $1.55 Western Bulldogs $2.00
Hawthorn $3.80 West Coast $1.45
StKilda $1.22 Sydney. $2.50
Port Adelaide $2.30 Carlton $1.70
Adelaide $1.55 Melbourne $2.00
Essendon  $1.18 North Melbourne $1.20
Fremantle $4.25 Brisbane $4.00

To see how this works, consider the first game. Suppose the bookmaker
assigns a probability of p to a win by Collingwood (and thus a probability of
1-p to the event that Richmond wins).> Suppose I then come and wager $1 on a
Collingwood win. If the bookmaker has chosen p correctly, then I stand to win

! See “Heads I win, Tails you lose” by G A Watterson in Function, Vol 1, Part 3, p. 9.

% And, for simplicity, ignore the possibility of a draw.

* How this is done is, of course, a trade secret. The News-Item in Function was concerned with exactly this point:
what is the best way to do this?
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$2.30 with probability p. The bookmaker will want my expected profit to be
negative, and so chooses p to make 230p <1. Similarly 1551~ p)<1.

Now make the two expressions on the left-hand sides of these inequalities equal
to one another; we will see why in a minute. We then have

230p = 15511 - p)

and this tells us that (to 2 decimal places) p = 0.40. We now have
230x 040 = 092 and 155x0.60 = 093, where there is a small rounding

effect in the second decimal place.

So we can deduce (subject to justifying the equality assumption) that the
bookmakers involved with National Sportsbet assessed the probability of a
Collingwood win at 0.40. For each dollar wagered on Collingwood they reckoned
to outlay 92 cents, and for each dollar wagered on Richmond they thought to hand
back 93 cents. Either way, they stood to make a profit of about 8%.

Now, actually, I’ve presented the calculations backwards. What the bookmaker
does first is to decide on the value of p. The other given is the extent of the
bookmaker’s profit: around 8%. What is then calculated is the dividend paid in the
event of a win by either team. So, if the bookmaker thought that the probability of
a Collingwood win was 0.4, then the dividend to be paid out if Collingwood wins is
$(0.92/0.4), i.e. $2.30. The dividend to be paid out in the event of a Richmond win
is $(0.92/0.6), i.e. $1.533333.. ., an amount rounded to $1.55.

The bookmaker is assured of a profit of about 8%, whichever team wins
(assuming always that the initial estimate of p is correct). This is why, earlier on,
we equated the two expressions; had one been significantly larger than the other,
then the profit margin in the case of a Collingwood win would be significantly
different from that applying in the event of a Richmond win. What the bookmaker
aims to do is to ensure the 8% return, whatever the outcome.

So in the general case where D, is the dividend paid out (per dollar invested)

' to a punter who successfully backs Team 4, and D, the dividend paid out (again

per dollar invested) to a punter who successfully backs TeamB, on each dollar bet

the bookmaker pays $D, with probability p and $D, with probability 1-p.

Thus if Team 4 wins the expected payout is $pD,, while if Team B wins the

expected payout is $(1- p)D,. The aim is to choose p in such a way as to
ensure a profit margin m in each case. So we have
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pD, = (1-p)D, = 1-m.

From the first of these equalities

1

_ Db, _ D
P=Dp+p, T 1,1
DA DB

(The apparently clumsy form of the second of these expressions is given here as
this is the form that generalises to cases where more than two outcomes are
possible. You may care to analyse this as an exercise.)

The bookmaker’s expected profit also follows from the analysis given above.
We find

DD, 1
pD,+p, 1 1
‘DA DB

1-m =

Because m is quite small (about 0.08 as we have seen) we may simplify this

formula by using the approximation 1-m ~ N ! to reach the simplification
+m

1 1
1+m~ —+—
D, D

A B

This gives us a very simple way to deduce the bookmaker’s odds from the
published dividends which can now be illustrated by the above case. Take the
reciprocals of the dividends and add them.

—1—+_1._ = 1.08.
230 155

If we now take each of the reciprocals and divide by this number, we obtain the

bookmaker’s estimate of p. In this case 515— = 0435, and if this number is
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divided by 1.08, the result is p = 0.4. Notice how the 8% profit shows up in the
course of this calculation. Readers may care to deduce the odds that National
Sportsbet assigned to each of the games in AFL Round 4 and the profit margin
(always near 8%) allowed for each game.

Now let us look at the situation described by Dr Watterson in the Function
article referred to earlier. This began by considering an actual case where a set of
dividends was offered that had: been arrived at without due consideration. The
details were topical then but need not detain us today. Suffice it to say that the
dividend to be collected (per dollar invested) if Team 4 won was $1.40, and if
‘Team B won then the punter stood to collect $4.50 on each dollar invested.

If we consider the sum of the reciprocals of these numbers, we find

L o365
140 450 »

and this number is less than 1. The bookmaker’s profit from such odds is thus
negative. Let us see how we could make money from this situation.

The idea is to invest $M on the first outcome and $N on the second. Thus if
Team 4 wins we get back $1.40M, and if Team B wins we get back $4.50N. We
want both of these receipts at least to return the $(M+N) we ventured. So we
want both

to hold. These inequalities simplify to*

M

250 < < 350.

. So if we wager $M on Team A4 and $N on Team B and make sure that the
various amounts satisfy these inequalities, then we can’t lose!

The previous article examined the case M= 70, N=22. In this case the punter
has outlayed $92. If Team 4 wins, the return is $70 x 1.40 = $98, for a profit of
$6; if Team B wins the return is $22x 450 = $99, for a profit of $7. Thus the

* The work is left as an exercise for the reader.
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punter must, on these figures, make at least $6 for an outlay of $92. The assured
profit is 6.52%. '

Now the question arises as to how we might maximise this assured return.
Here again we use the equality principle: we set the assured return in the event that
Team 4 wins equal to the assured return in the event that Team B wins. The
reasoning is as before. Higher returns in the one case are counterbalanced by lower
returns in the other.

Look first at one extreme case, M = 250N. Put M=5 N=2 . Now if
Team A wins, the punter scores $5x14 = $7, a return of precisely zero on the
initial outlay. If Team B wins, the return is $2 x 4.50 = $9, and this is a profit of
$2 on an initial outlay of $7, that is to say about 28.6%. At the other end of the
scale, we may put M = 350N, and consider the case M =7, N=2. Now if
Team A wins, the punter scores $7x14 = $9.80, for a profit of $0.80 on an
initial outlay of $9 (8.89% profit), but if, on the other hand, TeamB wins the
return is $2x 4.50 = $9, and the profit is zero. At either of these extremes, our
assured return is actually zero.

But suppose we try to choose M and N so as to compromise between these
two extremes. If the assured profit from one outcome is less than that from the
other, then it is only the lower figure that we can count upon. Thus in this case, we
set the two expected returns equal to one another. That is to say, we impose the
condition that

1.4M = 4.5N.

So now we may set up an optimal strategy. Invest $59, and put $45 of this on
Team 4 and $14 on Team B. Either way, our return will be-
$14x 45 = $45x14 = $63. This is a return of $4 on our outlay of $59. We are
assured of this $4 profit, which represents a return of 6.78%.

We can trust to our luck by using other figures, and we may do better, but on
the other hand we could lose out. The 6.78% is the best result we can be assured

of achieving.

A few general remarks in conclusion.
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Let us now look again at the general case where the dividends are D, if we
successfully back Team 4 or else a dividend D, if we successfully back Team B.
The condition that we can successfully take the bookmaker down is

I 1
—+— <1,
DA DB

and our optimal strategy is to choose to invest $(Af +N) with DM = D,N. In

-1

. 1 1

this case, the return is (_[T + H) on every dollar outlayed, and by the inequality
A B

above this is clearly a profitable investment.

Similar remarks apply to (e.g.) horseraces, in which there are more than two
“teams” competing. This is something I leave it to the reader to investigate (but
see the brief remarks above). However, there are two points to consider.
Horseraces still use, in many instances, “odds”. These are to be used to calculate
the dividends. Odds of 7:1 (against) for example give a dividend of $8 for a $1
stake; odds of 10:1 on give a dividend of $1.10 for a $1 stake, and so on.

Tote dividends are recorded as dividends, but the punter can’t know until
after the race what the actual dividend was, by which time the tote has already
taken the profits out. The real world can be (indeed is ) rather more complicated
than the simplest models we construct. Nonetheless, until we understand the
simple cases, we have no hope of following the more complex situations.

* k %k %k ok

To make mathematics you must be interested in mathematics.
The fascination of pattern and the logical classification of pattern
must have taken hold of you. It need not be the only emotion in
your mind; you may pursue other aims, respond to other duties;
but if it is not there, you will contribute nothing to mathematics.

—W W Sawyer in Prelude to Mathematics

* %k %k ok %k
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THE INTERACTION OF MATHEMATICS AND SCIENCE:
AN EXAMPLE FROM OPTICS

Bert Boltoh, University of Melbourne

Mathematics is often said to be useful, but there is something slightly
condescending about the word ‘useful’. Very often the mathematical analysis of a
scientific problem reveals its essential nature, which is made clear when the
problem is put into mathematical terms. As an example, one of the classic
problems in astronomy starts with the measurements of the positions of the planets
round the sun by Tycho Brahe (Danish, 1546-1601); such measurements, unrelated
to any theoretical ideas, are called empirical. Brahe’s measurements were then
used by Johannes Kepler (German, 1571-1630) to show that the shapes of
planetary orbits are ellipses. Finally Isaac Newton (English, 1642-1727) deduced
mathematically the shape of these ellipses from the universal inverse square law of
gravitational attraction between the sun and each planet. This and other
mathematical discussions of scientific principles or fundamental laws make it
tempting to say that mathematics is the right language in which science should be
expressed, superseding the initial empirical observations. In fact science needs the
empirical observations, experimental results based on theory and mathematical
analysis of the underlying theory. There is a well-known example in the
understanding of light that can be followed at both the empirical and the
mathematical level. The mathematics involved is mostly straightforward geometry,
but it illustrates the point of the theory and reveals a deeper understanding of
nature, brought about by the mathematics.

The example concerns the reflection and refraction of light. These are
phenomena which arise when light falls on surfaces such as glass. In Figure 1, a ray
of light starts from a point 4 and proceeds to a point C via a reflection from a
mirror. We may think of 4 as a light-source such as a lamp and C as a human
eye. The eye sees 4 as reflected in the mirror at B. The mirror will be taken to
be flat and the line BO is perpendicular to its surface. The angle 4BO is called
the angle of incidence and is represented by i; the angle OBC is called the
angle of reflection and is represented by r. The lines 4M and CN are drawn
perpendicular to the mirror, and all the points are supposed to lie in one plane: that
of the diagram. More will be said on this later; for the moment, we can say that
this is what seems to happen empirically. There is no reason yet to say that B
must lie in the plane defined by AM and CN, but there is no harm in taking this
as a simple starting point.
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4

A;_f B mirror N
Figure 1

It has long been known empirically that the angle of incidence i is equal to the
angle of reflection r. There have always been reflections in water surfaces and
when mirrors were devised reflections in them could be studied. Some people have
speculated that the early Egyptians used mirrors at the corners of their tunnels to
reflect sunlight into the inner chambers of their pyramids. (Because of the rotation
of the earth, the reflected light from the first, external, mirror would need to be
rotated—almost certainly by hand—to direct the reflected sunlight onto the second
mirror at the end of the first tunnel.)

Empirically, therefore, we take it that i =» and for many situations that is all
we need to know. But let us go further and look at Figure 1 mathematically.
Consider the case in which. B is not necessarily chosen to make i= 7. But then
if the point of reflection B were such as to make i#7r, the path the light would
travel would be longer than that taken if i =7 .

To see this, draw Figure 2, where CN has been extended to C' with
CN =NC', and OB has been extended to O'. Notice that
ZO'BC' = LOBC=r.
Notice also that the distance travelled by the light, ABC, is equal to the distance
ABC'.

Very clearly, this distance will be minimised when A, B, C' lie in a straight
line. But the condition for this is precisely that i = r .

Now we may also note that if B had been chosen to lie outside the plane
defined by AM and CN the path from 4 to B to C would also have been
lengthened. By drawing Figure 1 as we did, we chose the minimum length for the
path of the light.
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Light travels with a very large, but nonetheless finite, velocity, so another way
to express the minimum principle is to say that the light ray gets from 4 to B to
C in the shortest possible time.

A C
0
1 v
M B, N
o -
Figure 2 :

We thus haveé two possible interpretations of the reflection data. One is that
light so travels as to minimise the total distance covered; the other is that light so
travels as to minimise the total time taken. Fortunately we have further empirical
data to distinguish between these two possible interpretations; it turns out that it is
the time which is minimised.

Figure 3 shows the example of light being refracted from a source A4, which
we may think of as being situated in air, and reaching C, which we may think of
as a fish eye in water. The word refraction (describing the bent path of the light
ray) comes from a Latin word meaning “breaking”. It relates to our observation of
(say) a long pencil dipped into a glass of water. If we look down on it we see an
apparent “break™ in the line of the pencil. I have chosen the same symbols for the
points in Figure 3 as I used in Figure 1. The angle 7 is still referred to as the angle
of incidence, but » now is called the angle of refraction. The empirical law of
refraction was given by Willebrord Snell (Netherlands, 1580-1626), and it states
that

sini

—— = constant.
sinr

The constant in this equation is called the refractive index and it is often
represented by the Greek letter .
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For light leaving air and entering water, the value of M is about 1.33. Itis
now known that this 4 is the ratio of the speed of light in air, ¢,, to the speed

of light in water, c¢,,. Thus Snell’s law for a ray of light leaving air and entering
water is

sini -y = Cq
sinr Cw
0]
A
i
N - air
M B : water

c
Figure 3

This form of Snell’s law is equivalent to the light taking the shortest fime in
travelling from 4 to C. (Clearly distance is not minimised, as the line 4BC is
not straight!)

To see this, put MB=x, Md=a, MN =] and NC=5. Our aim is to
choose B (i.e. the value of x ) in such a way as to minimise 7T, the total time taken
by the light in travelling from 4 to C. But now

+_Va?+s? . Vo2 +(1-x)?
C

a Cw

In order to minimise T, we need to set its derivative equal to zero. This gives

i]_”_ x l-x -0

x ca\/a2 +x2 cw\/bz -+—(l—x)2
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This equation may be rewritten as
x I-x
ca\/a2 +x% cw\/b2 +(l—x)2

and the left-hand side of this equation is the sine of the angle MAB, divided by ¢, .
Similarly the right-hand side is the sine of the angle NCB, divided by ¢,,,.

But this is exactly the same as saying that

sini sinr

Ca Cw

which is Snell’s law.

This discussion has shown how valuable mathematics is for science. If we
wish, we can keep our understanding of the natural world at the level of empirical
observation and generalisations such as the laws of reflection and Snell’s law of
refraction. But showing that empirical data can be deduced mathematically
introduces us to the possibilities of new experiments based on new ideas. For
example, what of the values of ¢, and ¢,? Do they vary with density or
temperature? Do they depend on the structure of the medium? These and other
questions are not just empirical but are based on interpretations of the nature of
light and its interaction with matter. Mathematicians need never think that what
they discuss will be too ‘pure’ or abstract to be useful in science. The ideas of pure
mathematics have constantly been found to be valuable in new fields of science.
Many areas of physics have moved beyond just handling experimental data and are
using powerful mathematical ideas. New problems are continually appearing; there
is room for many workers.

A problem completely analogous to Snell’s law of refraction may be put in
the context of a beach drama. Let MN in Figure 3 represent the water’s edge, and
suppose that you are a surf lifesaver at 4. You see a swimmer in difficulties at C
in the water. You can run faster on sand than you can swim in water. The point is
to minimise the time you take to get from A to C. That path will be given by
Snell’s law.!

* 3k koK Kk

! This problem is similar to one recently discussed in Function (see Vol 22, Part 5, pp. 147-153). However, itisnot
the same problem, as the reader may verify. The earlier problem has a closer optical analogue in the problem of
“total internal reflection”, but the details are omitted here.
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A SUM RESULTING IN &t

Mark Nolan, Year 9, St Leonard’s College

In this problem, I have to prove that
Tan"'1+Tan"2+ Tan"3=x.

- [By Tan " lx is meant “the (acute) angle whose tangent is x”. It is also understood
that all angles are to be measured in radians.]

As you can see in the diagram, there are three angleé: Angle A, Angle B and
Angle C. Angle A is a forty-five degree angle (although in this problem it is
measured in radians and will be known as g), and so its tangent is 1. Angle B has

been made to have a tangent of 2, and Angle C a tangent of 3. Together, these add
to w.

To prove this, we use the diagram below. There are three special points on this
diagram; P, Q and R. P is the point such that the angle between OP and the x-axis
has tangent 1; angle POQ has tangent 2; angle QOR has tangent 3. I have to prove
that R is lying exactly on the x-axis, which will show that the three angles add to
. To do this, I will first have to work out the coordinates of the other points. It is
possible to figure this out by using only logic and Pythagoras’ Theorem.
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It is quite simple to find the coordinates of P. It is at (1,1). This is because, as

mentioned, A is an angle of %

The next point to find is Q. The line PQ has been made to be twice as long as
the line OP. Using Pythagoras’ theorem, I found that the line OP has a length of
V2 and therefore the line PQ has a length of 242, or /8. Using Pythagoras’
theorem once again, I find that the line QO has a length of +/10. T already know
the coordinates of the points O and P, and their distances from Q, so I should be
able to find the coordinates of Q.

Let us presume that the coordinates of Q are (x, y). To find out exactly what
these pro-numerals stand for, I must discover the relationship between x and y.
I found a very useful equation simply by using Pythagoras.

I saw that /x> + 3’ = V10 because I already knew that the line QO had a

length of ~/10. I then simplified the equation even more to get x* + y*> =10. This
did not fully solve everything, but it was a vital clue. Using the same method, I
saw that

VE=1 +(y-17 =8,

which I later simplified to (x —1)* +( y 1) =8. I then expanded this equation,
giving me
X' =2x+1+y* -2y +1=8.

After rearranging this statement into a more orderly fashion, I came up with
x*+y'—=2x+y)=6.

Now 1 could use the equation I discovered earlier to show that
10—-2(x + y) = 6. This obviously shows that x + y = 2.

Now that I know this, I can see that y=2-x. I now have found a very
simple relationship between x and y. IfI replace every y I come across with a
2-x, I can solve the mystery of the coordinates to the point Q! Instead of saying
x* —y* =10, I could say that x*+(2—x)* =10. This equation has the solutions
x=3 and x=-1. From the diagram, we see that it is the second of these
solutions we want. When x=-1, y=3.
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I have now found the coordinates of the point Q to be (~1,3). With this
knowledge, and using the same method as I have just used, I will attempt to find
the coordinates of the point R. ' If it lies directly on the x-axis, then it will prove
that the angles A, B and C do add up to w. If the point R is slightly above or below
the x-axis, then I am wrong.

This is how I am going to find the coordinates of the point R. Tt is quite similar
to the way in which I found the coordinates of the point Q. So far, I know that

Q= (-1, 3) and that RQ = 3v10. I will call the point R (x, y).

I will make a statement using Pythagoras that is similar to the one T first used
when I was figuring out the coordinates of Q. It says that

(x+1) +(y—3)> =(3410)* =90, which means that the line RQ has a length of
3410, or v90. We already know that the line QO has a length of 10 , S0 by
using Pythagoras yet again, we shall see that the length of the line RO is
V100, or 10. This does not quite prove that y =0, but it narrows down the
search a bit because it tells us that x* + y? =100.

So now we have discovered a relationship between x and ¥y, which is that
»*=100~-x’. We can replace every 3° with this expression, and it will make
this problem a lot easier. We can expand an earlier discovery:

(x+1 +(¥y-3 =90 togive x*+2x+1+100~x* -6y —-9=90.
This can now be simplified to: x =3y -10.

Now we have another relationship between x and y! Since we already know
that x’+y* =100, it is obvious that (3y—10)+»* =100. This shows that ¥

could be either 0 or 6. This is because the statement above was found due to the
fact that it showed the point which is a distance of 10 units from the point O and

also /90 units from the point Q. But there are two points which satisfy this
criterion. One is at (~10, 0). Now I have shown that

Tan"'1+Tan"2+Tan'3=1!

But it seems that I didn’t really need to go to all that trouble. There was
actually an easier way to have proved this statement.
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So far, I haven’t yet mentioned the points S and T which you can see in the
diagram on the first page of this article. S is at the coordinates (—1,0) and T is at
the coordinates (1, 0).

As soon as I had found the location of the point Q, I could have used this
procedure to solve the problem without having to find the coordinates of the point
R. If I had drawn a vertical line from S to Q, just after I had discovered that Q was
located at (-1, 3), I would have seen that the distance between S and O was 1 unit
and the distance between S and Q was 3 units. This would immediately show that

the angle ZSOQ was equal to Tan™3. Since the point S has already been made
to be on the x—axis, the problem is already solved!

I conclude from my findings that Tan'1+Tan"'2+Tan"'3=m.

This next diagram shows another way to reach this formula.

In this problem, I have to prove that Tan™1+ Tan™ l—(~ Tan™ % = g— To show
this, I will use coordinate geometry. Using radians, the three angles shown in the
diagram add up to a right angle, or 125 If T can show that the point R’ is on the

y—axis, I will have proved this.

Obviously, the point P’ is at (1,—1). Because the point Q' is half the distance
from P’ as P” is from O and the angle OP’'Q’ is a right angle, Q" is at (%, - %) .
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Call the length of OQ" equal to /. IfI use Pythagoras’ theorem, I can find the
length [ is \/g , and so the length of the line R'Q" is %\E If T were to call the

pointR” (x, ), then because of this fact, we have
2 2

-1 3 -5

(x 2) +(y+2) th

: [ 2
If I use Pythagoras’ theorem again, I can find the length OR" is ,|I? +(9

and this works out to be % So now I have another equation

x2+y2=

ol

These two equations can be solved in the same way I solved pairs of equations
before. We can find out that x=3y+5 and so 3y +5)2 +y2 =%. When 1

solved this equation, I found that y = —% orelse y= —% . Which is correct?

To find out, I looked at the coordinates of Q'. These are (%, - %), sd that Q

is 2 units down the page from the x-axis. R’ has to be further down still and so

2
its y-coordinate must be — %, not — % So now I know that. y = —% is the value

I must use. But this gives x =0, which means that the point R’ is on they—axis,
which is what I wanted to prove!

I have proved that Tan 1+ Tan™ %4— Tan™ % =

(SRR

This is actually related to the previous formula
Tan~'1+Tan"12+ Tan~13 = s

because Tan! %z g—Tan’lz and Tan™ -;- :-;E—Tan—ll So the two formulas

are really the same.
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So I have now proved the formula Tan 1+ Tan"12+Tan"13=7n in three
different ways.

[Editors’ Note: The formula Tan M+ Tan 124 Tan 13=1 was pointed out to
us by Dr Mike Englefield, who found it in a recent issue of the American
Mathematical Monthly. Neither he nor we had seen it explicitly given in this neat
Jorm. We suggested to Mark that he look at the formula and try to prove it. The
article above is the result of Mark’s efforts. The formula

-1 =11 -11_=n
Tan "1+ Tan 2+Tan 3=7%

is equivalent to the first, as Mark points out. This latter formula may be somewhat

simplified. Because T an = % it may be written as
-1l “li_m
Tan > +Tan 35

and in this form it is reasonably well-known. Indeed it has appeared in Function
before. In an article entitled “Pi through the Ages”, J M Howie quoted it and
referred to it as “beloved by sixth form examiners the world over” (see Vol 4,
Part 7, p. 9).

Other proofs are possible. For instance, there is a general rule

Tan™'x + Tan"ly = Tan"l(u)
1-xy
1

and if we insert the values x = 5 and y= —é— into this result, we find

Tan 'L+ Ton™!

1.
5 3 Tan

This same general rule could also be used in other ways. Mark’s three proofs
however give considerable geometric insight into the formula.]

% % k ok k
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. NEWS: Rare Maths Book sold at Auction

The Greek mathematician Archimedes lived from about 287BC to 212BC, when
he was killed during the siege of Syracuse. He is regarded as one of the very greatest
mathematicians who ever lived, and his contributions to geometry, to mechanics and
to what (much later) became calculus have ensured this honoured place for him in the
history books.

Many of his writings survive and are available to modern readers. But it is
important to understand just how this has happened. Back when Archimedes lived,
and for over a thousand years after that, books all had to be copied by hand. Copies
were made of copies of copies ..., and some of these various copies were better than
others. Others came to sad ends as a result of fire, wars, vandalism and their like.
Eventually the surviving copies found their way into the rare book rooms of major
libraries, such as the different national or university collections. Modem editors try
to compare all the surviving copies (a very small subset of the total!) and so to
reconstruct the original as best they can.

It is therefore a great day when a new copy comes to light, and this is what
happened recently with the texts of two of Archimedes’ best works: On Floating
Bodies and The Method of Mechanical Theorems. The first of these is concerned
with Hydrostatics, the science of fluid equilibrium, and it is the one that contains (as
its Proposition 7) the famous “Archimedes’ Principle”, which in a modern version
says that if a solid body floats in a liquid, then the amount of liquid it displaces
weighs precisely the same as the solid does. The second is in some ways more
interesting work in that it uses the methods of Statics (the general science of
equilibrium) to come up with geometrical results. For example its Proposition 2
determines the volume of the sphere. Later on, Archimedes got these same results by
more efficient, straightforwardly geometric, means. But his earlier proofs tell us a lot
about how the mind of this great genius worked.

It is believed that the parchment onto which the works were copied dates from the
12th Century AD, and so it is very far removed in time from Archimedes himself. It
has survived largely unnoticed because it is a palimpsest. [This technical word refers
to a manuscript written over the top of another. In this case, there was an attempt to
erase the original Archimedean text and a later text (here devotional material from an
Eastern branch of the Christian Church) superimposed on the erasure.] However it is
often possible still to read the original text, especially with 20th Century techniques
like the use of ultraviolet light. In this case, preliminary examination shows that quite
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a lot can be read, and that the texts are almost complete, though some pages and
words near the margins are missing.

The work came to light only recently, when it was offered for sale at Christie’s
(the well-known auction house) last October. Christie’s were selling it on behalf of
its owners whom they described as an anonymous French family. They satisfied
themselves that this family had held the manuscript for “three quarters of a century”
and that they had acquired it legitimately by buying it (in or about 1920) from the
previous owners: the Greek Orthodox Patriarchate of Jerusalem, who seem
themselves to have acquired it (well before this) from a library in Constantinople,
now Istanbul.

There was some considerable discussion before the auction took place over the
rightful ownership of the document, but a legal action brought by the Patriarchate in
the Federal Court of New York failed, and so the auction was allowed to proceed. It
was suggested that Princeion University in the USA might bid for it, but they did not
do so, yielding to the desire of the Greek government to acquire the work.

When it came to the auction, bidding began at $US480,000 and in a matter of
minutes ran up to $US2,000,000, at which price it was knocked down. The
successful bidder was Simon Finch, a London dealer, who often acts as an agent in
such matters. The actual buyer has not.been identified, but is described as an
anonymous American collector. A rumour that it was Bill Gates has however been
officially denied.

The Greek government therefore missed out, but the Patriarchate have not ruled
out taking their legal claim further. This would entail close examination of the way
in which the French family acquired the work. Did the person who sold it to them
actually have the authority to do so? That sort of question.

Meanwhile the good news is that the new owner has declared that the work will
be made available to reputable scholars, so that its significance for the understanding
of Archimedes and his work can be fully assessed. This will be a painstaking and
lengthy process, but in due course we may hope to have a better text for these two
works and an increased understanding of Archimedes’ thought.

% ok ok ok ok
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HISTORY OF MATHEMATICS

The Isoperimetric Problem

Michael A B Deakin

If we have a length of string, say, with its two ends joined together, we can so
place it on a flat surface, like the top of a table, that it encloses an area 4, say.
" Suppose that the length of the string is L. How should we arrange the string so
that without altering its length, we ensure that the area 4 is maximised?. This
problem is the so-called “isoperimetric problem”, or “classic isoperimetric
problem”, and it is one of a class of similar problems which collectively are also
known as “isoperimetric problems”. The word “isoperimetric” comes from isos-,
meaning “equal” and perimeter, which refers to the length of the boundary of the
enclosed area 4.

The history of such problems goes back a very long way; we could even say to
a time before reliable history. Legend has it that the famous queenDido was
shipwrecked with her companions on the coast of North Africa and asked the local
residents for a grant of land where they could settle. They allowed her as much
land as could be “encompassed by the hide of an ox”. Dido cut the oxhide into .
very thin strips and joined these together to form a long strip of leather. We shall
see in detail later on quite how she used this strip to enclose quite a large region of
land, upon which she built the city of Carthage. In time this became a large and
powerful centre of trade and agriculture, which in its heyday challenged the might
of Rome. (Rome however prevailed and Carthage was reduced to rubble; its ruins
lie in the modern state of Tunisia.)

More certainly, the Greek mathematician Zenodorus produced a book On
Isometric Figures, probably some time between 200 BC and 90 BC. Little is
known of Zenodorus, and his book no longer survives in the form in which he
wrote it. However portions of it are still with us because later mathematicians
reproduced extensive passages from it in their own works. For example, the much
later Pappus (4th century AD) .proves a number of theorems on isoperimetric
probléms in Book V of his Collection, and his source is Zenodorus. - Other parts
are preserved in the writings of Pappus’s somewhat younger contemporary, Theon
of Alexandria.! Because we no longer have the original work, it is not always
clear, however, quite what theorems that are still available to us are due to
Zenodorus and which to Pappus.

' Theon was the father of Hypatia, whose story was told in Function, Vol 16, Part 1.
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However, those theorems are:

(1)  Of all regular polygons of equal perimeter, that with the largest number of
angles encloses the greatest area.

(2) A circle encloses a greater area than any polygon with the same perimeter
‘ (circumference).

(3) Ofall polygons with the same number of sides and the same perimeter, the
regular polygon encloses the greatest area.

Pappus added a fourth theorem, not proved by Zenodorus:

(4)  Of all segments of a circle having the same perimeter, the semicircle has the
greatest enclosed area.

Let us have a look at the proof of the second of these theorems. Archimedes
had proved that the area of a circle is half the product of its circumference and its
radius. That is to say that if 7 is the radius, then

A= %(an) ¥

The proof uses this fact and takes a regular polygon and a circle with the
same circumference (perimeter) as this polygon. But now if we compare the radius
of this circle with the distance from the centre to the midpoint of a side, we find
that the latter is the lesser, so that the area of the polygon is correspondingly less.
Readers may care to recast this proof into modern form using trigonometry. In
order to complete the proof we need the third of the three theorems given above in
order to justify the use of regular polygons in the calculation.

The matter that perhaps most caused interest in Pappus’s account was his
deduction from these theorems that of all the shapes that pack together, the regular
hexagon encloses the greatest area for the length of its perimeter. Pappus used this
to demonstrate the wisdom of bees, whose honeycombs adopt the hexagonal shape.
(Bees were very important economically in his time as they provided the principal,
almost the only, source of sweetening.)

Now let us get back to Dido’s problem of securing for herself and her
companions the greatest area of land that she could. Here is how modern authors
tend to interpret the ancient legend.
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We have a straight piece of seacoast and we are so to position the strip of
leather as to join two points on this and to be arranged inland in such a way as to
maximise the enclosed area 4. See Figure 1.

seacoast

A

L

Figure 1

I now show that the curve adopted by the leather strip should be semicircular.
(This is similar to the fourth of the theorems listed above, but is not the same,
because the length of the seacoast is here not included in the total; only the length
of the leather strip.)

To show that the required maximum is given by a semicircle, take a curve
which is not a semicircle as shown in Figure 2.

Figure 2

A semicircle has the property that if any point P on it is joined to the ends 4
"and B as shown, then the angle 4PB is a right angle.. Moreover the semicircle is
the onmly curve joining A and B which possesses this property. Because the
curve in Figure 2 is not a semicircle, there must then be some point P such that
angle APB is not aright angle. Figure 2 has chosen such a point as the location
of P. Join AP and BP. We now have three regions R, R2 s R3’ as shown.

Now, without altering R, or R, in any way, adjust the area R, by making angle
APB equal to a right angle. This necessarily increases R3 (prdve this as a simple

~ exercise) and so increases the total area. We may always so increase the area in
this way unless for every point P the angle APB is a right angle. Thus if the
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curve is not semicircular, we may always make its area larger, and so the area is
not maximised.

This elegant proof is much more recent than Queen Dido, Zenodorus, or even
Pappus or Theon. It is due to the nineteenth century geometer Jakob Steiner, who
published it in 1836.2

We are now in a position to solve the classical isoperimetric problem with
which this article opened. The solution is: Of all the simple closed® curves that
may be constructed in a plane and having a total perimeter L the circle is the one
that maximises the enclosed area A.

Steiner likewise produced a nice proof of this, and I give it here. Before I do
so, however, I remark that the theorems given by Zenodorus and Pappus go a long
way toward proving the result, but not all the way (although we may use their
work to build a proof that does do the full job).

Steiner’s proof takes a simple closed curve C and chooses any point P on it.
We now proceed a distance L/2 along the curve, and reach a point we will call Q.
The line PQ now divides the interior of C into two regions R, and R,. (See

Figure 3.) -

Figure 3

Ifthe curve C is nor a circle, then either one or other of these regions has the
larger area, or else (what is less likely) they may just happen to have exactly the
same area. '

In the first case, we may increase the area with no corresponding increase in
perimeter simply by replacing the smaller area with a mirror image of the larger, so

* Steiner has featured in earlier articles in Function. The idea behind this proof is very like that behind a proof
given for one of the theorems in my history article in Vol 20, Part 3, which concerned yet another isoperimetric

problem.
* A closed curve is one whose ends join up. A simple closed curve is one that doesn’t intersect itself and so

unambiguously encloses an area..
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the total area cannot previously have been maximal. In the second case, for C not
to be a circle, at least one of its halves will fail to be a semicircle. But if we replace
the arc that is not a semicircle by one that is, we increase the area bounded by the
arc and the line PQ (by the solution to Dido’s problem). Now reflect this new
semicircular arc in PQ and so reach a circle, which will be the solution to the
problem.

These two proofs are so elegant and ingenious that it is a pity to have to point
out that they are incomplete in one technical detail. This was not realised till a later
mathematician, P G L Dirichlet (1805-1859) noticed it. His objection is really very
subtle, but it is telling. To demonstrate its force, I will concentrate on Steiner’s
solution of the Dido problem. Because he used this in the later theorem on the
classical isoperimetric problem, a flaw in this proof affects the two of them.

When Steiner discussed the Dido problem, what he showed was that if the arc
AB was not semicircular, then it was not the curve that enclosed the greatest area.
It could always be improved on. But to reach thé semicircle by means of such
improvements involved infinitely many steps (there are infinitely many possible
points P in Figure 2), and so this is not a viable programme for getting to the
optimal curve. In fact, Steiner didn’t envisage doing this. Rather his proof
assumes that there is a curve that maximises the area and then shows that no
curve other than the semicircle could possibly be this maximising one.

- As Dirichlet rightly pointed out, the assumption that the maximising curve
actually exists is something that itself requires proof. The point can be met and the
gap closed, although the details get too complicated to go into here, but perhaps I
can indicate the need for such caution by referring to another problem. This is in
the same family as those we have been looking at, but is a more distant cousin, if I
may so put it.

This problem is known as the “Kakeya Problem” and it asks for the curve
enclosing the minimum area inside which it is possible to rotate a straight line

segment of length 1 through 360°. An equilateral triangle of side 2/+/3 can
easily be shown to work. But could we not perhaps do better?

Well, yes we can, but only if we stop using “convex curves”. Convex curves
are those that always “bulge out” rather than inwards. If we wrap a thread around
the shape made by a convex curve, the thread and the shape keep in contact at all
points. Clearly in the case of the isoperimetric problems discussed up to this point,
we want convex curves, as the enclosed area is to be maximised. But in the case of
the Kakeya problem, the area is to be minimised so matters are different. It turns
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out that if we only look at convex curves, then the equilateral triangle is the best
we can do with the Kakeya problem. The real surprise comes however when we
allow non-convex curves.

In this case, there is 7o answer! Whatever curve we find, there is always
another curve that does better. The area can be made to be arbitrarily small,
arbitrarily close to zero. But we can’t have zero itself as the enclosed area, because
in this case we stop having a properly defined curve, and also the geometric shape
that the successively better curves do converge upon in fact doesn’t allow the
required rotation.

So Dirichlet was right to point out the gap in Steiner’s proofs. A pity really. It
is also a pity that the filling in of this gap is a matter of some difficulty. It is
certainly outside the scope of Function.

* ok ok ok ok

At the age of 21 | experienced a second wonder ... in a little
book dealing with Euclidean plane geometry, which came into my
hands at the beginning of the school year. Here were assertions,
as for example the intersection of the three altitudes of a triangle
in one point, which—though by no means evident—could
nevertheless be proved with such certainty that any doubt
appeared to be out of the question. This lucidity and certainty
made an indescribable impression upon me. ...

If thus it appeared that it was possible to get certain knowledge
of the objects of experience by means of pure thinking, this
‘wonder” rested upon an error. Nevertheless, for anyone who
experiences it for the first time, it is marvellous enough that man is
capable at all to reach such a degree of certainty and purity in
pure thinking as the Greeks showed us for the first time to be
possible in geometry.

—Albert Einstein
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COMPUTERS AND COMPUTING
Parallel Computing

Peter Grossman

Most of the computers in use today, including the personal computers you are
probably familiar with, are serial machines: they perform computations one
operation at a time. In recent years, however, computers have been built which are
capable of performing many operations at the same time. Such machines,
comprising many processors which can operate simultaneously, are called parallel

computers. A typical parallel computer might have 216 _ 65536 processors,
connected to each other in an arrangement corresponding to a 16-dimensional

hypercube, in much the same way that 23 =8 points can be placed at the vertices
of a (3-dimensional) cube. Each processor does its own computations, and sends
and receives information to and from its neighbouring processors. Clearly,
performing processes in parallel rather than serially has the potential to speed up
computations enormously. Parallel computers are now being used in many areas,
including vision systems for robots, searching large databases, simulating complex
physical systems such as the atmosphere, and artificial intelligence.

However, there is more to parallel computing than just building a parallel
machine. We cannot expect that a program written for a serial computer will
automatically run faster on a parallel computer. If we want to be able to take
advantage of a machine’s ability to carry out several processes at once, we need to
design our programs accordingly.

Here is a simple example. Suppose we want a program that inputs a list of
numbers, and outputs the largest number in the list. (For simplicity, we’ll assume
the numbers are distinct.) There is a straightforward serial algorithm for doing this.
It uses a variable, max, which is initially equal to the first number in the list. The
algorithm begins by comparing max with the second number in the list, and if that
number is larger than max, the value of max is updated to the larger value.
Proceeding in this way through the list, each number in tumn is compared with the
current value of max, and the value of max is updated if necessary.

Here is the algorithm written in pseudocode:
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Algorithm 1:

1. Input @y, a, ..., a,
2. max < a,
3.Fori=2ton
3.1.f a;> max
3.1.1. max < q,
4. Output max

Algorithm 1 is not the only way of finding the largest number in a list. For
example, given a list of four numbers, we could find the greater of the first and
second, then the greater of the third and fourth, and finally the greater of the two
numbers obtained from the first two steps. This process is rather like a tennis
tournament: the first two comparisons are the “semifinals”, and the “winners” meet
each other in the “final” (the last comparison).

The tournament method described above can be generalised to handle lists of
any length. In the first round, the first and second numbers in the list are compared,
then the third and fourth numbers are compared, then the fifth and sixth, and so on.
The winner of each comparison proceeds to the second round. (If the list contains
an odd number of numbers, the last number in the list proceeds to the second round
without taking part in a comparison.) In the second round, the process is repeated
using the list of winners from the first round, and so on until only one number
remains. .

Is there any advantage in using the tournament method instead of Algorithm 1?
If the list contains four numbers, for example, both the tournament method and
Algorithm 1 make three comparisons, so there is no advantage in this case. In fact,
we can show that any comparison-based algorithm for finding the largest number
in a list of » numbers must perform at least n—1 comparisons. The proof is not
difficult; it runs as follows.

Suppose we have found the largest number in a list of » numbers. Then we
know that each of the other »—1 numbers is not the largest number. Now, in order
for us to know that a number is not the largest, it must have“lost” at least one
comparison, i.e., it must have been compared with another number and been found
to be smaller. (If a number had won all the comparisons it was involved in, or if it
had not been involved in any comparisons, how could we be sure it wasn’t the
largest number in the list?) Since n—1 numbers have each lost at least one
comparison, at least #» — 1 comparisons must have been performed.
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Algorithm 1 makes n—1 comparisons, so we can’t do any better with a
different algorithm. On a serial machine, finding the largest number in a list takes
at least n—1 times the time it takes to perform a comparison, in addition to the
time taken by the other operations in the algorithm.

Now suppose we have a parallel computer at our disposal. Could Algorithm 1
take advantage of it by doing some of the comparisons simultaneously? A
moment’s thought reveals that the answer is no. Algorithm 1 needs to know the
result of each comparison before it can proceed to the next one.

The tournament method is a different matter. Just as the matches in a round of a
tennis tournament are often played simultaneously, so the comparisons in one
round of the tournament method can be carried out in parallel. How much time
would this algorithm take on a parallel machine? Since each round now only takes
the time needed for one comparison, the answer equals the time for one comparison
multiplied by the number of rounds (plus the time taken for the other operations,
including passing information between processors, which we will ignore here). The
number of rounds for a list of n numbers is about log, n. (To be precise, it is
exactly log, n if n is a power of 2, and it is the smallest integer greater than

log, » otherwise.)

For example, finding the largest number in a list of 1000 numbers using a serial
algorithm takes (at least) 999 times the time taken for one comparison, whereas
solving the same problem on a parallel machine using the tournament method takes
only 10 times the time taken for one comparison—about one percent of the time
taken by a serial algorithm. For longer lists of numbers, the improvement is even
more dramatic.

We have introduced parallel algorithms by looking at one particular problem:
finding the largest number in a list. You might like to explore how algorithms for
some other problems would work on a parallel machine. For example, what
algorithm would you normally use to find the sum of the numbers in a list? Could it
be made to run faster on a parallel computer? If not, could the approach taken in
the tournament method be used to sum a list of numbers on a parallel computer?
There are many other problems you could think about, such as searching for a
number in a list, or (a more challenging problem) sorting a list of numbers into
order. How could these be done as parallel computations?

* ok ok ok ok
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PROBLEM CORNER

PROBLEM 22.4.1

Use a “balls in cells” approach to find the probability that there are no runs longer
than two consecutive numbers when drawing 6 numbers from 1, 2, ... , n.

SOLUTION (Malcolm Clark)

Use the same balls-in-cells and line-of-symbols idea as described in Function
Vol 22, Part 4, pp. 122-125, but this time define new symbols S (for single) and
D (for double) as follows:

S = single occupied cell followed immediately by an empty cell.
D = two consecutive occupied cells followed immediately by an empty cell.

For the last S or D, .

Last S = single occupied cell.
Last D = two consecutive occupied cells.

As in the article referred to above, a circle denotes a“free” empty cell, i.e., one not
tiedto an S or D. There are four ways in which there can be no runs longer than
two in a selection of six numbers from 1 to ».

(a)  Six single numbers. As shown in the article, the number of arrangements is

(n-5)!
61(n—11)!

(b)  Four singles and one double.

With the above definition of symbols, each possible arrangement of four singles
and one double can be represented uniquely by an arrangement of (1 —5)
symbols, of which there are 4S’s, 1 D, and (r— 10) circles. Out of the original »
circles, we lose 4 which are linked to the first 4 S’s or D’s, plus one more for
each D, in this case a total loss of 5 circles.

Hence the number of ways of getting four singles and a double is equal to the
number of arrangements of (n- 5) objects, of which 4 are of one type (S), 1 is of
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another type (D), and the remainder are of a third type. This number of
arrangements is given by the multinomial coefficient

(n-5)!
41 1 (n-10)!

(¢)  Two singles and two doubles
Of the original » circles, we lose 3 (linked in the first 3.5’s or D’s), plus one more
for every D, giving a total of (n—5) symbols. This time we have 2 $’s,2 D’s

and (n — 9) circles. Hence the number of arrangements is:

(n-5)!
2121(n—-9)!

" (d) Three doubles
Of the original n circles, we lose 2 for first two doubles, plus one more for every
D, leaving a total of (n—5) symbols. Of these, there are 3 D’s and (n— 8)

circles. So the number of arrangements is:

(n-5)!
31(n—8)!

Hence the total number of arrangements is:

M;(n—S)![ r o, r 1 1 }
§i(n-1D)! ~ 4i(n-10)  212(n-9)! = 3(n-B)!

Finally, the probability of obtaining no runs longer than two consecutive numbers

in a random selection of 6 numbers from 1, 2, ... ,n 1is P:F’ where

n .
. N= (6) is the number of possible selections of six numbers from 1,2, ..., 7.

For Tattslotto, » = 45, and hence P = 0.9437. Equivalently, the probability of
at least one run of at least three consecutive numbers amongst the six “winning”
Tattslotto numbers is 1— P =0.05627.
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A solution was also received from Carlos Victor.
PROBLEM 22.4.2 (J A Deakin, Shepparton, Vic)

. . . 1 2
Find all 2x2 matrices that commute with the matrix L 3:'

SOLUTION (Julius Guest, East Bentleigh, Vic)

For commuting 2x2 matrices we here need

Equating corresponding elements on both sides of (1) we find

a+2c=a+4b,so ¢ = 2b (2)
and da+3c = c+4d 3)
Using (2) in (3) we obtain @ = d~b. (G))

Equating the remaining two elements provides no further information. Hence all
2x2 matrices which commute with the quoted matrix are of type
&

d-b b
forall band d
26 d .

Solution also received from Carlos Victor.

PROBLEM 22.4.3 (Julius Guest, East Bentleigh, Vic)
Giventhat x+y+z+u = 0, prove that

3

Xty 2

+ U 3(x+Y)y+2)(z+x) =0
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SOLUTION (Carlos Victor, Rio de Janeiro, Brazil)

Wehave x+y+z = —u, sothat (x+y +z)3 = —u° and then expanding the
left hand side gives

x3 %y3 +Z3 +3(xyz+x2y+xz2 +x22+y22+xy2 +yz2 +xyz) = —u3.

Now inspection of the first two terms inside the bracket gives

xyz+x2y = xy(x+z),

and similarly the remaining three pairs also contain a factor of x +z so that the
above equation can be written as

X +y3 +2° +3(x+z)(xy+xz+y2«+yz) = -,

A similar argument applied to the term in the second bracket gives

x3 +y3 +Z3+3(x+z)(y+z)(x+y) = -u3,

from which the desired result follows.
Solutions were also received from John Barton and Julius Guest.
PROBLEM 22.4.4 (from Mathematical Spectrum)

A piece of wire of length / is bent into the shape of a sector of a circle. Find the
maximum area of the sector.

SOLUTION (John Barton, Carlton, Vic)

121
=57 -2

=-1—rl—r2
2

[=r(2+0),for0 <O <m
=n?-di-n?
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This last expression has a maximum value of (i— l)z, occurring when r =%l.

When »= ;IIZ , 8=2, so that the angle of the sector is less than 27 radians.

Solutions also received from Julius Guest and Carlos Victor.

PROBLEM 2245 (from the Memorial University Undergraduate
Mathematics Competition, 1997)

Prove that '1+—1—+l+...+—1— < 2.
4 n?

SOLUTION (David Shaw, Geelong, Vic)
By comparing terms we see that

1.1 1 1 1 1
I+ =4+ +—= <1+ + + o
4 n2 2x1  3x2 n(n—1)

1 —1——1, for 20,1 we see that

r(r—1) - r=1 r &

1 1 o1 (1 1) (1 1) .
+ + +..+ =1+ |-==| +|===| +
2x1 3x2 nn—1) 1 2 2 3

Now using the result that

so that 1+-1‘+1+...+i < 2—l < 2.
4 9 n? n

Solutions were also received from Bill Tetley, Carlos Victor and John Barton.

PROBLEM 22.4.6 (from Crux Mathematicorum with Math. Mayhem)

In how many ways can the 12 vertices of a regular icosahedron be partitioned into
four classes of three vertices, such that the vertices in each class belong to the same
face?
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SOLUTION (Carlos Victor, Rio de Janeiro, Brazil)

In the figure below suppose that we initially choose the upper face v, v, v; as the
first group of 3 vertices. From the conditions stated for the problem this choice
implies that for the side faces we can have either:

(i)  v,vsv; and vgvgvy, or

(i)  vyvyvy; and vsvevg

The choice (i) then implies that we must choose the lower face v,y v,, v,, while
choice (ii) gives vy vigv, for the lower face. So we see that for each upper face

there are two possible choices for the side face and then only one choice for the
lower face. Thisresultsin 5x2x1 = 10 possible choices.

PROBLEMS

Readers are invited to send in solutions (complete or partial). All solutions
received by 1 May 1999 will be acknowledged in the June 1999 issue, and the best
solutions will be published.

PROBLEM 22.1.1 (Adapted from New Scientist #1597, submitted by
Greg Sheehan, Montrose, Vic)

A person has 2 pockets in their trousers and only carries amounts of money such
that the sum of money in both pockets is to equal the product of the money in the
right and left pockets (measured in dollars).
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For example the person could carry a total of $6.25 since it is possible to put $5 in
one pocket and $1.25 in the other as 5+1.25 = 5x1.25.

Given that the smallest unit of currency is one cent and that 100 cents equals $1,
how many different sums can be carried?

PROBLEM 22.1.2 (from Parabola)

In a family of 6 children, the 5 eldest children are respectively 2,6,8,12 and 14
years older than the youngest. The age of each child is a prime number.

How old are they? Show that their ages will never again be all prime numbers
(even if they live indefinitely).

PROBLEM 22.1.3 (Julius Guest, East Bentleigh, Vic)

Solve the system

x+y+z =9
x2+)12+z2 = 29
x3+y3+z3 = 99

PROBLEM 22.1.4 (K.R.S. Sastry, Bangalore, India)
Let P be a point inside a square ABCD .

Prove that P lies on the diagonal AC if and only if P4®, PB?>, PC* arein
arithmetical progression, in that order.

PROBLEM 22.1.5 (from Crux Mathematicorum with Math. Mayhem)
Suppose that q, b, ¢ are positive real numbers such that
abc = (a+b-c)b+c—-a)c+a-b).

Clearly a = b = ¢ isasolution. Determine all others.
* ok ok ok %k
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