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Function is a refereed mathematics journal produced by the Depart­
ment of Mathematics and Statistics at Monash University. The journal was
founded in 1977 by Prof G B Preston. Function is ad'dressed principally
to students in the upper years of secondary schools, and more generally to
anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. The items that appear
in each issue of Function include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews" problems,
letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors, Function
Department of Mathematics and Statistics
Monash University
POBox 197
Caulfield East VIC 3145, AUSTRALIA
Fax: +61 (03) 9903 2227
e-mail: function@maths.monash.edu.au

Function is published five times a year, appearing in February, April,
June, August, and October. Price for five issues (including postage): $20.00*;
single issues $5.00. Payments should be sent to: The Business Manager,
Function, Department of Mathematics and Statistics, Monash University,
PO BOx 197, Caulfield East VIC 3145, AUSTRALIA; cheques and money
orders should be made payable to Monash University.

For more information about Function see the journal home page at
http://www.maths.monash.edu.au/-cristi~a/function.html.

*$10 for bona fide secondary or tertiary students.
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EDITORIAL

We welcome new and old readers alike with our 22nd volume of Function.
We hope you find in it many interesting and enjoyable items.

Did you recognise the number on the front cover? Did it mean anything
to you? Find inside this issue what the brilliant Indian mathematician Ra­
manujan saw in it.

We have already published in Function several articles about sundials.
This time our regular contributor Bert Bolton provides the instructions for
the. construction of a simple sundial, which could give you a hands-on expe­
rience on how people lived when they did not have a clock to go by.

Michael Deakin presents here a lively account of the heated discussions
amongst mathematicians about a problem involving a dog running backward
and forward between a boy and a girl who are walking in the same direction
and at different speeds.

Malcolm Clark's article is another evidence of the usefulness of math­
erriatics in so many aspects of our lives. He analyses the problem of fair
divisions of any goods, whether it be cakes or inheritances. Read· a~out'how
mathematics can be used to solve such difficult problems.

The History of Mathematics column presents the first of two parts of
the story of how logarithms came to play an important role in the number
system. In the Computers .and Computing section you will find a computer
program to experiment' with the beautiful patterns representing orbits of
points in the plane.

We thank the many readers who send solutions to our problems. You will
find a few new problems in the Problem Corner for your entertainment.

Happy reading!

* * * * *



2

THE FRONT COVER

Ramanujan's Number

Function 1/98

When the Indian mathematical genius Srinivasa Ramanujan (1887-1920)
lay seriously ill in a London hospital,he was visited by the Cambridge math­
ematician G H Hardy, with whom he had worked for several years.

In an attempt to make conversation, Hardy commented that the number
of the taxi he had arrived in was 1729, and he added that it seemed a
rather dull number. Ramanujan replied: "No, Hardy! It is a very interesting
number. It is the smallest number expressible as the su,m of two cubes in
two different ways."

It is easy to· check that 1729 can be expressed as the sum of the cubes of
two natural numbers in two different ways: 103 + 93 and 123 + 13. It takes
a little more effort to prove that 1729 is the smallest such number. But
what is so remarkable is that Ramanujan was so intimately acquainted with
numbers that he instantly recognised" the significance of the number 1729 as
soon as Hardy mentioned it.

Although Hardy's formal education was deficient, his natural talent in
mathematics was of the highest order.

To find more about these and many other interesting numbers. we re­
commend you The Book of Numbers by J H Conway and R K Guy, 1996,
Springer Verlag.

* * * * *

Archimedes was not free from the prevailing notion that geometry
was degraded by being employed to produce anything useful. It was
with difficulty that he was induced to stoop from speculation. to prac­
tice. He was half ashamed of those inventions which were the wonder
of hostile nations, and always spoke of them slightingly as mere amuse­
ments, as trifles in which a mathematician might be suffered to relax
his mind after intense application to the higher parts of his science.

Macaulay in Lord Bacon

* * * * *
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A SIMPLE SUNDIAL

Bert Bolton, University of Melbourne

In one of Robert Louis Stevenson's best historical novels, Kidnapped,

which tells a goo~ story based on one of the most tangled and dangerous
parts of Scotland's history, two characters in 1751 are on the run from the
English soldiers and have to travel by night.and sleep by day. The two
characters are the young man David Balfour and the soldier Alan Breck.
During the day they took turns for one to watch. David tells the story in
Chapter 22: "Alan took the first watch and it seemed to me I had scarcely
closed my eyes before I was shaken up to take the sec~nd. We had no clock
to go by; and Alan stuck a sprig of heather in the ground to serve instead,
so that as soon as the shadow of the bush should fall so far to the east, I
might know to rouse him". Alan had made a simple sundial and 'because in
those days the Scots spent a lot of time in the open air far from clocks, the
use of such ~ simple sundial was probably widely known.

The principle of the sundial is to have a thin point~r which in the sun
casts a shadow on a graduated scale of hours and ·minutes. The pointer is
often called the gnomon; this word has the first letter silent and is from the
Greek for 'the interpreter'. When the sundial is at a site where the latitude
is A and its pointer is inclined to the horizontal by this angle A, then the
shadow of the pointer moves round a cylindrical scale at 15° per hour. This
is the principle used for most garden sundials. But the simplest sundiai~ and
the one that was being used in Stevenson's novel Kidnapped, has its pointer
vertical and the shadow is watched over a horizontal surface. It is easy to
make; I made one in Melbourne with a piece of dowel rod about 20 mm
long and diameter about 5 mm; it was glued on to a cardboard base and
it projected through a piece of white paper on which the positions of the
shadow were noted at times taken from a watch reading eastern standard
time (EST).

You might like to check the measurements in Table 1.

The angles for corresponding times will be approximately the same for
all seasons, but the length of the shadow is longest at the winter solstice,
22 June, when' the sun is lowest in the sky. From the table notice that
there is no symmetry of the readings about the position of noon; thus, at
three hours before noon the position is 45° west and at ~thr~e hours after
noon the position is 47° east. This is because the longitude of the sundial in
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Melbourne was about 14,5° east and the cen.tre of a symmetrical pattern 'will
occur when the shadow will have its shortest length at local noon, which is
at 12.20 EST l .

Time Position
in degrees

West
9 45
9.30 39
10 32
10.30 24
11 16.5
11.30 8.5
Noon 0
12.30 9
1 18
1.30 26
2 33
2.30 41
3 47
4 57

East

Table 1

There is no reason to expect that Stevenson wanted his characters in the
novel to measure the position of the shadow of the piece of heather, but they
were open-air persons and would have known roughly where the shadow
should move to.

* * * * *

1In Australia, Eastern Standard Time is defined by the noon of the longitude 1500 east,
which is near the middle of the longitudes for towns in the eastern states of Australia and
it runs very close to the town of Eden on the south eastern coast of New South Wales. The
longitude in Melbourne is about 1450 east, so there is a 50 difference between Melbourne
and the EST longitude of 1500 east. This 50 is equivalent to a 20 minutes difference in local
time, and because the earth rotates from west to east, local noon at Melbourne occurs 20
minutes after noon EST.
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A BIRD, TWO TRAINS, THE BOY,

THE GIRL, THE DOG AND THE

FREEDOM OF HUMAN ACTION

Michael A B Deakin

Let us begin with an old problem which indeed many readers may have
seen.

Two trains are initially 30 km apart and travelling toward one
another on parallel tracks. Each is doing 30 krit/h. Meanwhile,
a bird flying at 60 km/h flits backward and forward between them.
How far will the bird have,flown when the trains meet?

There is a very simple way to solve this problem, but I will not give it.
I'd rather leave this for you to work out for yourselves, if you don't already
know it. However,the answer is 30 km, and this may perhaps'provide a clue.

However, as well as this simple approach there is another, less efficient
one involving the use of infinite series. I want to talk about this less effi­
cient approach. Not because I like doing things "the hard way" - that's a
quite wrong view of Mathematics! Mathematics is supposed to make hard
questions easy. Rather, the complexity of the less apt approach illuminates
aspects of the problem that don't arise in the usual (and simpler) analysis.

It is often said that any mathematician would naturally think of the hard
method rather than the simple one. There is even a piece of folklore about
the problem and the great math~matician John von- Neumann.1 According
to this, when the problem. was put to him he answered immediately and
correctly. "I see" , his questioner is supposed to have said, ."that you knew
not to sum the series". "What do you mean", von Neumann is said to have
replied, "Of course I summed the series; how else could you do it?"

Well, let us set out to sum the series. The moment we embark on this
cou'rse, we notice that there is no information given about the i~itial position

11903-1957. Von Neumann was a mathematician of the very highest accomplishment. He
was one of the founders of an entire branch of Mathematics known (somewhat misleadingly)
as the Theory of Games. He also contributed very significantly to the development of
Quantum Theory and was also one of the pioneering figures in Computer Science. He
had a legendary ability at mental arithmetic. This story was also told in my History of
Mathematics column in Function Vol 19 Part 4. It is probably not true.
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of the bird, nor in which direction it is going. In fact, as we shall see, we don't
need this information. The "simple solution" does perfectly well without it.

But suppose that we do look at the problem from the more complicated
point of view. Then we will require this information. The situation is shown
in Figure 1. Now the actual numbers are unimportant; we may alter them
to suit ourselves. For simplicity, I've put the initial positions of the trains
at -1 and 1. (This doesn't really change anything; it simply amounts to
using a different unit of length.) We/can also generalise the original problem
somewhat and I will do this. Let the speed of the trains be V .and that of
the bird be lJ.

I've put the bird initially at a point Xo to the right of the mid-way point
where the trains are destined to meet. Furthermore, I've assumed that it
flies to the right in the first instance. (These are special assumptions, but
none of them has any effect on the answer. You may convince yourself of
this by means of a number of arguments; if necessary, by considering all
the alternatives, although there are simpler ways, one of which will become
apparent as this article proceeds.) ,

' - .1 _

-I -x2 0

Figure 1

_ '
1

The bird meets the right-hand train at a point Xl, at which point it turns
round and flies toward the other train, eventually meeting it at ~ point -X2.

And so on. (To avoid cluttering the diagram, I've illustrated only these two
meeting-points.)

The first thing to do will be to find a formula for Xl. The bird, when it
first meets the train on the right, has travelled a distance Xl - Xo at speed lJ,

and so has taken a time Xl~XQ. The right-hand train has travelled a distance
1 - Xl at speed V, and so has taken a time 1;1. And these times must be
equal. Thus

Xl ...... Xo 1 - Xl
=

lJ V
Solving this equation for Xl gives:

lJ + xoV
Xl = lJ + V . (1)
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We may use the same technique to find X2. This I leave as an exercise -to the
reader. The result is:

(v - V)Xl
X2 = V +V .

In the same way, we may find X3 in terms of X2, X4 in terms of X3, and in
general Xn+l in terms of X n . In fact, we find (for n 2: 1):

(v - V)xn
Xn+l = V + V .

So the successive values of X n (other than xo) form a geomet,ric sequence with
first term Xl and common ratio ~~~. If we form a series from this sequence,
we find

S'= Xl + X2 + X3 +... + Xn +... =
v - V (v- V)2 (v - v)n-l

Xl + V + V XI + (v + V)2XI + ." + (v + v)n-l Xl + ....

Using the formula for the sum of a geometric series, we find 8 = (lIi~)Xl. In
view of Equation (1), we can write this (after a little work) as:

v Xo
S = Xl + X2 + X3 + ... = 2V + 2" (2)

Now consider the total distance the bird flies. This will be

(Xl - xo) + (Xl + X2) + (X2 + 'X3) + ... ,

in other words, -xo + 28. ~ubstitute now from Equation (2) to find:

Total distance = -Xo + 2 (;V + iO) = ;, (3)

which is independent of xo. We may also at this point check the answer.
Remember that the speed of the bird (v) in the initial statement of the
problem was exactly twice that of the trains (V), so the total distance flown
must be twice the chosen unit of distance (here 15 km) so that we have
recovered the answer I quoted earlier.

Now I did say that my reason for "doing this problem the hard way" was
,not out of some perverse fascination. Rather, I want to show its connection
with oth,er such problems, to share with you some anecdotes, partly historical
and partly personal, and to show some surprising further considerations.

Attentive readers may have noticed a special feature of the original prob­
lem, one preserved even in my generalisation. But I assumed that the trains
were travelling toward one another at the same speed. It is perfectly possible
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to relax this assumption and have the left-hand train travelling to the right
at speed U, say, while the right-hand train travels to the left at speed V. As
an exercise, can you solve this problem? Having done so, can you then find
a simpler argument to -say w·hy your answer is correct?

In fact, the trains need not be coming towards one another - if they
aren't, there is only a simple change of sign involved. This leads us to
another famous (or should I say infamous?) problem: the boy, the girl and
the dog.

This was first proposed by A K Austin of the University of Sheffield. The
US journal Mathematics Magazine 2 includes a section of "Quickie Problems",
apparently difficult questions, with wonderfully simple answers, and Austin
posed one of them.· Function ran Austin's problem but with slightly different
figures (we metricated it!) and it appeared as our Problem 5.1.2 back in 1981.
Here is how it went in our version:

A boy) a girl and a dog go for a walk down the road) setting out
together. The boy walks at a brisk 8 kph) while the girl strolls at a
leisurely 5 kph. The dog frisks backward and forward between them
at 16 kph. After one hour) where is the dog) and in what direction
is it facing?

Austin's solution was that the dog might be anywhere between the two
and facing in either direction. He justified this answer by "letting all three
reverse their motion until they came together at the starting point at the
starting time". The famous Scientific American columnist Martin Gardner
ran this problem3 and accepted Austin's answer. At that stage he could not
have been aware that it had attracted severe criticism Ln a subsequent issue
of Mathematics Magazine. 4

Four different criticisms were published. Their details differed, but in
essence all made the same point: whereas the telescoping motion (when the
film is run' in reverse, so to speak) is well-defined, the expanding motion is
not. How would the dog get started?

2Published by the Mathematical Association of America, and somewhat similar to Func­
tion. However, where Function is directed to students in Years 11-12, Mathematics Magazine
addresses Years 13+. The problem appears on p 56 of Volume 44 (1971).

3Posed in July and answered in August, 1971.
4pp 238-239 of Volume 44 (1971). These did not see print till after Gardner's second'

discussion appeared. .



Freedom of Human Action 9

As far as I know, Austin never defended his (really very elegant) solution
against these attacks. However, Gardner did. His December 1971 column
consisted largely of extensive quotes from a letter from the famous philoso­
pher of science, vyesley Salmon. The detail of Salmon's analysis I will spare
you; it was highly technical stuff whose general tenor may be gauged from
its title: The Paradoxes of ZenC! as "Supertasks".5

My own'justification of Austin's solution was much simpler. It appeared
in Function Vol 5 Part 4, and proceeded by allowing the dog to cheat ever
so slightly. For a brief interval of time, the dog' adopts a speed somewhere
(anywhere) between 5 and 8 kph. After this very short time has elapsed, it
stops cheating and speeds up to 16 kph, "breaking" towards either the boy
or the girl and thereafter following its programme to the letter. It makes no
matter how· short the "cheating" period may be; less than a microsecond if
you like, or less than a nanosecond, whatever. Just as long as it exists.

I sent my solution to Mathematics Magazine' who didn't like it and didn't
publish it, though Function did~6 However, this was not the end of the
matter. Function has a Dutch counterpart, Pythagoras, and they have an
exchange agreement with us. They ran the story under the title (in English
translation) "Where is ·Zoef?" - Zoef being a favourite name for a dog in
Dutch.

I did publish my version in a more "up-market" journal also, more "up­
market" ~ndeed than Mathe~atics Magazine. The underlying point is that
there is an important philosophical principle at stake; much' more important
than Salmon realised, certainly much closer to human significance than "the
paradoxes of Zeno as supertasks" , and also connected with an interesting if
little-known chapter in the history of scientific thought.

Early last century, the laws of (Newtonian) Physics had been explored
and developed to such a point that it seemed to be possible in principle to
deduce the total history of the entire universe from a knowledge of its precise

SPor a discussion of the paradoxes of Zeno, see my ,History of Mathematics column in
Function Vol 14 Part 3. Salmon in 1971 had just finished editing a book on the paradoxes
of Zeno, and some of the pieces in it make great play with the "supertask" concept. A
"supertask" is defined as one requiring the fulfilment of infinitely many smaller tasks. My
own solution of the problem (see the next paragraph) avoids this notion.. The dog reverses
its direction only finitely many times, and this is true no matter how short the period' of
"cheating" might be. This is very much the approach that mathematicians use in their
discussion of limits.

6possibly because I was the editor at the time!
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state at anyone given moment. In 1814, the mathematician Laplace7 put it
thus:

A n intelligence which, at one given instant, knew all the forces by
which the natural world is moved and the position of each of its
component parts, if as well it had the capacity to submit all these
da'ta to Mathematical analysis) would encompass ~n the same for­
mula the movements of the largest bodies in the universe and those
of the ?ightest atom,' nothing would be uncertain for its, and the
future, as also the past) would be present to its eyes.

In other words, he saw the entire universe as like a piece of clockwork
whose every movement is absolutely and forever predetermined. But if .this
is so, then there is clearly no scope for any freedom at al~; in particular, our
belief that we humans are free to choose what or what not to do is illusory..

Laplace saw this as a consequence of his position, and indeed argued for
it:

The [freedom of human action] is a figment of the mind, which ...
convinces itself that it has acted of itself and without constraint.

This extreme position has been espoused by subsequent thinkers as well,
but most of u.s would think that some flaw must lie in the argumert if
it results jn something so manifestly contrary to human experience. Last
century and early in our own, there was much discussion of the Laplace
Demon (as Laplace's "intelligence" came to be called). This died down with
the coming of the Uncertainty Principle in Quantum Mechanics.9

7Pierre-Simon, marquis de la Place (1749-1827), one of the greatest mathematicians of
all time.

81 digress to tell an interesting, if somewhat irrelevant, story. Function, as a matter of
policy, and I, as a matter of courtesy, try where possible to use gender-neutral language.
In French on the other hand, every noun comes already equipped with a gender and the
learner must memorise in each case whether the thing described is masculine or feminine.
In French, intelligence (the actual word is the same in both languages) is feminine. So what
Laplace actually said was "nothing would be uncertain for her". I once read a translation
in which the word "her" was rendered in English as "him". This really is dominant-gender
stuff! Grammatically correct in English (as well as being gender-neutral) is "it". There is
no exact equivalent in French to this English word.

91 have seen a quote attributed to Max Planck, one of the founders of the Quantum
Theory, to the effect that now that the uncertainty principle was enunciated he was happy,
because it was suddenly clear that "even the electron" had free will. To my regret, I am
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It makes a big. difference to our understanding of ethics and human re­
sponsibility, of course, if we believe that all human action is predetermined.
"The laws of Physics made me do it!" I rather doubt that many judges'
would accept this as a defence. So last century there was a reaction to
Laplace's extreme view. Three names stand out, and it is interesting., in the
light of today's understanding, what it was they said. They were Maxwell10 ,

Boussinesql1 and Saint-Venant. 12 .

What they said then takes on a new significance in the light of modern
developments. All three, one way or another, challenged Laplace's assump- .
tion that the laws of nature are perfect descriptions of the world. Any small
deviation, no matter how small, may make it impossible to use them predic­
tively.

Just as the dog "cheats", but only infinitesimally, so perhaps nature may
"cheat". The dog's "cheating" may be so subtle that we will never catch it
out. The period of the "cheating" can be made,sufficiently small as to evade
the accuracy of any measuring device, be it every so good. They saw nature
as obeying what we refer to as laws but vvith some room for their being ever
so slightly inexact. What is in question is the matter of stability. A pencil
may stand on its point if it is exactly vertical. But in real life it can never
be exactly vertical. So it falls over. But we are quite unable to say in which
direction it will fall.

Just as we can never detect the dog's "cheating", which affects its subse­
quent position, so we cannot detect those minute deviations from the vertical
that determine the direction of fall. And so also, according to Maxwell and
the others, we cannot detect the minute influences of the human will, ex­
cept by their subsequent effects. Nowadays we see such situations routinely
studied in the theory of chaotic systems, but that is another story.13

* * * * *

now no longer able to trace this quote. However, later on the Nobel Prize winner J C Eccles
attempted a model of the brain iIi which quantum effects formed the basis of freedom of
human action. (See Chapter 8 of his The Neurophysiological Basis of Mind.) Nowadays we
do not take this route. '

1°1831-1879. A Scottish physicist, and of the very first rank. He formulated the laws of
electromagnetic theory, which are now named after him.

111842-1929. A French scientist, remembered mostly for his work on fluid flow. The
Boussinesq Number (to do with wave flow in open channels) preserves his na~e.

121979-1886. Another French scientist, who worked on the theory of elastic bodies (i.e.
deformable solids). In this area of theory, Saint-Venant's Principle commemorates him.

13See Function Vol 2 Part 5.
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DIVIDING THE CAKE

Malcolm Clark, Monash University

Function 1/98

The problem of fair division, whether it be dividing up a cake, or
distributing an inheritance amongst a number of heirs, is·as old as the hills.
Only recently have such problems been tackled by mathematicians. A re­
cent book, Fair Division: From cake-cutting to dispute resolutio'n by Steven
J Brams and Alan D Taylor (Cambridge University Press, 1996), offers a new
approach to the problem, by emphasising various criteria defining different
notions of fairness, and providing algorithms for achievin.g a fair division of
goods.

Dividing a cake between two people is often done by allowing one person
to cut the cake and the other to choose which piece he or she wants. The
cake need not necessarily be homogeneous, e.g. one part of it could have
cherri€s on top, and another part have.strawperries. This procedure, known
as "I cut, you choose", gives the first person an incentive to be reasonably
equitable in cutting the cake. But the resulting division of the cake could
still result in one person envying the .other. This could happen, for example,
if both people preferred strawberries to cherries on top, an.d the initial cut
had one piece with only strawberries on top.

This procedure is not very satisfactory when it comes to dividing up an
estate: some or all of the items may be indivisible, and the heirs may value
the items differently. For example, suppose that two people, Bob and Carol,
are left a collection of antiques by an aunt: china figures, crystal glasses, and
chairs. Bob is very keen on the crystal glasses, and quite likes the chairs,
but is not very interested in the china figures. In contrast, Carol very much
wants the chairs, is quite keen on the glasses, but is similarly indifferent to
the china figures. What is the best way of dividing the collection between
Bob and Carol?

In general, a desirable allocation of the goods or items should be:

(1) efficient: there is no allocation which is better for both Bob and Carol;

(2) equitable: Bob's valuation of his allocation is the same as Carol's .valu­
ation of her allocation;

(3) envy-free: neither person would trade his or her allocation for that of
the other.
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In .addition, the procedure for determining the allocation should be "able
to deal with items which cannot be divided.

It is clear that when there are two "players", conditions (2) and (3) are
equivalent. But it can be shown that this is not the case with more than two
"players".

Returning to Bob and Carol, how do we allow for their different pref­
erences, and is it possible to make an allocation which satisfies all three
criteria?

Firstly, we ask Bob and Carol to specify how much they value each item
relative to the ,other items, by allocating points out, of .100. Suppose in
fact that their allocated points are as shown in the following table'. These
points' confirm, for example, that Bob values the crystal glasses very highly,
assigning them 67 out of his 100 points.

~Carol~
Crystal glasses 67 34
Chairs 27 61
China figures 6 5

100 100

~ Items

Brams and Taylor offer two algorithms for distributing a number of
goods (items) between two people, namely Proportional Allocation and the
Adjusted Winner procedure.

Proportional Allocation:

Suppose that Bob's valuations for goods G1, G2 , ... , Gk are Xl, X2, ... , Xk

respectively, while Carol's valuations' are Yl, Y2, ... ,Yk.

Each of the k goods G I , G2, . .• ,Gk ar~ divided between Bob and Carol
in proportion to their valuations. For example, Bob receives a proportion
Xl/(Xl + Yl) of good Gl, X2/(X2 + Y2) of G2 and so on.

Applying this proc.edure to the collection of antiques, Bob is awarded
67/101 = 0.6634 of the crystal glasses, 27/88 of the chairs, and 6/11 of
the china figures. Since Bob valued all of the crystal gl~sses at 67 points,
his allocation of 0.6634 of the crystal glasses corresponds to 44.45 of his '
valuation points. Similarly, his allocation of the chairs corresponds to 8.28
points, and the china figures, 3.27 points. Hence Bob's allocation gives hi,m
a total of 56.00 of his valuation points. A similar calculation shows that
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Carol's allocation is also valued at 56.00 points. (Notice that this procedu~e

is better than the naive one of splitting each item 50:qO, in that each person
receives more than half of their 100 points).

In this case, the allocation is equitable, and since there are only two people
involved, it is also envy-free. This is always the case with Proportional
Allocation, as is proved in the Appendix. However, the allocation is 'not
necessarily efficient. The Adjusted Winner procedure described below leads
to an equitable envy-free allocation which is better for both Bob and Carol.

Another disadvantage of this procedure is that it requires every item to
be divided in varying proportions. In some cases, this may be feasible. For
example, if there happened to be, say, 50 crystal glasses, Bob and Carol could
agree that 33 of these would go to Bob and 17 to Carol. .This would give an
allocationjn approximately the correct ratio. Alternatively, the ~ollectionof
crystal glasses could be sold, and the proceeds sub-divided between Bob and
Carol in the ratio 67:34. This is unsatisfactory, because (a) the points given
by Bob and Carol do not necessarily represent monetary value, and (b) some
items may not be able to be sold, e.g. personal diaries.

Adjusted Winner· Procedure:

This procedure is preferable to Proportional Allocation, because it is
efficient as well as equitable, and requires only one item to be divided. It
goes like this.

1. Let X be the surri of Bob's points for all goods that he values more than
Carol, and similarly let Y be the sum of Carol's points for all goods that
she values more than Bob. We suppose that X ~ Y; if this is not the
case, we interchange the roles of Bob and Carol. (In the example below,
X == 73,Y == 61.)

2. Assign the goods so that Bob initially gets all the goods where Xi ~ Yi,

and Carol gets the rest.

3. List the goods in an order G1, G2, G3 , • •. ; so that:

(a) Bob values goods GI, G2 ? •• ,Gr at least as much as Carol.

(b) 9arol values goods Gr+1 , ••. ,Gk more than Bob does.

(c) 1 ~ Xl/Yl ~ X2/Y2 ~ ... ~ xr/Yr.

Since X ~ Y, Bob enjoys an advantage over Carol, and is helped ad­
ditionally by ~eing assigned initially all goods that both people value
equally.
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4. Transfer from Bob to Carol as much of G1 as is necessary to ensure that.
the allocation is equitable, i.e. the point totals are the same. If equal
totals are not achieved, even with all of G1 transferred, we next transfer
G2, G3, etc. (in that order) fr.om Bob to Carol. (It is the order given by
3 (c), starting with the smallest ratio, which ensures efficiency.)

To apply this algorithm to the collection of antiques,we list the items
in the order specified in step 3, and highlight in bold the larger of the two
valuations for each item.

~ Item
G1 : China figures
G2 : Crystal glasses
G3 : Chairs

6 5 1.20 .
67 34 1.97
27 61

Here r == 2, X == 73, Y == 61, and Bob is initially allocated all of G1 and
G2 . This is clearly not equitable, since Bob's total points are 73 and Carol's
61. Applying step 4 of the algorithm, we transfer all of G1 from Bob to
Carol. Bob's total points are reduced to 67 (since he valued G1 at 6 points),
while Carol's total becomes 61 + 5 =. 66 points (since she valued G1 at 5
points). -

I

The allocation is still not (quite) equitable, and we must transfer a pro-
portion a of G2 from Bob to Carol, so that the point totals are equal. Hence
a must satisfy the equation:

67(1 - a) == 5 + 34a + 61,

yielding a == 1/101 ~ 0.01.

Hence Carol ends up with all the chairs and china figures, and about 1%
of the crystal glasses. Bob is allocated 99% of the crystal glasses. Both Bob
and Carol end up with a total of 66.3 of their 100 points, an 18% improvement
over the Proportional Allocation algorithm, and a 33% improvement over a
simple 50:50 split on each item.

The order in which the transfers are made (given by 3(c)) is important.
You may verify that if the first transfer had been part of G2 rather than
G1, both Bob and Carol would have fared worse, achieving only 65.0 of their
points.

The proof that the Adjusted Winner procedure leads to an efficient allo­
cation depends on showing that there can be no better allocation for both
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Bob and Carol. This is nontrivial and requires an extended mathematical
argument (see Brams and Taylor, pp. 85-88,. for details). There are two
things that make the argument work: (1) we start with an efficient distri­
bution ,(giving each person all the goods he or she values most) and (2) we
adjust for equitability in a prescribed order, starting with the smallest ratio

Xi/Yi.

Equitability is built in to the algorithm by construction, and since only
two people are involved, this implies that the allocation is envy-free as well.

The Adjusted Winner procedure usually requires one item (in this case,
the crystal glasses) to be divided between the two people. This is preferable
to Proportional Allocation or the naive 50:50 rule, where' every item has to
be divided. If this last item is something such as a picture which cannot be
divided, then it could be sold, and the proceeds divided between Bob and
Carol in the correct ratio. Alternatively, such an item could be shared on a
time basis: Bob has it for a certain percentage of the year, and Carol has it
for the remainder.

There is much fascinating material in Brams and .Taylor's book. For
example, they apply their Adjusted Winner algorithm to the negotiations
between. the U.S. and Panama over the use of the Panama Canal. They
also consider what happens when the two "players", do not tell the truth,
i.e. the valuation points announced by Bob and Carol are not their true
valuations. They conclude that Proportional Allocation encourages both Bob
and Carol to be truthful, but the Adjusted Winner algorithm is susceptible
to manipulation by announcing false valuation points.

Nevertheless', the Adjusted Winner approach produces an allocation to
two people which is efficient, equitable, envy-free, and requires only one item
to be sub-divided'. It's a different story when the items have to be divided
amongst three or more people. It turns out ~hat no such algorithm is possible.
To find out what to do in such cases, read the book!

Appendix

Proof that Proportional Allocation is equitable and envy-free

We may assume that the valuation points Xl, X2,.·., Xk and YI, Y2, . .. , Yk are proportions
rather'than percentages. Hence

o~ Xi ~ 1, 0 ~ Yi ~ 1 (1 )

(2)
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YI +Y2 +... +Yk == 1
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(3)

xi x~ X~
PB==--+--+ ... +---

Xl +Yl X2 + yz Xk +Yk
2 2 2

Pc == _Y_l_ + _Y_2_ +... + _Y_k_
Xl+Yl X2+Y2 Xk+Yk

Let PB and Pc denote Bob's and Carol's total points under Proportional Allocation.
These are weighted sums of their valuation points for each item multiplied by their fractional
allocations. Hence

To see that PB == Pc, notice that

x2 _ y2 x 2 _ y2 x2 _ y2
PB - Pc == _1__1 + _2__2 +... + _k_._k

Xl +Yl X2+ Y2 Xk + Yk

(Xl - yt}(XI + yt} (X2 - yz)(XZ +Y2) (Xk - Yk)(Xk + Yk)
~-..:...-:..~-~ + +... + -'-----'----~

Xl +Yl X2 + Y2 Xk +Yk

(Xl - yd + (X2 - Y2) + ... + (Xk - Yk)

(Xl + X2 +... +Xk) - (Yl +Y2 + .. , f Yk) == 0

applying (2) and (3). Hence PE == Pc.

To show that Proportional Allocation is envy-free, we must show that

1 1
PE > - and Pc > -,- 2 - 2

i.e. both Bob and Carol attain at least one-half their total points.

Since PB == Pc, it suffices to show that

2+ 2 2+ 2 2+ 2

PB + Pc ==~ +~ +... +~ > l.
Xl +Yl X2 + Y2 Xk'+ Yk -

It is sufficient to show that, for each i·,

x~ +y'f
_Z_'L ~(Xi+Yi)/2
Xi+Yi

(4)

(This is because if we sum inequality. (4) over i == 1,2, ... , k, the left-side becomes PE +Pc,
while the right side equals 1, by (2) and (3).)

We prove (4) by contradiction, i.e. by showing that if (4) is not true, this leads to a
contradiction.

Suppose (4) is not true, i.e.,

This implies that

or, after re-arrangement,
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This is equivalent to the statement
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(Xi - Yi)2 < 0,

which is a contradiction. Hence (4) must be true, and both PB and Pc mU$t be greater

than or equal to i.

* * * * *
There is a delta for every epsilon (Calypso)

There's a delta for every epsilon,
It's a fact that you can always count upon.
There's a delta for every epsilon

And now and again,
There's also an N.

But one condition I must give:
The epsilon must be positive.
A lonely life all the others live,

In no theorem
A delta for them.

How sad, how cruel, how tragic,
How pitiful, and other adjec-

Tives that I .might mention.
The matter merits our attention~

If an epsilon is a hero,
Just because it is greater than zero,
It must be .mighty discouragin'
To lie to the left of the origin.

'rhis rank discrimination is not for us,
We must fight for an enlightened calculus,
Where epsilons all, both minus and plus,

Have deltas
To call their own.

- Tom Lehrer
Amer. Math. Monthly 81, June-July 1974

* * * * *
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HISTORY OF MATHEMATICS

Michael A B Deakin

The Story of Logarithms - Part 1

Let us begin with somethil1g very basic: the operations of simple arith­
metic. The most elementary of these is addition, and when we first en­
counter this, it is an operation on the natural (or counting) numbers l :

1,2,3,4,5,6, .... Very early on in our school careers, we learn to add two
natural numbers, e.g. 2 + 3 == 5. The mechanics of this operati9n need
not -occupy us here; rather I want to point to two abstract (mathematical)
aspects of the matter.

The first is that the "answer'" to an addition prob.lem (a "sum") is always
possible and if we add two natural numbers, we always get another natural
number as the result. Probably we never learn -this property explicitly in the
early years of primary school. It seems obvious. Mathematicians, when they
speak technically of this property, say

The natural numbers are closed under addition.

The other thing to notice is that it does not matter what order we employ
when we add the two numbers: 2+3 == 3+2, and the analogous property holds
whateve~ numbers we add. Mathematicians, when they speak technically of
this property, say

Addition is commutative.

We can put all this together by means of a simple statement:

If a and b are natural numbers) then

a + b == b+ a == c, (1)

where c is a third natural number.
II give the n10st natural of two possible versions; some pe~ple include 0 as a "natural

number". This has certain mathematical advantages. although psychologically it seems less
obvious!
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But now take equation (1) and examine it differently. It expresses a rela­
tionship between the three natural numbers a, band c. So far we have been
concentrating on the scenari~ in which a and b are given and the question is
to determine c. But what if, say, a and c were given and our problem was to
determine b? Or, if band c were the givens and a the' unknown?

The, first thing. to notice is that these two new problems are really the
same basic problem; this is because the order of addition is unimportant. If
we ask 2+? = 5 or if instead we put it as ? + 2 = 5, it makes no difference.
This sort of problem is referred to under the name of subtraction, and of
course 'we are all familiar with it.

But now notice that, with the natural numbers alone, not all subtraction
sums are possible. ? + 2 == 5 has the simple answer 3, but? + 5, == 2 has no
answer as long as we remain within the system of natural numbers.

The natural j~umbers are not closed under subtraction.

In order to allow us to proceed, we need to expand our number system.
The new expanded system is called the system of integers. These come
in three "flavours": there are the positive integers, which in essence are
the natural numbers we have jus't been considering, there are the negative
integers, which relate to the positive ones in a relatively straightforward way,
and finally there is a special integer call~d zero, which is in a class all of its
own2. .

The negative integers relate in a one:..to-one way to the positive in that
every positive integer like 3 (which, strictly speaking, we should now call
+3) has an accompanying negative integer called (in this case) -3. Where
? + 2 == 5 has the answer +3, ? + 5 == 2 has the answer -3. 0 is the special
integer3 that answers ,questions of the sort? + 2 == 2.

When we subtract two numbers we are in essence reversing an .addition
process. Subtraction is said to be the operation inverse to addition.

As well as using inverse processes, \ve may also imagine the repetition of
the basic process. And here we ,need yet a further insight. It does not matter
at all if in adding (say) 2 + 3 + 4 we first add the 2 and the 3 and then add

2The .details of this explanation would be different in detail had we included 0 as a
natural number.

3And note that I am here glossing over an important question: Why should a - a always
give the same answer, irrespective of the value. of a? It does, but this is a theorem that,
strictly speaking, requires proof!
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the 4 to the result, or if we do the 3+4 bit first, and so on. Mathematicians,
speaking technically, say that additioTt of natural numbers is associativ~.

This means that if we form a string of (say) 3 separate 2s: 2 + 2 + 2, this
will have an unambiguous answer. We write it as 2 x 3, and, as we know, the
answer is 6. We early on learn to multiply, as this new operation is called,
any two natural numbers, and indeed it is not much harder (using rules like
"minus by minus equals plus", etc) to multiply any two integers.

And indeed things are much as they were f9r addition of the natural
numbers. We even have a commutative law of multiplication, which says that
the order in which we multiply nUlnbers is not important. This is actually
rather surprising, because 2 x 3 means 2 + 2 + 2 whereas 3 x 2 means 3 + 3.

Now suppose we look at the inverse operation for multiplication. We are
asking questions like? x 3 == 6, or 3x? == 6. And once again, this time
because multiplication is commutative, these _two questions are really the
same question. The inverse operation for multiplication is division, and once
more we need to extend the number system to accommodate it. Questions
like 3x? = 6 can be answered within the system of integers, but questions
like 3x? == 7 cannot.

We need to expand even further the basic number system to include
fractions, or rational numbers as they are often called. So this last question
can be answered by reference to the number t .The integers are now replaced
by rational numbers of the special form in which the lower line is always 1.
This new system is closed under addition, subtraction, multiplication and
'division, with just one exception:

We may not divide by O.

This is for two reasons. Division provides the answer to questions like
3x? == 7, and the answer is provided by the process of dividing by (in this
instance) 3. Division by 0 would be the attempt to answer a question like
Ox? == 7, and it is obvious that no answer is possible, since whatever number
we use to multiply by, the right-hand side will always be O.

There is however one exception to the rule I hav~ just outlined. Suppose
the question were 0x? == O. This time, it' is not a case of there being no
solution. Rather we have an embarrassll1ent of solutions: any old number
will do! This case is said to be indeterminate.
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However, with this one exception of the embargo on division by zero, we
have a system that allows all the operations of elementary arithmetic and all
the natural properties we asc.ribe to numbers under these operations.

Now consider the effect of repeating multiplication. Suppose we have
2 x 2 x 2. Again, as with addition, multiplication is associative and so an
unambiguous meaning may be attached to the expression and the answer is
8. vVe used to write 23 == 8, which is (and always was) a wretched notation.
Nowadays, under pressure from the requirements of the computer, we have
instead 2 /\ 3 == 8, and this is much better. This new operation (/\) is called
exponentiation (or earlier involution).

But now notice a new complication.

.Exponentiation is not commutative.

To see this we need only consider the case of 3 /\ 2, which is 3 x 3, which
is 9, not 8.

It thus follows that when we seek an operation inverse to exponentiation,
we will find not one such operation but two. We may ask the question? /\ 3 ==
8, or else we could ask 2/\? == 8, and this time these are different questions.

Questions of the first type.give rise to an operation that used to be called
evolution, which is.now misleading (it has nothing to do with Darwin's the­
ory). Another name was root extraction (which sounds like some awful dental
procedure!). Actually there is no need for such a new name because it tt.~rns

out that .whenwe try to apply this operation to the various new types of
number we introduced (negative and rational numbers), we see that all that
is involved is exponentiation itself.

Suppose we tried to make sense of the expression 8 /\ l . This turns out
to be the· answer to our first question and so this number is 2 (at least Qn
what has been said so far).

However, we heed two further extensions of the number system to accom­
modate all these questions of exponentiation.

In the first place, the rational numbers .alone cannot provide meanings
for expressions like 2/\ ! . Such questions need the introduction of a further
type of number, called an irrational number. Between them the rational and
the irrational number make up the system of real numbers.

But this system is not enough either. There are other questions like
(-1) /\ ! == ? that cannot be answered within the real number system. For
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that we need to introduce yet another extension of the number system and
this is called the system of complex numbers.

Things do seem to be getting away from us, don't they?

However, we should not despair. This is as complicated as· things get.
All rather unexpected, as we have yet to consider the other type of inverse
operation: questions of the type 2/\? == 8.

This operation is termed logarithmation, and the answer is usually written
log2 8 , and pronounced "log of 8 to base 2". This is a poor notation, but
so far no standard alternative has achieved acceptance. In this article I will
write (e.g.) 8 t 2, but this is sh'eer idiosyncrasy on my part. No one else has
ever done this and probably no one else ever will.

However, the challenge is to take a.ll the ~umbers of the complex number
system and to make sense of expressions like at b for (if possible) all complex
numbers a and b. For the most part, this can be done, but as with division
there are a few exceptions. For example, we ~ay not use b·'== o. (Can you
see why?) Nor can we have a == O. (Again, can you see why?)4. Nor can we
have b == 1. (Once again, can you say why?)

The full story is very complicated and lies outside the scope of Function,
but it needs to be said that, after these complications are fully explored, we
reach the e~d of the story. We do not need to consider the effect of repeated
exponentiation (although in a very limited sense, this can be done). There
is a simple reason for this:

Exponentiation is not associative.

For example:

(21\3) 1\ 4 == 4096,

but

2 /\ (3 1\ 4) == 2 417 851 639 229 258 349 412 352.

Quite a difference!

Even if the various numbers involved in the expression$ are all the same,
the answers are not. For example:

4And it could have been said earlier that there are other restrictions applying at earlier
stages of the story. For example, 0° is indeterminate.
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but

(3 /\ 3) /\ 3 == 19683,

3 /\ (3 1\ 3) == 7 625 597 484 987.

;Function 1/98

This means that we reach a "natural end" to the processes we have been
considering, and the story ends with the complex numbers. However from
novv on, I will restrict consideration to the case of real. logarithms of real
numbers.

We are concerned to find numbers that answer questions of the form:
b/\? == a. That is to say, we wish to ascribe meaning to expressions of the
form a t b. To make sure that we remain within the system of real numbers,
we restrict a to be a positive real number and the same for b. In fact, we may
take b to be greater than 1. (As an exercise,- see what happens if 0 < b < 1.)

If we write c == a t b, we speak of c as being the logarithm of the numbe·r
a to the base b. Readers of Function should be familiar with the laws of
logarithms, and in particular the change of base formula. You will probably
have seen it in the form:

but I rewrite it here in my idiosyncratic notation in order to emphasise that
we are here concerned with basic properties of the number system and its
standard operations. We have:

atB == (atb)/(Btb). (2)

The thrust of this is that we may choose some standard base b and do
all our work in that base. If for whatever reason, we need later to ~ork in
some other base B, then all we need do is divide the numbers involved by a
standard factor B t b.

In practice, only three standard bases are used today. These are 10, 2
and e. The base 10 is used because it is the base (in another sense!) of our
number-system. The base 2 is employed because of its relation with binary
scales, the simplest possible available and the basis of much computer theory.
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The third choice, e, is perhaps the most puzzling to the beginner. e IS an
irrational number whose approximate value is

2.718 281 828 459 045 235 ...

Not the most obvious choice, you would think. However, we do not land
on this number out of mere caprice or contrariness, but rather because this
choice is in very large me.asure forced on us.

In fact it is computationally easier to use base e than it is in many in­
stances to use apparently simpler choices like 10 or 2.

Logarithms to. base 10 were for centuries used to simplify difficult com­
putations, and this was still very much the case when I went to school. The
use of logarithms to make calculation simpler occupied much of the Year 10
syllabus when I was in my teens. Nowadays, we do not l).eed this; our little
pocket calculators have made life much simpler.

Nonetheless, logarithms remain vitally important; they are a fundamental
part of the number system. In my next column, I shall explore how we came
to learn of logarithms, their properties 'and their uses.

* * * * *

On the day of Cromwell's death, when Newton was sixteen, a great
storm raged all over England. He used to say, in his old age, that on
that day he made his first purely scientific experiment: To ascertain the
force of the wind, he first jumped with the wind and then against it;
and, by comparing these distances with the extent of his own jump on
a calm day, he was enabled to compute the force of the storm. When
the wind blew thereafter, he used to say it was so many feet strong.

- Parton James, Sir Isaac Newton

* * * * *
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COMPUTERS AND COMPUTING

Attractive Orbits

Cristina Varsavsky

Fractals are very popular mathematical objects; their beauty captures
mathematicians and non-mathematicians alike. In Function we have looked
at fractals from many different perspectives, and have included computer
programs for our readers to discover and experience their beauty by them­
selves l

We discussed the Mandelbrot set in Function) Vol 20 Part 2, in which we
included a program to generate a colourful map of the complex plane. Some
enthusiastic readers sent us their pieces of computer art stemming from that
article. The Mandelbrot set is not just a pretty picture: it actually displays
the intricate behaviour of complex numbers under the very simple iteration

(1)

where the square is calculated using the definition of the product of complex
numbers. With the starting number Zo == 0, and formula (1), a sequence of
complex numbers is produced: c, c2+c, (c2+c)2+ c, and so on. This sequence
is called the orbit of c. Some orbits will escape towards infinity, others will
remain bounded; the set of all prisoners is known as the Mandelbrot set.
The coloured map of the complex plane is produced by counting, for each
complex number c, the number of iterations needed for the orbit to escape a
particular circle.

In this article we will take a different approach: we will focus on individual
orbits and plot them on the screen. Each complex number corresponds to a
point on the plane, so we can think of transformation (1) as a transformation
of points of the pl<;tne. Using formula (1) and the definition of the product
of complex numbers we can write this transformation in coordinate form:

Yn+l

X 2 _ y2 + an n

2xnYn + b (2)

where a and b are the coordinates of the point corresponding to the complex
number c. The point (xn, Yn) is transforn1ed into the point (Xn+l' Yn+l).

lSee for example Function) Voll8 Parts 1, 2, 4, and 5.
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In general, we can produce orbits using any pair of functions' of two
variables f(x, y) and g(x, y):

Xn+l

Yn+l

f(x n,Yn)

g(xn,Yn) (3)

The choice of the functions f and g is limitless and some very interesting
orbits can be produced. As a general rule, the functions used should not
produce escapees, but bounded orbits.

Very simple examples are provided by linear transformations, which we
already discussed in Function, Vol 18 Part 5

Xn+l cos Q' Xn - sin Q' Yn

Yn+l = sin a Xn + cos Q' Yn . (4)

The orbit of any point will be' a circle containing the point and will depend
on the chosen angle a: if Q' == 21f/ n the orbit will cycle over a fixed number
of points, otherwise the orbit will (eventually) cover the whole circle.

A computer program to produce an orbit is very simple; if we use Quick­
Basic as the programming language, we only need to define the window size,
the iteration, and choose a starting point (xO,yO):

SCREEN 9 : WINDOW (-20,-15) - (20,15)
x == xO : y = yO

FOR n == 0 TO iterations
PsET (x,y)
oldx == x : oldy == y
x==f: y==g

NEXT n

Where f and g are the functions defined in terms of o'ldx and oldy, and the
variable iterations counts the number of points to be plotted.

Inspired by the great works of the physicists and -mathematicians Mira
and Gumowski, I produced a few pretty pictures using the function

2alxI
f(x, y) = ax + by + 1 + Ixl (5)
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and modifying the corresponding lines in the computer program as follows:
x == a oldx + b oldy + 2 a abs(oldx) I (l+abs(oldy))
y == f(x;oldx) - oldx, .

choosing different values for a and b, but keeping these between -1 and
1 to ensure that the orbit does not escape towards infinity. For example,
Figure 1 shows the first ten thousand points, using a == 0.28, b == 0.9998 and
the starting point x == 0, y == 12.

Figure 1

Using the values a == 0.45, b == 0.9999, and the starting point x= 0, y == 11
we obtain a completely different picture; Figure 2 displays 20000 points of
this orbit. Figure 3 was obtained with the same starting point and the the
same value for b; and a == -0.01.

I invite you to explore the world of these orbits by playing with the values
of a and b and choosing different starting points. A world of fascinating
pictures and orbit dynamics is hidden behind the iteration defined through
the function (5) .. However, you are not constrained to this function; explore
other fu.nctions such as f.(x, y) == ax + by + sin(x), or any other that keeps
points within a certain boundary. You may need to change the definition of
the window.
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Over to you!

Figure 2

Figure 3

* * * * *
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PROBLEM CORNER

SOLUTION~.

PROBLEM 21.4.1

You have three calculating machines:

Function 1/98

Machine A (an adder) accepts two numbers, a and b, as input, and calcu­
lates a + b.

Machine S (a subtractor) accepts two numbers, a and b,' as input, and
calculates a - b.

Machine Q (a "quarter-squarer") accepts one number, a, as input, and
calculates a2

/ 4.

Explain how you could find the product, ab, of any two' numbers a and b,
using only these machines and no hand calculation.

SOLUTION by Julius Guest, East Bentleigh, VIC

Step 1: Use Machine A to find a+ b and denote your result by c.

Step 2: Use Machine S to find a - b all:d denote your result by d.

Step 3: Use Machine Q to find c2/4 and denote your result bye.

Step 4: Use Machine Q to find d2/4 and denote your result by f.

Step 5: Finally, use Machine S to find e - f which provides abo

Proof: As e := .(a2 + 2ab + b2)/4 and f· == (a2
- 2ab + b2)/4, 'it follows that

e - f furnishes abo .

Solutions were also received from Keith Anker, Carlos Alberto da Silva
Victor (NiI6polis, Brazil), Carson Luk (Surrey Hills, VIC), and Joao Linneu
do Amaral Prado (Sao Paulo, Brazil}.

PROBLEM 21.4.2

Find all three quadratic polynomials p(x) == x2 + ax + b such that a and
b are roots of the equation p(x) := O. .



Problems

SOLUTION

Suppose firstly that a and b are distinct. Then:

p(x) == (x - a)(x - b) == x2
- (a + b)x + abo

Equating coefficients, we obtain:

-(a + b) == a" and ab == b.
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These two equations yield - b == 2a and either a == 1 or b == o. If a == 1 then
b = -2, while if b = 0 then a == O~

Now suppose a == b. Thenp(x) = (x-a)(x-c) for some number c. Upon
expanding and then equating coefficients as before, we obtain:

-(a+c)==a and ac==a.

Hence -c == 2a and either a == 0 or c == 1. If a == O. then b == c == 0, while if
c = 1 then a = b= - ~ . -

The three polynomials are p(x) == x2 + Ox + 0, p(x) == x 2 + X - 2, and
p(x) == x2

- ~x - ~.

Carlos Victor supplied· an alternative solution using the following ap­
proach. From p(a) =' 0 we obtain b = -2a2, while p(b) ~ 0 yields
b2 + ab + b == o. On eliminating b, we obtain an equation in a with three
solutions, leading to the answer given above.

PROBLEM 21.4.3 (from Mathematical Spectrum)

A triangle has angles a, {3 and ry which are whole numbers of degrees, and
a 2+ {32 == ry2. Find all possibilities for a, (3 and rye

SOLUTION by Carlos Alberto da Silva Victor

Since a + (3 + ry == 180, we have a 2+ (32 == ry2 == (180 - a - (3)2, so:

== 180(90 - (3) == 180 _ 180 x 90 == 180 _ 2
3 x 3

4
X 52 .

a 180 - {3 180 - f3 180 - f3

Hence 180 - (3 divides 23 x 34 X 52, and, since a > 0" we must have j3 < 90.
The possibilities are:

i. 180 - f3 == 100; then f3 == 80, a == 18 and ry == 82.

2. 180 - j3 == 162; then j3 == 18, a ~ 80 and ry == 82.



32

3. 180 - f3 == 108; then f3 == 72, a == 30 and 1 == 78.

4. 180 - (3 == 150; then (3 == :30, a == 72 and ry == 78.

5. 180 - (3 == 135; then (3 == 45, a == 60 and 1 == 75.

6. 180 - (3 == 120; then f3 == 60, a == 45 and ry == 75.

Function 1/98

Kei~h Anker and Julius Guest (East Bentleigh, VIC) also sent us a solution.

PROBLEM 21.4.4 (Juan-Bosco Romero Marquez, Universidad de Valladolid,
Valladolid, Spain)

Find all possible sets of six· two-digit numbers M' == .xy, N == yz,

P == zu,M' == yx,N' == zy,P' == uz (where x,y,z and u are decimal digits,
and xy, etc. denote the decimal representations of the numbers), such that
M, N, P and.M' }N', P' are two geometric progressions with the same integer
common ratio.

SOLUTION

In standard algebraic notation, M == lOx + y, N == lOy + z,
P == 10z + u, M' == lOy + x, N' == 10z + y, P' == lOu +_ z. Denoting the
common ratio by r, we obtain:

lOy + z
r == ---

lOx +y
10z +y
lOy +x

(1)

10z + u lOu + z
r == ---

lOy + z 10z + y

After some algebra, equations (1) and (2) yield respectively:

y2 == xz

z2 == yu

(2)

(3)

(4)

Equation (3) tells us that xz is a perfect square. For eac~ possible value of
x in turn from 1 to 9, we can determine the admissible values of z. Trivially,
we can always take z == x, and in addition we find that each of the following
(x,z) pairs also yields a .value of xz that is a perfect square: (1,4), (1.,9),
(2,8), (4,1), (4,9), '(8,2), (9,1) and (9,4). For each pair, we can calculate y
using (3) and u using (4). After excluding the pairs that give values for u
that are fractional or greater than 9, ,ve are left with the following solutions:

(x,y,z,u) == (1,2,4,8) and (x,y,z,u) == (8,4,2,1)
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and the trivial solutions for which x == y == Z == u. Thus the only non-trivial
solutions to the problem are:

M == 12, N == 24, P == 48, M' == 21, N' == 42, p' == 84

M == 21, N. == 42, P == 84, M' == 12, N' == 24, p' == 48

We received solutions from Carlos Victor, Joao Linneu do Amaral Prado,
and the proposer.

PROBLEM 21.4.5 (Claudio Arconcher, Sao Paulo, Brazil)

Let r be a circle of radius r, and let BC be a chord of r. A point A on
r makes. one revolution around f. Prove that the locus of the centroid of
the triangle ABC is a circle with radius r /3, and that this circle divides the
chord BC into three equal parts.

SOLUTION

Let 0 be the centre of r, let M be the midpoint of BC, and let G be
the 'centroid of ABC. Then AG == ~AM. Let 0' be the point·on OM such
that 00' == ~OM.(See Figure 1.) Then the triangles MOA and MO'G are
similar, and M 0" == i M 0, so 0'G == iOA == ir. Therefore the locus of G is
a circle, centred at 0', with radius r /3. When A coincides· with B, we have
BG == AG == ~AM == ~BM == ~BC, so the locus ofG divides BC one-third
of the way along its length. Similarly, when A coincides with C, we have
CG == iCB. Therefore the locus of G divides the chord Be into three equal
parts.

r

Figure'!

Solutions were also provided by Keith Anker, Carlos Victor and the proposer.
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PROBLEM 21.4.6

Function 1/98

A farmer would like to graze his animal on his neighbour's circular pad­
dock, but the neighbour stipulates that the farm-er can only use half of the
paddock and the animal must be tethered ~n the boundary line. What is
the length of the tether as a function of the radius of the paddock?

SOLUTION

Let the radius of the paddock be 1 ~nit, and let the length of the tether
be l. Let 0 be the centre of the paddock, let T be the point where the
animal is tethered, and let A and B be the two points on the boundary at
a distance l from T. The grazed area is bounded by the arc ATB' and the
arc from A to \-B centred at T with radius l. Let a be the radian measure
of the angleATB. Then LOTA:= a/2, and hence LOAT == a/2 also, since
the triangle OAT is isosceles. Therefore LAOT == 7r - Q'. (See Figure 2.) We
note that l == 2cos(a/2); this can be shown by dividing triangle OAT into
two congruent right-angled triangles.

A

a

T
Figure 2

The grazed area equals the area of the sector, 3 1, bounded by the arc ATB
and the radii OA and OB, plus the area of the sector, 32, bounded by the
arc from A to B centred at T and the radii T A and T B, minus the area of
the quadrilateral OATB. We evaluate each of these areas in turn.

The area of 8 1 is:

1
Area(31) == "2 x 2(7r - a) == 7r - Q'

The area of 8 2 is:

Area(S2) = ~l2a = ~ [2 cos (~)fa = 2acos2 (~) ='a(l + cos a)
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The area of the quadrilateral OATB is:

Area(OATB) = 2 x Area(L.OAT) = 2 x ~sin(1f -O!) = sinO!
2
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Hence the grazed area is 1r - a + a(1 + cos a) - sin Q', which simplifies to
7r + a cos a - sin a. Setting this expression equal to half of the area of the
padQ-ock, we obtain the equation 1r + a cos a - sin a == 7r/2, which simplifies
to:

sin a - Q' COSQ' == 7r/2 (5)

Equation (5) cannot be solved exactly for Q', but an approximate numerical
solution can be found using an iterative procedure suc~ as Newton's method.
The result is Q' == 1.905695 .... We can now evaluate 1, the length of the
tether: 1~ 2 cos(I.905695/2) ~ 1.1587..

Solutions to this problem were provided- by Carlos Victor and Joao Linneu
do Amaral Prado, Keith Anker, and Julius Gu~st.

Correction

There was an error in Problem 21.5.4 in the October 1997 issue of Func­
tion. The third sentence should read as follows:

Each sequence apart from the first "describes" the previous seque~ce in
the following sense: the first number in the previous sequence is listed, pre­
ceded by the number of times it occurs consecutively, then the next nu~ber
is listed, preceded by the number of times it occurs consecutively, and so on.'

A solution to the problem will appear in the next issue.

PROBLEMS

Readers are invited to send in solutions (complete or partial) to any or all of
these problems. All solutions received by 9 Apr-il 1998 will be acknowledged
in the June issue, and the best solutions will be published.

PROBLEM 22.1.1 (A Begay, Lupton, Arizona, USA)

Let S(n) be the smallest positive integer such that S(n)! is divisible by
n, where m! denotes 1 x 2 x 3 x ... x m (the factorial function).

(a) Prove that if p is prime then S (p) == p.

(b) Calculate S(42) .
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(The function S(n) is called the Smarandache function.)

PROBLEM 22.1.2 (Julius Guest, East Bentleigh, VIC)

Function 1/98

An equilateral triangle ABC is inscribed in a circle. Let D be any point
on the minor arc subtended by AB. Prove that DC = D A + AB.

(Hint: ,Let E be the point on CD such that triangle ADE is equilateral.
Show that the triangles AEC and ADB are congruent.)

PROBLEM 22.1.3

Let ABC be an equilateral triangle, and let P be a point inside ABC
such thatAP= 3, BP =4, and CP'=:; 5. Prove that the' angle APB has
radian measure 57r/6.

PROBLEM 22.1.4 (based on a problem in Mathematics and Informatics Quar­
terly)

Let COFFEE· and BREAK be two numbers written in decimal notation
where each letter stands for a digit. Find the numbers, given that vi COFFEE
and VBREAK are integers. '

PROBLEM 22.1.5 (from Parabola, University of New South Wales)

Let x be a real number with x =f ±1. Simplify

1 2 4 8 2n

x + 1 + x2 + 1 + x4 + 1 ~ x8 + 1 + ... + x2n + 1 'n

PROBLEM 22.1.6

Prove'that
[1f/2 1 7r

Jo 1 + (tanx)"dx ='::"4
for any real value of k.

(Hint: Using the fact that cot x can be expressed ~n terms of tan x in'
two different ways, convert the integral to an integral involving cot x, then
convert the result to another integral involving tan x.)

* * * * *
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