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Function is a refereed mathematics journal produced by the Depart-
ment of Mathematics and Statistics at Monash University. The journal was
founded in 1977 by Prof G B Preston. Function is addressed principally
to students in the upper years of secondary schools, and more generally to
anyone who is interested in mathematics.

Function deals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. The items that appear
in each issue of Function include articles on a broad range of mathematical
topics, news items on recent mathematical advances, book reviews, problems,
letters, anecdotes and cartoons.
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_Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors, Function

Department of Mathematics and Statistics
Monash University

900 Dandenong Rd

Caulfield East VIC 3145, Australia

Fax: +61 (03) 9903 2227

e-mail: function@maths.monash.edu.au

Function is published five times a year, appearing in February, April,
June, August, and October. Price for five issues (including postage): $20.00%;
single issues $5.00. Payments should be sent to: The Business Manager,
Function, Department of Mathematics and Statistics, Monash University,
Clayton VIC 3168, AUSTRALIA; cheques and money orders should be made
payable to Monash University.

For more information about Function see the journal home page at
http://www.maths.monash.edu.au/"cristina/function.html.

*$10 for bona fide secondary or tertiary students.
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EDITORIAL

This last issue of Volume 21 of Function includes three feature articles.
The front cover figure is a contribution by one of our youngest authors.
Melanie Komisarczyk is a Year 10 student who presents the conclusions of her
research on approximating golfball trajectories with special cubic functions.
The second contribution is from our reader and frequent contributor Bert
Bolton, who derives a formula for calculating the distance to the horizon or
to a mountain observed from the sea. And the third contribution is from the
world of magic. A magician approached our editor and statistician Malcolm
Clark, and asked him to determine how difficult it is to construct a magic
square randomly. You will find here a thorough analysis of this question.

Mathematical knowledge has made possible the great technological change
we have experienced in the last decades, and this change, in turn, has had a
great impact on the nature of mathematics. Michael Deakin illustrates with
a very simple example how some techniques which were meaningful at the
time calculations were performed by hand, have a different appeal now when
we perform them with calculators and computers.

For those readers interested in designing their own fractals, there is yet
another type of fractal presented in the Computers and Computing column.

Our Problem Corner editor has included more new problems as well as.
answers to some previous ones. We also publish the outstanding performance

~ of the Australian team at the International Mathematical Olympiad held in

Mar del Plata, and the problems they had to solve to earn two gold, three
silver and a bronze medal.

Happy reading!

T EEE
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FLYING THROUGH THE AIR: .
GOLFBALLS, ARROWS AND CUBIC EQUATIONS

Melanie Komisarczyk, Year 10, Wheelers Hill Secondary College

In an ideal case, where no air resistance is involved, an arrow shot from a
bow, a golfball driven off the tee, or a shell fired from a gun would all follow
parabolic paths. If the initial direction of motion makes an angle o with the
horizontal, then the path is given by the equation

y=ctano — —Z—Tg/_?xz sec’a, (1)

where V is the initial speed and ¢ is a constant, the acceleration due to
gravity. ,
However, by choosing special units of length and time!, we may arrange
- that V =1 and g = 1 in these special units. If we do this and also rearrange
equation (1), we get
o y = Aa(R - z), @)
where A = % sec’a and R = sin 2a.

But in real life, air resistance can be important. One suggestion to take
account of this is to replace equation (2) by a cubic equation:

y=Az(R - z)(1 +Bz)? (3)

where R is the range. (But we may now have different formulas for A and
R; not necessarily those given above.)

Equation (3) comes from an article from Function Vol 21, Part 1 (see the
final footnote of the article).

I'looked at two applications of equation (3). The first was about the path
travelled by a golfball and the second concerned a relation between the travel
time and the maximum height reached.

One trajectory that has been studied is that followed by a golfball in
flight. In the special units, this trajectory is given by the rather complicated
equation:

x

y=,+ 0.05(e®® — 1 - 5z) — 0.01(e'® — 1 — 102:) (4)

1See Function Vol 21, Part 1, p. 12.
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About 120 years ago, a man named P G Tait invented equation (4). Tait
was a keen amateur golfer and also a physicist and mathematician. His
equation is different from the parabolic path because he had to consider the
effects of air resistance and of aerodynamic lift caused by the backspin of the
golfball. Parabolic equations don’t mclude these factors, but with golfballs
they are important.

I looked at this cubic approximation to Tait’s trajectory.
y =0.3952(0.315 — z)(1 + 17z). (5)

(This approximation came from a recent Monash University Applied Math-
ematics Report.)

The first thing I did was to check how similar the cubic was to the more

complicated function. The values given by equation (4) I called y1 and the
cubic approximations (5) I called y2.

I calculated y1 and y2 by using the computer spreadsheet EXCEL. The
results were graphed also using EXCEL. This gave the graph in Figure 1.

The graph shows that y1 and y2 are similar but not quite the same. Over
most of the path the discrepancy is less than 10%. y1 has a steeper decline
than y2 and y2 has a bigger concavity than y1. Also the two curves (y1 and
y2), when they are starting their ascent, start off together and then seem
to separate from each other. When they near the top they join together for
a moment before separating again, to join again only when they hit their
destination point.

The next thing I worked on was the total time of flight and the maximum

height reached by an arrow, T’ being the flight-time and H the height. This
equation (in the special units) is

T? ~ 8H. (6)
Equation (6) was first recorded by the mathematician J E Littlewood.

He worked on gunnery tables for the British Army in World War I. I will call
it Littlewood’s Formula.
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Golfball Trajectory
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A Figure 1 ,
_ylis the higher curve (P G Tait's flight-path trajectory).
y2 is the lower curve and is the cubic approximation to Tait's trajectory

The next task was to test the cubic approximation. I did this with the
EXCEL spreadsheet, as shown below.

In the spreadsheet I calculated T' by using the following equation:
2
T = 5ViA [(1+2BR) - (1- BR)*"], (7)
where A, B and R are derived from equa,tion'?).

" Next I calculated H by using the equation

H 2(1+BR+B*R)*” — 2~ 3BR+ 3B°R* +2B°R*] . (8)

=57 |

(These equations also came from the Monash University Applied Mathe- ,
matics Report mentioned above.)
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If BR > 1, equation (7) will not work because it would involve the square
root of a negative number in this case. In fact, in the golfball trajectory it
doesn’t work, as the golfball has an aerodynamic lift caused by the backspin.
Equation (5) tells us that for the golfball BR = 5.355.

Table 1 shows the output from the spreadsheet calculations. The second
and third columns list the values of T' and H 2for different values of BR.

After this the values of T2, 8H and the ratio g—H are shown.

The spreadsheet shows that the ratio is always close to 1. It also shows
that when BR gets bigger the ratio gets smaller.

We can also check if the spreadsheet is rigllilt%y looking at the last number
in the ratio column. If we use equations (7) and (8), we find the ratio equals

3
—\é—t, or about 0.866025, as shown in the table.

Value of BR| Valueof T Value of H | Value of TA2 Value of 8*H Ratio

0 0 0 0 0 1
0.05| 0.07157312 0.00064072]  0.005122711 0.005125762| 0.99940485
0.1] 0.14479007| 0.002626486| 0.020964163 0.021011891| 0.997728524
0.15] 0.21953836| 0.008054215 0.04819709 0.048433724| 0.995114279
0.2} 0.29571538] 0.011022634|  0.087447588 0.088181074| 0.991682046
0.25| 0.37322612| 0.017632048 0.13920774 0.141056385| 0.987532322
0.3] 0.4519813] 0.025984136] 0.204287094 0.207873085| 0.982749132
0.35] 0.5318958| 0.036181766| 0.282913139 0.289454131] 0.977402319
0.4| 0.61288729| 0.048328843 0.37563083 0.386630741] 0.971549311
0.45| 0.69487489 0.06253016|  0.482851106 0.500241281| 0.965236426
0.5] 077777778 0.078891289|  0.604938272 0.631130309{ 0.9584989794
0.55] 0.86151374] 0.097518468| 0.742205927 0.780147744| 0.951365857
0.6] 0.94599735| 0.118518519| 0.894810978 0.048148148| 0.943851422
0.65| 1.03113765] 0.141998764 1.063244854 1.135990113| 0.935963123
0.7] 1.11683501| 0.168066966 1.247320443 1.344535728| 0.927696019
0.75] 1.20297628| 0.196831266 1.447151924 1.574650126| 0.919030774
0.8] 1.28042691| 0.228400136| = 1.662621761 1.827201091| 0.909928179
0.85| 1.37601659 0.26288234 1.893421645 2.103058721| 0.900318011
0.9] 1.46250844| 0.300386892] 2.138930048 2.403095134| 0.890073355
0.95] 15485141} 0.341023028 2.39789593 2.728184223| 0.878934754
1.63299316| 0.384900179]  2.666666667 3,079201436] 0.866025404

Py

Table 1
Calculations for T, H for Littlewood's Formula

It should perhaps be said that the first value of the ratio in the spreadsheet
was not calculated by the computer. Because the value of BR was 0, we find
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’ . T* 0 .
T =0 and also H = 0, so that the ratio — = =, and if you put that formula
in the spreadsheet the computer would not calculate it. However, it is known
that the value 1 can be used in this case. Littlewood’s Formula apphes even

for quite large values of BR (up to about 0.85).

The purpose of this investigation was to look at some consequences of the
cubic law, as given by equation (3). It was found that it gave a quite good
agreement in the case of the golfball, even though this is quite extreme with
BR = 5.355. It also allows exploration of Littlewood’s Formula

T? = 8H.

Even with air resistance and aerodynamic lift (caused by the backspin of a
golfball), the cubic approximation is quite good. Also, even for quite big
values of BR the approximation still holds. Because cubics are fairly simple
functions, this allows fairly easy analysis of trajectories.

* % k %k %

t

Melanie wrote this article during her short stay at the Department of
Mathematics and Statistics of Monash University, where she did research as
part of the work ezperience of her Year 10 program.

* % % ok %

There are many things you can do with problems besides solving
them. First you must define them, pose them. But then of course
you can also refine them, depose them, or ezpose them, even dissolve
them! A given problem may send you looking for analogies, and some
of these may lead you astray, suggesting new and different problems,
related or not to the original. Ends and means can get reversed. You
had a goal, but the means you found didn’t lead to it, so you found
a new goal they did lead to. It's called play. Creative mathematicians
play a lot; around any problem really interesting they develop a whole
cluster of analogies, of playthings.

- David Hawkins in From Cardinals to Chaos,
Cambridge University Press, 1988

* k% ok %
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HOW FAR IS THE HORIZON?

Bert Bolton, University of Melbourne

Most of us have stood on the seashore and asked “How far can we see?”
and often we have been given the answer “To the horizon”. This logically ir-
ritating answer then has provoked the question “But how far is the horizon?”
Using Pythagoras’s theorem, the distance can be calculated and the method
allows further questions to be answered when we see the tops of mountains
or masts above the horizon. It is assumed that the atmosphere is clear and
that there are no restrictions on vision due to mist or rain.

In Figure 1 is shown a sketch of the earth with centre C' and radius R.
The earth is not a true sphere but the difference is small; the radius at the
equator is slightly larger than the radius at the pole and this is ignored for
this calculation. The observer O has eyes at a height A units above the
surface of the sea. (_C_)fmsider a line tangential to the surface of the sea at the
point H; the line OH is the line of sight of the observer to the horizon. The
triangle CHO has a right angle at H. By Pythagoras’s theorem,

OH?+ HC? = OC?
and using z for OH

2’ + R = (R+ h)%.
Expanding the bracket gives

h
2=92Rh+ K = — . 1
T + 2Rh 1+2R (1)

Consider the values of R and h and then the value of the correction term
- in the bracket in (1). The unit of distance used is the metre. The radius
length of the earth is 6375 kilometres, which is the usual average value. When

the observer is standing on the sand by the sea, the height of the eyes will
usually be less than 2 metres. The correction term is then

h -
55 ~ 16 x 10

where the usual equal sign is replaced by the sign for ‘approximately equal’.
The effect of this correction term can be ignored. There will be times when
. the observer can be several kilometres above the sea; we can, for example,
choose A = 5000. Then the correction term is

h
._.z4 —4
2R x 10
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~ and can still be ignored. Equation 1 then reduces to

z.= V2hR. (2)
If OH =z km, OP = h m, CH = 6375 km, then this equation yields
z = 3.57Th'/2. (3)

Equation 2 also applies to the calculations that arise when from ships
- at sea, a mountain seems to rise out of the water. If its height is known,
equation 3 can be used to give its distance. As an example, when the height
of the mountain is 1 kilometre = 1000 metres, then equation 3 gives 112
kilometres, which is the distance from the mountain to the horizon; to this
must be added the distance of the observer to the horizon also calculated by
equation 3.

Figure 1

® ok ok ok %

Mathematics, the science of the ideal, becomes the means of inves-
tigating, understanding and making known the world of the real. The
complex is expressed in terms of the simple. From one point of view
mathematics may be defined as the science of successive substitutions
of simpler concepts for more complex.

— William F White, in A Scrap Book of Elementary Mathematics

* k% k X% %
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MAGIC SQUARES AT RANDOM?

Malcolm Clark, Monash University

One of the pleasures of life as a mathematician is the variety of ques-
tions/puzzles posed to you by the public. Recently, I had a phone call from
Charles Gauci, a member of the Australian Society of Magicians, and as it
turned out, a retired magician himself. His question to me was to do with
“magic squares”. Apparently, a fellow member of that Society had managed
to construct, by hand, a 16 x 16 magic square. In other words, he had found
a way of arranging the integers from 1 to 256 in a 16 x 16 square in such
a way that the numbers in every row, every column, and the two diagonals
added up to the same total, namely 2,056.

The fact that such a large magic square had been constructed by hand,
rather than by computer, was most impressive, to me and to Mr Gauci. In
fact, the Society of Magicians intended to make this the leading story in their
next Newsletter, with a challenge to their readers to attempt to produce this
and any other 16 x 16 magic squares “by computer”. But before going to
print, Mr Gauci wanted some idea of how difficult such a task would be. If
the task was really trivial, then the intended leading article would have to be
modified, or even dropped altogether. As the Newsletter was almost ready
to go to press, Mr Gauci needed an answer within 24 hours.

1 had a brief conversation with Mr Gauci, in which I had to admit that I
didn’t really know how difficult it was to construct a 16 x 16 (or similar-sized)
magic square by means of a computer program. He envisaged a complete
enumeration of all possible arrangements of the numbers 1 to 256 into a
16 x 16 array. This method is very inefficient and not feasible in practice,
since the number of possible arrangements is so enormous.

As the conversation continued, he came up with the following idea (for
assessing the difficulty of the problem). “Suppose”, he said, “you put the
numbers 1 to 256 into the 16 x 16 array at random. What is the probability
of one row or column adding up correctly (to 2,056)?” This question can be
answered to a good approximation, using elementary methods of statistics
but in a rather unconventional setting.

To be definite, let us focus attention on the first row of the random 16 x16
square. The 16 numbers in this row are a random sample from the population
of integers 1 to 256. Let X denote the average (or sample mean) of these 16



150 Function 5/97

numbers in this random sample, and let T° denote the corresponding sum of
those numbers. '

We now appeal to a very famous theorem, the Central Limit Theorem.
This states that if the sample size n is large, then the sample mean is approx-
imately normally distributed, with mean p and standard deviation o/v/n,
where p and ¢ are the mean and standard deviation of the population. Fur-
thermore, the larger the sample size, the better the approximation. So by
this theorem, our X (the average of the numbers in the first row) should be
approximately normally distributed. The row total T is just 16 times X,
and so T is also approximately normally distributed. So in essence, all we
have to do is work out u and o; probability statements regarding T can be
determined by finding the area under the appropriate bell-shaped normal
curve.

By symmetry, the population mean p is the half-way point (or median),
128.5. The population standard deviation o can be computed by applying
the usual formulal

o LY, -Y)?
- N
to the data {1,2,...,256}, giving 0 = 73.90. Hence X is approximately
normally distributed, with mean g = 1285 and standard deviation

oy = 18.475.

The row total T is just a scaled-up version of X, so it too must be
approximately normal, but with mean and standard deviation 16 times that
of X, i.e. ur = 2,056 and o7 = 295.6.

The probability that this first row of the square adds up correctly is
equal to the probability that this random sum T equals 2,056. We can use
the preceding normal distribution to approximate this probability. But there
is a slight complication.

The random sum T can take only integer values, whereas all normal
distributions are continuous, so we need to apply a “continuity correction”.
With suitable scaling, probabilities regarding T' can be represented by the
areas of the bars in the relative frequency histogram shown in Figure 1. We
are interested in the area of just one of these bars, the one centered on 2,056.
It is clear from this diagram that this area is approximately the same as the

!Strictly speaking, o should be reduced slightly, to allow for the fact that our population
is finite.
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area under the a,ppfoximating normal curve, from 2055.5 to 2056.5. And
area means probability! '

Probability Density

2050 2055 2060
Random Sum T

Figure 1

Hence we can write _
P(T = 2056) ~ P(2055.5 <Y < 2056.5) (1)

where Y is a normal random variable, with the same mean and standard
deviation as T. As all students of statistics know, we can compute this
latter probability by converting it to an equivalent statement regarding the
standard normal variable Z (the Z-score), and then look up the tables of
standard normal probabilities. Alternatively, normal probabilities can be
computed directly by computer (e.g. Excel or Minitab) or calculator. The
required normal probability turns out to be p = 0.0013496.

So that’s the answer, at least approximately! Or is it? We have computed
the probability that one particular row, the first row, adds up correctly. This
is not the question posed by Mr Gauci: he wanted the probability of either
any of the 16 rows adding up correctly, or any of the 16 columns. Although
he didn’t mention it specifically, he presumably would be interested in the
possibility of either one of the two diagonals adding up correctly too.



152 : Function 5/97

Furthermore, it could happen that two or more rows or columns add up
by chance. We should not exclude such a possibility from our calculations.
If it turns out that this happens fairly frequently, then it possibly indicates
that it is fairly easy to construct a-16 x 16 magic square by hand.

So the real question is, what is the probability that at least one of the
rows, columns or diagonals adds up correctly? How can we answer this?

The 16 rows, 16 columns and 2 diagonals make up 34 subsets of 16 num-
bers from the random permutation of the numbers {1,2,...,256}. By sym-
metry, each of these 34 subsets must have the same probability, p, of adding
up correctly. By our calculations for one of these subsets (the first row),
p ~ 0.0013496. Intuition suggests that these subsets are likely to be ap-
proximately independent. For example, if the first row happens to add up
correctly, then the probability that the second row also adds up correctly is
still approximately 0.0013496. ‘

Let NV denote the number out of r subsets which add up correctly. Then
with this assumption of independence, the required probability becomes

P =P(N>1)=1-P(N=0)=1-(1-p)" =0.04488 (2)

on substituting p = 0.0013496 and r = 34. (Statistics students will recognise
this as an application of the binomial distribution.)

Before getting back to Mr Gauci, I repeated the calculations but this
time for random 3 x 3 magic squares (see Function Vol 4, Part 1, pp 25-26),
noting that there were now only 8 rows, columns or diagonals. As a check,
I did a small simulation using Minitab. In this case, it was possible to com-
pute the exact probability, p, of a specified row adding up to the correct row
total (15 for a 3 x 3 square), simply by enumerating all 84 possible samples
of 3 numbers from 1 to 9. In eight of these samples, the 3 numbers add
up to 15. Hence the exact probability is p = 8/84 = 0.0952, whereas the
normal approximation gave 0.273. That approximation holds only when the
sample size n is large; you could hardly call 3 large! Substituting r = 8 and
p = 0.0952 in (2) gave an estimated probability of 0.551. In comparison,
out of the 100 random 3 x 3 squares generated by Minitab, 51 had at least
one row, column or diagonal adding up correctly. This is quite good agree-
ment, suggesting that the assumption of independence behind equation (2)
is reasonable.

This story shows the importance of answering the right question, even
when the customer is not sure himself what is the .right question. It also
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shows how a complicated problem is broken down into a number of steps. The
steps are tackled one at a time, using approximations if necessary. Finally, all
the pieces (in this case, random sampling, Central Limit Theorem, computing
@ and o, continuity correction, binomial-type probabilities) are put together.

Epilogue

Some weeks later, [ wrote a computer program to estimate the required
probability by simulation, for squares of arbitrary size m x m. For various
values of m between 3 and 20, I generated 10,000 m x m squares at random,
and simply counted the number of times that at least one row, column or
diagonal added up to the correct value for a magic square. This procedure
involved no assumptions, such as independencé’or a normal approximation.
These simulated probabilities decrease as m increases, although the fastest
decrease is for small values of m (see Figure 2). In fact, these probabilities
can be very accurately predicted by the equation

P, =3.03m 15,

Finally, after writing the first draft of this article, I discovered an algo-
rithm for constructing a 16 x 16 magic square — in Function? in 1994!
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Figure 2

% Function Vol 18, Part 2, pp 52-58.
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HISTORY OF MATHEMATICS

Right before our Very Eyes

Michael A B Deakin

In my own lifetime, I have seen one of the most profound changes in the
nature of mathematics in its entire history. It isn’t the only such major shift
ever to occur, but it is just as profound as any of the others.

I refer, of course, to the impact of the computer and the electronic calcu-
lator. Their influence has been much wider than the simple story I give here
will indicate, and of course the computer now does much more than merely
calculate. However, I will show one way that these devices actually alter the
way in which we think about mathematics. It isn’t merely that they remove
the drudgery from much of what once was part of mathematics syllabuses,
although that is very much involved. But we now look differently at the
underlying mathematics itself — precisely because we have tools to remove
the tedious aspects of the work.

Start with a simple exa,mple.v My trusty CASIO fx-100B tells me that
V2 = 1.414213562. (1)

This is, as we know, not strictly accurate, but the machine can only display
ten digits and this is the best possible ten-digit approximation there is to
the true value of v/2 (a,n irrational numb(ar).

Now suppose we wanted to find the reciprocal of the approximation in

equation (1); that is to say, we wanted an approximation to —= (the value

of sin45° or cos45°). And suppose we lived, as once I did, before efficient
modern computing machinery was available.

To divide 1 by 1.414213562 with the aid only of pencil and paper is
possible and in one sense not particularly difficult. It demands no great
brainpower! But it is tedious, boring, daunting, offputting and eztremely
prone to error. '

However, nobody ever did things that way. The reason is that the calcu-
lation can be performed much more simply. We work as follows:
L V2 _ f

=—=X

5% 5= )

%\ =
[o]
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and now we simply halve the right-hand side of equation (1). With the
numbers in front of us, we simply read off successive digits, and so find
1
V2

(to the same degree of accuracy we had before).

= (0.707106781 (3)

Given the digits of equation (1), we can quite readily produce those of
equation (3) in our heads (and in fact I just did, but for convenience’s and
laziness’ sake I checked them on the calculator).

This process, aimed at simplifying what at first sight seem to be horren-
dous division calculations, goes by the name of rationalising the denominator.
We avoid having in the bottom line of our fraction a number that has (nec-
essarily) infinitely many digits, and simplify the division by turning it into
a straightforward rational number. The example I have given is the most
spectacular such simplification there is, but for that reason it is a particularly
good one to begin with.

The same principle may be used with more complicated divisions. Here
is another example. The Golden Ratio, ¢ let us call it, is the number

1+5
o=

~ 1.618033989, (4)

and once again it would be extremely tedious, without a calculator or com-
puter, to find its reciprocal by sheer bull-at-a-gate methods.
We have, after a trivial rearrangement,
1 2
=z 5
o V5+1 ©)
and we need to simplify (rationalise) that awkward denominator.

The trick is to use the “difference of two squares” formula. We notice
that

(VB+1)(VE-1)= (VB -1P=5-1=4 (6)

Now 4 is a much easier number to divide by than is v/5 + 1, so on the right-
hand side of equation (5), we multiply top and bottom by V5 — 1. This

gives 12 X\/3_1_2(\/3—1);_\/5—1 ™
o 5+l B-1 4 2
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(This example is very much to the point. The Golden Ratio ¢ is in fa,ct
defined as the number which satisfies the equation

1
—=¢p-1 (8)
v :
We see from equations (4) and (7) that this is so. Notice also another point:
equation (8) is a quadratic equation and so in fact possesses two solutions.

, and we choose the positive root. The negative root is —%.)

-1
They are :1:2

Once we have equation (7), of course, it’s easy to compute %, especially
if we notice that it’s merely ¢ — 1. That’s a calculation we can all do in our
heads!

So now let’s generalise. If we have any number of the form

a+bvV/N
c+dvN’

where the a,b,¢,d and NV are all nice, rational numbers, we can always ratio-
nalise the denominator by multiplying above and below by ¢ — dv/N. This

gives
a.—l—b\/J—V-x c—dVN
c+dVN  c¢c—dvN’

Resisting the temptation to cancel the terms on the right, which would
merely restore the status quo ante, we multiply out to find

(ac— bdN) + (bc — ad)VN
—-N& ’

and this will always have a rational denominator.

This has important theoretical consequences. They are most easily seen
in the case N = —1. In that case, a + bv/N and ¢ + dv/N are both complez
numbers. The calculation we have just performed shows that, in more usual
notation,

a+ib _ (ac+bd) +i(bc—ad) ac—{;bd_*_z,bc—ad
c+id c? + d? T2+ 2 4+ d?

©)

The denominator, ¢? + d2, is now an ordinary, common or garden, real
number and we talk of “realising the denominator”.

Now equation (9) is a formula. It tells us the standard form for the
quotient of two complex numbers. It’s the sort of thing many well-intentioned
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students feel they need to memorise. Honestly, don’t bother! I first saw this
formula 45 years ago and I have never even tried to commit it to memory.
Nor did I race to look it up just now as I wrote this part of the article.
Knowing the process of realising the denominator, I worked it out as I went
along.

But the full import of equation (9) lies not in its details, but in its theoret-
ical standing. Its rather messy-looking right-hand side has the form A +:B.
In other words, it too, like the a + b and the ¢+ id from which it arose, is a
straightforward complex number.

This shows that complex numbers can be divided and that the result is
just another complex number. This is actually a quite remarkable finding.
If we try, for example, to divide integers, the result need not be an integer.
We cannot divide vectors, and matrices cannot be “divided” without our
introducing lots of qualifications. “Division Algebras” are rare species!

So what began as a computational convenience has now been shown to
have quite important theoretical consequences.

But now we no longer need the computational convenience. Silicon
“brains” don’t care about getting bored. Routine mindless drill is OK by
them and they’re very largely immune to careless error.

Let’s now get back to that first example. If T get my trusty little
CASIO onto the job, I press . n and so see the number 1.414213562

displayed. To get its reciprocal needs two more keystrokes and
presto! 0.707106781 comes up. Instantly. Were I to use the rationalise
the denominator” approach, I would go, once the 1.414213562 appeared:
E [=] And, of course, get the same answer, but less efficiently: 3
keystrokes instead of 2.

So nowadays rationalising the denominator doesn’t have the same ur-
gent appeal it once possessed. To show how the computer makes different
demands, let me give you a final example. DI’ll start with a very simple
equation _

z—1=0. (10)
Very obviously, the solution is z = 1.

But now suppose that equation (10) isn’t quite the correct equation for
the purpose at hand. More accurate is, let us say,

ex?+z~1=0, (11)
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where ¢ is very small. (This isn’t, incidentally, a piece of pure mathemat-
ical quibbling; whole areas of economic modelling use equations very like
equation (11).)

Now equation (11) is a quadratic equation and it will have two solutions
given by the standard formula, which in this case goes

Lo TlEVITE

e (12)

This equation’s roots depend on the value of €, which we have supposed
to be small. Surely, we would expect, and rightly as it turns out, one of
these roots would be near z = 1. In fact, theory tells us that this root is
approximately 1 —¢, as you can check by substituting back into equation (11).
(In the economic context, this is the root of importance.) »

But now comes the rub. If ¢ is small enough, then the computer, which
always stores numbers as finite strings of digits, will see 1 + 4¢ as no dif-
ferent from the number 1. So the computer will “think” that the roots are
5(=1 £ V1): in other words, 0 and —%. The —2 is the unimportant root,
which the computer has got reasonably well. The other root is very badly
wrong!

We do much better by taking equation (12) and doing what would once
have been unthinkable. We rationalise the numerator and put the square
root down below. This gives

2
R R v

(I leave it to readers to check for themselves that this is the correct answer.)

(13)

And now suppose the computer fails to “see” that little €7 Well, no great
matter. The uninteresting root wanders off to infinity, where we may safely
leave it. The other is simply given as 1, which is much, much better than 0
as an estimate of the true value.

This example has many more riches, which well repay explanation. I leave
that to my readers.

But I hope you will agree that, between equations (12) and (13), the
computer has turned mathematics upside down!

% % % ok %
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Crocheting the Modern Way

Cristina Varsavsky

I have always been amazed at the many different patterns that can be
created with a crochet hook drawing the yarn into intertwined loops. I used
to spend many hours watching my grandmother as she was magically creating
in front of my eyes daisies, roses, bells, .. .. I even had a go at it myself, but
that was many years ago when life did not séem to be as busy as it is these
days.

One of this winter’s Sunday afternoons I was observing a pattern pro-
duced by my grandmother from a mathematician’s point of view. I discov-
ered that it could be described as a pattern with a self-similarity property,
that is, as the first few iterations in the process of the creation of a fractal.
So I decided to use the computer rather than the crochet hook to reproduce
it. It turned out to be pretty simple; the screen output of the program I
wrote appears in Figure 1.

Figure 1
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The basic figure is a regular polygon with ten sides — known as a decagon.
A smaller decagon appears at each vertex, which in turn, has an even smaller
decagon branching off each vertex that is not part of the bigger decagon. This
process could in theory continue to create the crochet fractal, but in practice
only the first few iterations can be appreciated with our eyes.

The computer code is rather straightforward. To plot a decagon on the
screen we draw 10 consecutive segments of a fixed length, say 1 unit. The
angle made by two consecutive segments of the decagon is 27/10 = 7/5
radians. This is achieved with the following program written in QuickBasic:

SCREEN 9: WINDOW (-1.5, -.3)-(2.5, 2.7)
pi = 3.141593
x = 0: y =0: PSET (x, y)
FORn=0TO9

angle=n*pi/ 5

x = x + COS(angle)

y =y + SIN(angle)

LINE -(x, y)
NEXT n

The dimensions of the window have been selected -using the 4:3 screen
ratio, so that the decagon fits nicely in the centre of the screen. Note that
the angle increases by 7 /5 radians at each vertex.

To add the smaller deéagons at each vertex, we proceed as with crocheting
using only one piece of yarn — mathematically speaking, drawing a closed
curve figure. The computer program follows:

SCREEN 9: WINDOW (-1.9, -2.8)-(2.9, .8)
pi = 3.141593
x =0: y =0: PSET (x,y)
FOR n =0 TO 89
vertex = n: angle=n*pi /5
IF vertex MOD 9 <> 0 THEN factor = .2 ELSE factor = 1
x = x + factor * COS(angle)
y = y + factor * SIN(angle)
LINE -(x, y)
NEXTn



Crocheting the Modern Way 161

The figure is a closed curve made of 90 segments; the vertices of the bigger
decagon are formed with the intersections of the longer line segments, so for
each vertex we need to draw only 8 segments to produce the smaller decagon.
The length of the segment is controlled by the IF statement: the multiples
of 9 will correspond to the sides of the larger decagon, the non-multiples
are for the smaller decagons. Note that because of the direction in which
the computer “needlework” is done, we need to change the definition of the
window.

Following the same process we can add more iterations towards the cro-
_chet fractal:

SCREEN 9: WINDOW (-1.9, -2.8)-(2.9, .8)

pi = 3.141593: factor = .2: iterations = 4

x = 0: y = 0: PSET (x, y)

FOR n=0TO 10 * 9 A (iterations - 1) - 1
vertex = n: level = 0: angle =n *pi /5
WHATLENGTH:

IF vertex MOD 9 <> 0 OR level >= iterations - 1
THEN GOTO DRAWING
vertex = vertex / 9: level = level + 1
GOTO WHATLENGTH
DRAWING:
length = factor A (iterations - 1 - level)
x = x + length * COS(angle)
=y + length * SIN(angle)
LINE -(x, y)
NEXT n

The variable iterations is set to 4, but you can change it. The IF statement
is to check to what level of iteration the next segment belongs: if n has only
one factor 9, then it is the first level; if it has two factors 9, the second; if it
has 3, the third, and so on.

By varying the number of sides of the starting polygon and the scaling
factor defining the length of the line segments, I discovered that my computer
‘can be as creative as my grandmother was: all sorts of new shapes appeared
on the screen. Perhaps you’d like to give it a try too.

¥ % ok ok %
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LETTER TO THE EDITOR

Function 5/97

I have finally found time to read the April issue of Function and was
interested in the letter of Kim Dean. Dr Fwls is obviously a good lateral
thinker, but he has made a mistake that a decent year 9 student wouldn’t
make. I agree that when adding a series of numbers you can add the terms

in any order, but eventually all the terms must be included.

If you include only the first 4n terms of the series in his work you can

more easily see Dr Fwls’s error.

1 1 1 1
L =1~ 2+§_Z+ —212;1‘
2 2
=9-Z42_°2 -
2L +3 4-{— n
2 1 2 1
= 2~1+§ §+‘5— g-!-.. —%
if n =2 then
2 1 2 1 2 1
= 929-142_-2= =
* 2L It3-3F5 37771
_ l+1 1.2 2
3 4 5 7
2 2
L+2n+ 4n—1
if n = 3 then
2 1 2 1 2 1 2 1
2= 2-ltg-aty -3t ite 5T
111112 0
N 2 3 4 5 6 7 9 11
~‘L+' 2 " 2 -2
- n+1 2n+3  4n-—1
In general,
2 2 2
2L = e
+2n+1+2n+3+ +4n—1
2 2 2

1l mts T dn 1

The terms on the right are all positive, and as there are n terms then

n 2 < 2 -+ 2 + + 2 <n
dn—-1 " 2n+1 2n+3 7 4n-—1 2n+1
P 2 2 2 2

< —— —
I m+1 s T Tmo1 7w
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As n approaches infinity

1 2 '

= <

2 o+l s T I
Therefore L lies between the values .5 and 1, and is not 0, as Dr Fwls would

‘have us think.

<1

Peter Bullock
Norwood Secondary College
Ringwood

X k% % k %

Mathematics may be likened to a large rock whose interior com-
position we wish to examine. The older mathematicians appear as
persevering stone cutters slowly attempting to demolish the rock from
the outside with hammer and chisel. The later mathematicians resem-
ble expert miners who seek vulnerable veins, drill into these strategic
places, and then blast the rock apart with well placed internal charges.

Howard W Eves in Mathematical Circles
1969, Prindle, Weber and Schmidt

* % % x %

“I think you're begging the question,” said Haydock, “and | can
see looming ahead one of those terrible exercises in probability where
six men have white hats and six men have black hats and you have to
work it out by mathematics how likely it is that the hats will get mixed
up and in what proportion. If you start thinking about things like that,
you would go round the bend. Let me assure you of that!”

Agatha Christie in The Mirror Crack’d
1962, Bantam Books

¥k K % %
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PROBLEM CORNER

SOLUTIONS

PROBLEM 21.3.1
Does the pattern observed in the following sums continue?
1+2=3

44+54+6=7+38
94+10+11+4+12=13+14+15

SOLUTION

~ We need to establish first just what the pattern is. For each natural
number n, row 7 has n+ 1 numbers on the left and n on the right, a total of
2n+1 numbers. The total number of numbers in the first n rows is therefore:

3+5+T7+...+(2n+1)

This expression is an arithmetic series’ with sum n? + 2n. Therefore the
numbers in the first n rows can be listed as 1,2,3,...,n% 4+ 2n. Hence, row
n ends with n? + 2n. It follows that row n — 1 ends with (n —1)2+2(n—1),
so Tow n begins with (n — 1)? + 2(n — 1) 4+ 1, which equals n®. Thus,. the
left-hand side of row n is:

n?4+ (nP+ 1)+ @0 +2) +...+ (n* +n) (1)
and the right-hand side of row n is:
PP 4+n+1)+ @ +n+2)+ @2 +n+3)+.. .+ (0P +n+n) (2

Expressions (1) and (2) are both arithmetic series, with sums
(n 4+ 1)(2n% + n)/2 and n[2(n? + n + 1) + (n — 1)]/2 respectively. A lit-
tle routine algebra reveals that both expressions equal n(n + 1)(2n + 1)/2.
Therefore (1) and (2) are equal, as required.

1For the benefit of readers who have not studied series, an arithmetic series is an expres-
sion of the form a + (¢ +d) + (a + 2d) + ... + [a + (n — 1)d], where a is the first term and d
is the common difference. The series evaluates to n[2a + (n — 1)d]/2, as may be proved by
induction on n. '
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PROBLEM 21.3.2 (from a British television game show; submitted by Prof H C
Bolton, University of Melbourne)

Use each of the numbers 3,6,25,50,75,100 exactly once, together with
the four basic operations of arithmetic (+, —, X, /) and parentheses, to obtain
an expression equal to 952. '

SOLUTION supplied by Prof H C Bolton
One possible solution is [(100 + 6) x 3 x 75 — 50]/25.
PROBLEM 21.3.3

Prove that 2%y¥ > z¥%y* for all positive real values of  and y, with equality
holding only if z = y.

SOLUTION

If z = y then clearly 2%y¥ = z¥y®. Thus we need only show that if z > y
or < y then z®y¥ > z¥y®. We consider the two cases.

Case 1: z > y. Then z — y > 0. Raise both sides of the inequality
z > y to the power of the positive number £ — y, to obtain z®7¥ > y*7¥,
Now multiply both sides by z¥y to obtain the required result.

Case 2: z < y. Then y — z > 0. Raise both sides of the inequality
z < y to the power of the positive number y — z, to obtain z¥~% < y¥7°.
Now multiply both sides by z®y® to obtain the required result.

PROBLEM 21.3.4
Prove that sin(cos z) < cos(sinz) for all real values of z.

SOLUTION

Both sides of the inequality are periodic with period 27, so we need only
look at values of z within the interval [, 7]. Further, it is readily checked
that both sides are even functions?, so it is sufficient to prove the assertion
for z in [0, 7]. The fact that cos is a decreasing function on [0, 7] is used in
two places in the proof below.

Case 1: 0 < z < /2. In this case cosz > 0, so sin(cosz) < cosz.
Also, since sinz < z and both z and sinz are in [0,7], we must have
cosz < cos(sinz). Therefore sin(cosz) < cos(sinz). .

2A function f is even if f(—~z) = f(z) for all values of z.
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Case 2: 7/2 < z < 7. In this case, cosz < 0, so sin(cos z) < 0 < cos 1.
Since sinz < 1, and both sinz and 1 are in [0, 7], we have cos 1 < cos(sin z).
Therefore sin(cos z) < cos(sin z) in this case also.

PROBLEM 21.3.5 (from Mathematical Digest, University of Cape Town)
Find all real numbers z for which 3* + 4% = 5°.

SOLUTION from Mathematical Digest

Clearly z = 2 is a solution. Dividing by 4° we have (%) +1= (—Z- .
The function on the left-hand side is decreasing, that on the right-hand side
is increasing. Hence there is at most one solution.
PROBLEM 21.3.6 (from Mathematical Spectrum)

A polynomial function of degree n is such that p(z) > 0 for all z. Prove
that
p(z) + ' (e) +0"(z) +... +p™(z) > 0

for al] z.
SOLUTION from Mathematical Spectrum

Write
flz) =p(z) +p(z) +p"(z)+ ... +p™ (z).
Since p(z) > 0 for all z, n must be even and the leading coefficient of p(z)

is positive. So f is also of even degree and has a positive leading coefficient.
Thus, if f(z) takes its least value at £ = X, then f'(X) = 0. Now,

| f@) = F@) +pl).
Hence f(X) =p(X) > 0. Hence f(z) > f(X) > 0 for all z.

We received solutions to Problems 21.3.1, 21.3.3, 21.3.4, 21.3.5 and 21.3.6
from Carlos Alberto da Silva Victor (Nilépolis, Brazil), and solutions to
Problems 21.3.1, 21.3.3, 21.3.4 and 21.3.5 from Keith Anker.

PROBLEMS

Readers are invited to send in solutions (complete or partial) to any or all of
these problems. All solutions received by 23 February 1998 will be acknowl-
edged in the April 1998 issue; and the best solutions will be published.
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PROBLEM 21.5.1 (K R'S Sastry, Bangalore, India)

Show that the infinite arithmetic progression 2, 7, 12, 17, ... does not
contain any triangular number. (The rth triangular number, T, is given by
T, =3r(r+1).)

PROBLEM 21.5.2 (K R S Sastry, Bangalore, India; modified by the editors)

Let ABC be an isosceles triangle with AB = AC, and let O be its
circumcentre. Let D be a point on AB such that AD = BC. If C,0 and D
are collinear, prove that /BAC = 20°. (Hint: It is possible to construct a
proof without using coordinate geometry or trigonometry. Begin by finding
the degree measure of /BDC.)

PROBLEM 21.5.3 (K R S Sastry, Bangalore, India)

Let AD be an altitude of triangle ABC. If the reciprocals of the lengths
AD,AB and AC are the side lengths of a right-angled triangle, find the
maximum value of the degree measure of angle BAC.

PROBLEM 21.5.4

A list of finite sequences of numbers is constructed as follows. The first
sequence is just the number 1. Each sequence apart from the first “describes”
the previous sequence in the following sense: the first number in the previous
sequence is listed, followed by the number of times it occurs consecutively,
then the next number is listed, followed by the number of times it occurs
consecutively, and so on.

Thus:

First sequence: 1

Second sequence: 1, 1 (since the first sequence can be described as
“One 1)1)

Third sequence: 2, 1 (since the second sequence is “two 1s”)
Fourth sequence: 1, 2, 1, 1 (since the third sequence is “one 2, one 1)

Fifth sequence: 1,1, 1, 2, 2, 1 (since the fourth sequence is “one 1,
one 2, two 1s”)

etc.

Which numbers can occur as terms in these sequences?
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PROBLEM 21.5.5 (from Mathematical Spectrum)
Find all prime numbers p for which 2p — 1 and 2p 4 1 are both prime.

Many readers will have seen examples of fallacious “proofs” that 0 = 1.
Most of these proofs involve an attempt to divide both sides of an equation
by an expression that turns out to be zero. The problem below is a little
more subtle.

PROBLEM 21.5.6-

Find the mistake in the following reasoning:

1
“Let I = / ;d:c. Integrate by parts:

1 1 1 1
Now subtract I from both sides to obtain 0 = 1.”

* % % % %

OLYMPIAD NEWS

~ The XXXVIII International Mathematical Olympiad
Two firsts: Australia finishes with two gold medals
and is now among the top ten IMO countries in the world

Mar del Plata (Argentina) was this year’s venue for the IMO. Teams,
most having siz members, from 82 countries had to contend with siz problems
during nine hours spread equally over two days in succession.

Here are the two papers:

First day, July 24, 1997°

1. In the plane the points with integer coordinates are the vertices of unit
squares. The squares are coloured alternately black and white (as on
a chessboard). For any pair of positive integers m and n, consider a
right-angled triangle whose vertices have integer coordinates and whose
legs, of lengths m and n, lie along edges of the squares. Let S; be the
total area of the black part of the triangle and Sy be the total area of
the white part. Let

f(m,n) =151 — Sal.

3Each problem is worth 7 points. Time: 4% hours.
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(a) Calculate f(m,n) for all positive integers m and n which are either
both even or both odd.

(b) Prove that f(m,n) < 3max{m,n} for all m and n.
(c) Show that there is no constant C such that f(m,n) < C for all m
and n.

2. Angle A is the smallest in the triangle ABC. The points B and C divide
the circumecircle of the triangle into two arcs. Let U be an interior
point of the arc between B and C which does not contain A. The
perpendicular bisectors of AB and AC meet the line AU at V and W,
respectively. The lines BV and CW meet at T. Show that

AU =TB+TC.

3. Let z1,%9,...,%, be real numbers satisfying the conditions:

lz1+zo+. ...+, =1

and +1
lzi| < n_z_ for i=1,2,...,n.
Show that there exists a permutation yi,¥s,. .., ¥, of 21,22, ..., Z, such
that +1
_ n
lyL+ 292+ 4 | < ——.

Second day, Julyv25, 1997

4. An n x n matrix (square array) whose entries come from the set
S =4{1,2,...,2n — 1}, is called a silver matrix if, for each ¢ = 1,...,n,
the ¢th row and the ¢th column together contain all elements of S. Show
that
(a) there is no silver matrix for n = 1997,

(b) silver matrices exist for infinitely many values of n.
5. Find all pairs (a,b) of integers ¢ > 1, b > 1 that satisfy the equation
o) =pe.
6. For each positive integer n, let f(n) denote the number of ways of rep-

resenting n as a sum of powers of 2 with nonnegative integer exponents.
Representations which differ only in the ordering of their summands are
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considered to be the same. For instance, f(4) = 4, because the number
4 can be represented in the following four ways:

4;24+2;2+14+151+14+141.
Prove that, for any integer n > 3:
9 < f(2M) < 2m /2
Never has an Australian team performed so well at an IMO. Australia
came ninth and won two gold and three silver medals as well as one bronze
medal. Ahead of Australia were only the teams (listed in descending order
of their unofficial scores) from China, Hungary, Iran, Russia and the United

States of America (ex aequo), the Ukraine, and Bulgaria and Romania (ex
aequo).

The other countries of the Asian Pacific Mathematics Olympiad ranked
as follows: 10. Vietnam, 11. Korea, 12. Japan, 14. Taiwan, 27. Colombia,
29. Canada, 30. Hong Kong - China, 82. Mezico, 37. Argentina, 89. South
Africa, {1. Singapore, 48. New Zealand, 52. Thailand, 63. Indonesia, 65.
Trinidad and Tobago, 66. Chile, 69. Malaysia, 73. the Philippines.

The members of the Australian team received medals as follows:

Thomas Lam, New South Wales, Gold
Stephen Farrar, New South Wales, Gold
Norman Do, Victoria, Silver

Justin Ghan, South Australia, Silver
-Daniel Mathews, Victoria, Silver

Jonathan Kusilek, New South Wales, Bronze.

Congratulations to our excellent team!

The 1997 Senior Contest of the
Australian Mathematical Olympiad Committee (AMOC)

The AMOC Senior Contest 1s the first hurdle for mathematically talented
Australian students who wish to ‘qualify themselves for membership of the
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teamn that represents Australia in the following year’s International Mathe-
matical Olympiad. This year that four-hour competition took place on 18
August.

These are the questions:*

1. On planet Rhinochromos, 19971997 male monsters are to be married to
the same number of female monsters. The same number of males and
females have purple noses, the others have beige noses. The matching of
males and females is performed randomly by Rhinochromos government
monster psychologists. Show that the number of mixed marriages, i.e.
marriages of partners with different nose colours, is even.

2. Let ¢ be a circle, A a point on ¢, and B and C two different points on ¢
such that the chord BC is parallel to the tangent to ¢ through A. Let
P be on BC and let AP (extended) intersect ¢ again in Q. Let k be
the circle which touches BC in P and passes through Q. Prove that k
touches ¢ in Q.

3. Determine all pairs of integers (z,y) that satisfy the equation
(z+1)f = (2= 1) = g
4. Let ¢ be a circle and let P be a point in the interior of c.

(a) Let A,B,C, D be points on ¢ such that the chords AC and BD
intersect at right angles at P. Show that AC? + BD? is constant
(i-e. the same for any such four points A, B,C, D).

(b) Amongst all such points A,B,C, D, show that AC + BD takes its
maximum when AC = BD.

5. Let f be a function defined for all integers by
f0) =1
fn) = 0, for -5<n<-1,
f(n) = f(n—6)+mn, forall integers n.

b

2
1
_”_i_%ﬁﬂ U—Gi—l—-—g, for all integers n.

Prove that ( < fln) < 13

* % % % %

*Time allowed: 4 hours. NO calculators are to be used. Each question is worth seven
points.
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