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EDITORIAL

We "\¥elconle our readers to this issue of FtLnction.

The figure on tIle front cover relates to a problem published ill Function
several years ago. It is about a process of subdividing a triangle into smaller
silnilar triangles~ and reveals a surprising connection between this problem
and a certain type of series.

\Ve include another article by our reader Benito Hernandez-Bermejo. It
explains an efficient procedure that the Babylonians used to approximate a
square root, which SllOWS the highly advanced mathematical development
of tllis ancient people.

"\Ve are pleased to also include an article by one of our youngest read-·
ers. Mark Eid is a Year 9 student; he shows some very nice formulae for
generatillg right-angled triangles with integer side lengths.

Michael Deakin recommends an' interesting book in which the author,
Ida Yavetz, presents the mathematical thinking of Oliver Heaviside, put ill

the context of the lcnowledge existing at that Inathematician's time.

. We have an area-related topic in the History column. It deals with the
llistory of the question: Given the side lengths. of a polygon (but not its
angles)) what is the configuration that maximises the area?

Have you ever been puzzled by tIle answers a mathematics program
gives as solutions to polynomial equations? The Computers and Computing
column will help_"you to understand how computer algebra systems solve
tllese equations.

As usual, there are several new problems for your entertainment; for
brighter minds '''Ie also include the problems set for this year's Asian Pacific
Matllematics Olympiad. Solutions to the problems, as well as articles and
comments of any kind, are always welcome from our readers.

We hope you enjoy this issue of Function!

* * * **
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THE FRONT COVER

Subdivision of Triangles

Peter Grossman, Monash University

Function 3/96

The illustr~tion on the front cover depicts an intriguing problem from
the August 1992 issue of Function for which we have not previously pub­
lished a solution.' The problem was originally stated as follows:

The figure below (Figure 1) shows two copies of the same right-·
angled triangle, whose area in one copy is divided by the altitude in
the ratio a : b (a <' b), the whole being held to have unit area. The
three portions thus have areas 1, a, b.

b a

Figure 1

Further copies of the triangle are to be divided into constituent
right-angled triangles, by repeated insertions of attitudes 'in such a
way that no two subdivisions have'the same area, anywhere over the
full set of copies. How many copies in all will this allow?

The front cover ShO¥lS. the two copies of the triangle given in Figure 1,
together with a third copy which has been subdivided according to the rules
given in the problem; the two smaller triangles introduced in the second
copy have each been subdivided, and one of the resulting triangles has in
turn been subdivided in order to avoid tIle OCCllrrence· of two sllbdivisions
with the same area. It is easy to see that no two subdivision~ llave the same
area, anywhere over the full set of copies (except for some special choices
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of a and b which we ,vill ignore). Thus at least three copies in all can be
produced. We will now show that" no further copies are possible.

In, order to do this, it is. useful to define the level of each subdivision in
the construction. We will say that the original triangle has leve~ zero, and a
-triangle produced by subdividing a triangle at level j has level j + 1. Thus
the second of the three copies on the front cover contains two triangles at
levell, and tIle third copy contains three triangles at level 2 and two at
level 3.

We can list the possible areas of triangles at any given level. At levell,
the possible areas are a and b'. At -level 2, they are a2 and ab if the level
1 triangle with area a is subdivided, and ab and b2 if the lev~l 1 triangle
'with area b is subdivided. (You can easily check this by verifying in each
case that the two areas are in the ratio,a : b and their sum is the area of .
the level 1 triangle from which they are produced by subdivision.)

A similar argument in the general case shows that the possible areas of
level j triangles are:

j j-1b j-2b2 Lja ,a ,a , ... ,If.

In other words, the area of a level j triangle must be aj-kbk for some value
of k between 0 and j. This follows from the fact that a triangle with area
aj-1-kbk from level j - 1 can be subdivide4 into two triangles with areas
aj-kbk and aj-l-kbk+l at level j. A formal proof proceeds by induction on
j; we leave it to you to supply the details.

Now, suppose we have a set of copies of the original triangle which have
been subdivided according to the rules given in the problem. Let mij denote
the number of subdivisions of copy i at level j. (In the situation depicted
on the front cover, for example, ml,O = 1, m2,l = 2, m3,2 =: 3, m3,3 = 2,
and mij = 0 for all other values ofi and j.) Let d denote the maximum
level of all the triangles. Then, for any given copy, i, the mij'S must satisfy
the equation

d .
E 2-Jmij = 1. (1)
j=O

To prove equation (1), notice firstly that for i = 1, when- the original
triangle has not been divided, we have ml,O = 1 and d = 0, so the sum
is just a single term equal to 1. Thus equation (1) is true in this case.
We now proceed inductively, noting that as each successive subdivision is
made, say in copy i by subdividing a triangle at level j, mij decreases by 1
and 1ni,i+l increases by 2, so the value of the sum is unchanged.
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We also observe that for each level j t~e mij'S satisfy the inequality
n

~m" < J" + 1 .L..J 1.J-
i=l

(2)

where n is the number of copies of the original triangle. Inequality (2)
follows from the fact that only j + 1 different areas are possible at level j,
and each subdivision must have a different area.

(1) and (2) impose quite severe restrictions on the possible values of .the
mij'S, and hence ultimately on the "possible values of n. On the one hand,
equation (1) tells us that the mij'S must grow rapidly as j increases, in
order to compensate for the rapid rate of decrease of 2-j • On the other
hand, inequality (2) prevents the mij'S from growing very fast. In order to
make the argument precise, we need to investigate the double, sum

n d .
S = L L 2-Jmij.

i=l j=O

Using equation (1), we obtain
n

S = L 1 = n.
i=l

If we reverse the order of the summations in the definition of S and use
inequality (2), we obtain
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d
E(j+l) x 2- j

j=O

Putting r == 2-1, we obtain

(d + 1) x 2-d- 2 - (d + 2) x 2-d- 1 + 1
== 1

Ii
== 4{2-d

-
2[d+l-(d+2)x2]+1}.

4 - 2-d(d + 3).

Tillis EJ=o 2- j (j + 1) < 4, so .S < 4 and hence n < 4. We conclude that
three is the maximum possible number of copies of the triangle that can
be subdivided in the manner specified.

* * * * *

All horses are of the same colour

This can be proved by induction as follows.

Let n be the number of horses.

1. Base step

If n = 1, there is only one ·horse, so the statement is true.

2. Inductive step

Assume the statement is true for n = k. We need to prove that it is then
also true for n == k +.1.

If n == k + 1, we take away one of the horses; then by the inductive
hypothesis, the remaining k horses must be of the same colour. Now swap
the horse that was taken away with one of the k horses in the group. The k
remaining horses are, again by the inductive hypothesis, of the same colour.
But the horse left out must also be of the same colour.

Thus the statement is true for aHn.

Conclusion: All horses are of the same colour!

Can you see what is w,rong with this proof?

* * * * *
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THE BABYLONIAN ALGORITHM FOR

SQUARE ROOTS

Benito Hernandez-Bermejo
Universidad Nacional de ~ducaci6n a Dlstancia, Madrid

The ancient city of Babylon (whose civilisation flourished from about
2000 Be to 550 BC)achieved a 'surprisingly rich development in math­
~matics. In fact, the Babylonian achievements surpassed those of many
other (later) civilisations, such as the Egyptian. Some of their discoveries
were both efficient and simple. An example of this is their algorithm (that
is to say, computational procedure) for square root. Here is how it went.

Suppose we -want to find va, and suppose the correct value is., X, that·is
to say, x 2 = a. It is always possible to make a simple guess at the value of
x. Suppose for the sake of illustration that we guess a number 10, somewhat

.smaller than the correct value. In that case ~ > x. And so now put Uo = ~.

If on the other hand we had made an initial guess Uo which was too large,
we would have 10 = ~ < x. Either way, we have two estimates of ..;a :
10, which is too small, and uo, which is too large. 1 Their arithmetic mean
m = (10 + uo)/2 will then be a better approximation than either lo or Uo.

The number m is the' arithmetic mean of lo and uo. The· number x
we' require is the geometric mean of these same numbers because, by the
definition of 10 or uo, we have x = va = J1ouo and this is the definition. of
the geometric mean.2 Now it is a known result that the arithmetic mean
of two positive numbers is always greater than or equal 'to the geometric,
with equality if and only if the numbers are equal.3 Thus m (unless lo, and
thus uo, happens to be exactly correct) is an overestimate of x. Call it UI.

Similarly ~ will also be a better approximation than either of 10 or Uo.

But as m (= Ul) is an overestimate, ~(= [1, say) will be an underestimate;
and hence we have two new approximations II and Ul such that

lo < II < X < Ul < Uo·

We may now repeat the algorithm, but using II and Ul instead of lo
and uo, and indeed we may continue in this way, finding better and better
approximations to x.

1It could just happen that the initial guess was spot 011, but we will ignore this possibility
except for some occasional remarks.

. 2See Function, Vo115, Part 4, p. 98.
3A proof is given below. For a more general case, see Function, Vol 8, Part 1, p. 15.
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As an example, ,vork out successive approximations to ..)2, starting-
,vith lo == 1. We find successively 10 == 1, Uo == 2, Ul == 1.5, II == 1.333 ,
U2 == 1.41666... , l2 == 1.41176470... , U3 == 1.41421568... , l3 == 1.41421143 ,
U4 ~ l4 == 1.41421356.... So the fourth calculation (technically iteration)
produces a result that is correct to 8 (in fact 9) decimal places. The method
is very accurate and also quite simple and straightforward.

As a matter of detail, the Babylonians expressed their fractions in base
sixty.4 If we write this in a more modern notation, their value comes out
as (1; 24,51,10,7,46) which is to be interpreted to Inean

1 24 51 10 7 46
+ 60 + 602 + 603 + 604 + 605 '

Tllis figure is accurate to 9 decimal places in our way of seeing things.
However, tilis takes Inatters a little further than their scribes actually went.

They seem to have begun with an initial guess of 1.5 (which is Ul in
our notation above).5 They called this (as we write it in modern no­
tation) (1; 30), which is to say 1~. This then gave them II == (1; 20)
(compare above), and then they hadu2 =- !{(1; 30) + (1; 20)}, which is
(1; 25) and again there is agreement with our earlier calculation. From
U2, they calculated [2, which we can write as 2/(1; 25) and this is equal
to (1; 24,42,21,10,35, ... ). It seems, however, that they rounded this to
(1; 24, 42, 21), and so the next approximation was ~{(1; 25) +(1; 24,42, 21)},
which works out to be (1; 24,51,10). In our notation this works out to be
1.414212963, a figure that is out by about 6 in the 7th decimal place. Had
they performed the calculation a little more accurately, they would have
got the value given in·the paragraph above.

Figure 1 shows some of the evidence6 for the calculation. The purpose
would seem to be to find the diagonal of a 'square of side 30. You can make
out the Babylonian numeral for 30 in the upper left; you can also make
out the number (1;24,51,10), written in Babylonian cuneiform of·course,

4For more on Babylonian mathematics and for this story in particular, see either
Carl Boyer's A History of Mathematics, p. 31 or (with much more detail) Mathematical
Cuneiform Texts by 0 Neugebauer and A Sachs, pp. 42-43.

5The calculation is preserved on a clay tablet known as YBC 7289. (YBC stands for
"Yale Babylonian Collection" and it is No. 7289 in their catalogue.)

6The tablet depicted here uses a standard value of .J2 and does -not say how it was
calculated. However, there is modern research to show that the inspired guesswork of
Neugebauer and Sachs (on which this account is based) is substantially correct. This modern
work depends on later discoveries; it was publicised recently in an Internet posting by
Eleanor Robson of Oxford University. . .



80 Function 3/96

along the main diagonal. Underneath .this is the answer (42; 25, 35) if we
make allowance for a missi?g symbol where the tablet has been damaged.

obv.:;i~B~~~~{!~p~·
YBC 7289

o 2. ~ 4em.

Figure 1

1,24, 51,10

42,2 5,35

. A drawing of the Babylonian clay tablet YBC 7289, showing the di­
agonal of a square of side 30. To the left is the front (obverse) of
the tablet, to the right a stylised explanation. The back (reverse) of
the tablet seems to depict the calculation of a rectangular diagon~1,

but it is too badly damaged to be deciphered, nor is it shown here.
(From Neugebauer and Sachs.)

The above account explains all the basic concepts and demonstrates how
accurate and efficient th~ method really is. However, it does contain some
assertions which, while they are plausible, are not actually proved. For
those who want more detail, the appendix below will give the technicalities.

Appendix

To show that the method always works, we prove some technical but
not very difficult results. These will be expressed as four lemmas, or "mini­
theorem~". TIle first shows that the aritlllnetic Inean of lo and Uo does in
fact lie between them.
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Lemma 1. If 10 < uo, then Io < lo1uO < uo.

Proof: Because 10 < uo, 10+10 < lo+uo and also lo+uo < uo+uo. Dividing
these inequalities by 2 produces the required result.

Next, we shall prove that m, that is to say Ul, is in fact an overestimate.

Lemma 2. lo1uO 2:: Vlouo.

Proof: lo1UQ
- Vlouo = ~(lo + Uo - 2V1ouo) = ~(jijO - VlO)2 2:: O.

Note that equality holds only in the unusual case for "which 10 = Uo (and
thus both are equal to x). Otherwise the arithmetic mean is larger than
the ttue value of the square root, which is the geometric mean. In what
follows, we ignore this special case.

Lemma 3. 10 < -;; < x·.

Proof: Since m > x (because of the inequality of the arithmetic and the
geometric mean), 1 > ~. Multiply by" x throughout to find x > ~ = ~.
Also, by Lemma 1, m < uo, and so ~ >. 1. Multiply both sides of this
inequality by 10 to find ~ > 10, However, by definitionlouo = a, and this
completes the proof of the lemma. For convenience we will define 11 = ~.

The purpose of these lemmas is to show that m (= Ul) and ~ (= II) are
both better approximations to x than are 10 and uo. We' now" have

10 .< 11 < x ~ Ul < UQ.

Furthermore, we may now use 11 in place of 10 andul in place of Uo in
lemmas 1, 2, 3to get even better approximations 12 and U2; and so on. In
this way we can know that

10 < 11 < 12 < ·.. < x < ... < U2 < Ul < uo.

We now know that each of the l's lies closer to the true value of x than
the previous ones and the same is true of the u's. It remains as a theoretical
possibility, however, that the values might home in not on the true value of
x, but rather on some other nearby value. However, we shall now see that
this cannot be. Our strategy will be to show that the difference between
each 1 and its corresponding u becomes ever smaller and can be made as
small as we like. Thus the true value is "squeezed" into an ever-diminishing
space and we can confine it as closely as we please "(although we will never
attain the theoretically exact value).
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Lemma 4.

Function 3/96

Proof: We have:

Ul _ II = 10 +Uo' _~ = 15 + u5 + 21ouo - 41ouo
2 10 +Uo 2(10 + uo) ,

where use has been made of the equation a = louo- But now this gives.

U _ I _ (uo - 10)2
1 1 - 2(uo + lo) ,

d 'ul-ll ~ < 1 1 - dan so uo-lo = 2(uo+lo)' 2' as c alme .

Thus each pair of estimates offers a range less than half that of the
previous pair, and the interval into which the true value of x i~ confined
is progressively reduced and may be made as small as we like merely by
continuing the process for long enough.

* * * * *

Three golfers named Tom, Dick, and Harry are walking to the clubhouse:
Tom, the best golfer of the three, always tells the truth. Dick sometimes tells
the truth, while Harry, the worst golfer, never does.

Figure out who is who.

* * * * *
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MARK EID'S THEOREM

Mark Eid, Year 9, Donvale Secondary College

Generally speaking, we need two sides of a right-angled triangle in order
to worl{ out the third, but here are two ways to find right-angled triangles
with integral sides when only 'one integer is given.

Part 1. Odd Numbers

Take any odd number and then:

1. Square it.

2. Divide the result by two.

3. Take tIle integers immediately above and below the answer to this
division.

Example 1. Let 3 be the number; its square is 9. ~ == 4.5. The num­
bers found by the above process'are therefore 4, 5. We now see that
32 + 42 == 52.

Example 2. Let 55 be the number; its square is 3025. 3°i5 = 1512.5,
giving 1512, 1513. We now see that 552 + 15122 = 15132.

Example 3 .. Let 133 b'e the number; its square is 17689~ 17~89 = 8844.5,
giving 8844, 8845. We now see that 1332 + 88442 = 88452

•

This process works for any odd number.

Part 2. Even Numbers

Take any even number and then:

1. Square it.

2. Divide the result by four.

3. Take the integers immediately above and below the answer to this
division.

Example, 1. Let,8 be the number; its square is 64.' ¥ = 16. The numbers
found by the above process are therefore 15, 17. We now see that
82 + 152 == 172

.
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Example 2. Let 84 be the number; its square is' 7056. 7°456 = 1764, giving
1763, 1765. We now see that 842 + 17632 = 17652.

Example 3. Let 124 be the number; its square is 15376. 15~76 = 3844,
giving 3843, ~845. We now see that 1242 + 38432 = 38452

•

. This process works for any even number.

[ Triples of integers (a, b, c) such that a2 + b2 = .c2 are called Pythagorean
triples. They are classed as primitive if a, b, c have no common factors.
There are infinitely many primitive Pythagqrean triples and every Pytha­
gorean triple is either itself primitive or else a simple multiple of a prim­
~tive triple. For example, (3,4,5) is primitive and so are (5, 12, 13) and
(8,15, 17). But (6,8, 10) and (9, 12, 15) are not primitive, becaus'e they are
multiples of (3,4,5).

The rather complicated formula· that gives all the Pythagorean triples
has been known for quite a long time - possibly as long as 4000 years! It
goes like this. Let u, v be positive integers with u > v. Now put a = 2uv,.
b = u2 - v2 and c = u2+v2. It is a simple matte~ to check that a2+ b2 = c2

,

in other words that (a, b, c) is a Pythagorean triple.

Not every Pythagorean triple can be generated by this process. For
example (9,12,15) cannot be expressed in this way. ~owever, this process
does give all the primitive triples, as well as some others. If we restrict u, v
to be (i) relatively prime, and (ii) one even, -the other odd, then w~ get
exactly the set of primitive triples.

As an exercise, show that if we take u = n + 1, v = n, then we get
Mark's first set of triples. You should also be able to show that these are
all primitive. For a second exercise, show that if u = n, v = 1, we get
Mark's second set. You should also be able to show that these triples are
primitiye if n' is even, not otherwise.

Mark's formulae are very nice and well observed.

For more on Pythagorean triples, you could cOI1;sult almost any standard
text on number theory. A nice treatment is to be found on pp. 86-89 of
B M Stewart's Theory of Numbers (Mac,millan, 1952). See· also Function,
Vol 6, Part 3, p. 20 and Vol 15, Part 3, p. 85.

Eds.]

* * * * *
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BOOK REVIEW

Ido Yavetz, From Obscurity to Enigma:
The ,Work of Oliver Heaviside) 1872-1889

Birkhauser, Basel, 1995. (Science Networks,
Historical Studies, No. 16)

Reviewed by Michael A B Deakin, Monash University .

Oliver Heaviside lived from 1850 to 1925. He was, first and foremost,
a pioneer electrical engin~er who contributed greatly to the early under­
standing of electrolnagnetic phenomena. It was he who first showed that
telegraphy was possible over long distances (e.g. across the Atlantic). But
,he can also be regarded as a pllysicist (for the insights he contributed into
the nature of electric and magnetic phenomena.) and as a mathematician
(as he made much use of mathematics in his work, and indeed had some
novel ideas in this field). 1

He hardly attellded school at all, and his very considerable l{nowledge
was almost all· self-acquired. Tllis llad the effect of 'placing hirrl well out­
side "the establishment", alld so there was considerable resistance to his
ideas. He was also eccentric and somewh:;t.t pugnacious by nature and so
made powerful'enemies, which did not help matters. In 1889, however, his
worl{ did receive recognition from acknowledged experts in his field, but at
almost exactly this time, he withdrew to the relative obscurity of Paign­
ton, a seaside resort in southwest England, and continued his researches in
isolation.

So just when he emerged from obscurity, he retired to become an enigma.
This gives the title of Yavetz's book, wllich also argues that his best work
was already complete by the time tllat he gained recognition, and that
llis subsequent research was ~ess important. Thus, the concentration of
attention on the period 1872-1889.

Tllis is a wonderful and brilliant book, because it takes the state of
knowledge at the time of Heaviside)s work, and so puts us in the shoes
of one of his contemporaries. By following all the twists and turns of his
thOtlght, we appreciate the effort and tIle gellius that went into the final
ideas tllat emerged.

1For a fuller biography of Heaviside, see Function, Vol 6, Part 2, p. 3.



86 Function 3/96

We sometimes imagine that, because science has advanced so greatly
since some earlier period, the science of that period must be somehow
simpler and easier to follow. This, however, is a big mistake. Now that we
have the insights so hard won by the early workers like Heaviside, we have
a path through the subject, bypassing all the side alleys and blind turns
that lurk for the unwary. But when Heaviside and others wrote, there were
no textbooks; these came later and used the insights developed by pioneers
such as him.

So if you want really to appreciate the achievements of such people,
to eavesdrop on their thought so to speak, you need to b~·put back into
their world and to be shown how to see things with· their eyes. This is
what Yavetz succeeds in doing, and doing most brilliantlY,in the case of
Heaviside. It is also the challenge that such a book presents. For we must
discard our late 20th-century viewpoint" and project ourselves back in time,

. and this takes some doing.

I will give one example: not only is it apt to illustrate the point I
am making, but it shows how cleverly Yavetz makes his case. Electrical
energy may be .propagated through a vacuum in the form of a wave. In
Heaviside's day, it was believed that this implied that a vacuum cou~d not
thus be completely empty, but rather contained a basic substance called
the "ether".2 The presence of a wave, so the argument went, necessarily
implied that there· was something that could "wave about". Nowadays,
since Einstein, we have given up on the ether;· the entire concept is seen as
redundant and we do without it. But this was not so back then.

In order to help us understand the older view, Yavetz uses a beautiful
illustration (in two different senses of the word!). He reminds us of an
Escher drawing that will be familiar to many readers.

"[The picture] is a very simple depiction of what app~ars to
be the sun or the moon peeking behind some upside down tree
branches. Both the tree branches and the sun or moon are rippled
in a manner that suggests most forcefully that one observes their
reflection in a water surface, perturbed by the ripples of two peb­
bles just thrown into it. Indeed the English, German, and French
translations of the picture's title read respectively: 'Rippled Sur­
face,' 'Gekrauselte Wasserflaclle,' and 'Cercles dans L'eau.'

2Not to be confused with the organic compound and anaesthetic, of course!
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"Note, llowever, how cunnillgly Escher entitled his picture3 by
the single \vord 'Rimpeling,' whicll denotes the act of being rippled
but avoids the specification of vvhat' precisely is being rippled. A
closer exalnination of the picture quickly reveals that nowhere is
the water surface, or any o~her surface for tllat matter, explicitly
drawn. There are only correlated ripples in the tree branclles and
lnoon. The observer's mind adds the water."

87

TIle ether, Yavetz suggests, is rather like ;Escher's "water". By'means
of SUCll well-cllosen examples, he shows us how to think ourselves back into
the context in which Heaviside worked and thought.

But this is a difficult work. Not only does it demand (and deserve) close
attention from its reader, but it does presuppose a level of mat~ematical
competence tllat few Function readers will have. A high school student
would find luuch of illterest in this book (if space permitted, I would quote
a lot more), but \vould need to skip over much important lnaterial.

As an exaluple, take the case of long-distance telegraphy. The point
V\Tas to send signals along a cable, signals that could encode voice lnessages
and so allow communications between (importantly) Europe and America.
As signals went at that time (and still to a large extent go today), they
travelled as pulses of electricity - waves of various frequencies. The hitch
was that each frequency travelled at a different speed, and so after travelling
for any appreciable distance, the signal became utterly garbled.

There was much debate on how to att,ack this problem, and it was
Heaviside who discovered the answer to it. There is a unique particular
set of circumstances under which all the frequencies may be made to travel
together; the signal weakens, but it does not distort.

It needs quite advanced mathematics and a knowledge of electrical cir­
cuit theory to see the force of Heaviside's solution, an'd high school students
will not be able to follow this. Other aspects 'of the story will, however,
be accessible to them. For example, the politics of his debates with the
British Post Office (whose engineers had a complete misunderstanding of
the matter and thus were going in quite the wrong direction) and the disap­
pointlllent Heaviside lUust have felt when the patent went to the American
Pupin. 4

3111 Dutch.
4Pupin becalne in1mensely rich as a result; Heaviside lived out his life in the most abject

poverty.
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So Function readers will find this a· difficult and challenging work. But
there is much of interest in it and a lot of this will be aGcessible,- in Heavi­
side's own words, "with work".

Perhaps you can get your school librarian to order it. It is likely to
become a classic of its kind.

* * * * *

Parallelogram fallacy

A

~ ---,C

B

Consider the parallelogram .with vertices A == (Xl, Yl), B == (X2' Y2),

C == (X3' Y3) and D == (X4' Y4). Then

which gives us
Yl - Y2 YI - Y4
Xl - X2 Xl - X4

That ·is, the two adjacent sides AD and AB are parallel!

Sent by Garnet J Greenbury, Brisbane

* * * * *
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HISTORY OF MATHEMATICS

The Greatest Area

Michael A B Deakin

Last year a colleague of mine received a query from one of the larger and
more prestigious schools in the Melbourne area. They wanted information
on a result known as "Fasbender's Theorem" and sugge~ted (wrongly, as it
turn'ed out) t~at my colleague might be able to find something relevant on
the Internet. Eventually we learned from them that the question related
to a potential CAT1, one that never in fact saw the light of day. Two (very
vague) references were supplied and both turned out to be wrong in any
event.

However, there are powerful and still quite convenient methods for find-
"ing out such things - without any need for the Internet. And that is how
we learned of the story to follow. It is an interesting one, even if there are
still quite a few loose ends we would like to tie off. The main outlines of
the story are quite clear, and involve some nice mathematics.

To start the account, begin with a triangle. If the three sides of a
triangle are given, then the triangle is completely specified. All its angles
and also its area may be calculated from the given side-lengths. In ot~er

words, triangles are rigid objects; their angles cannot be made to alter
without stretching or squashing one or more of the sides. 2

When we come to quadrilaterals, however, matters are otherwise. The
four sides of a quadrilateral do not uniquely fix all its other components,
the angles and the are"a. If a quadrilateral were to be constructed from four
rigid rods attached by pivots at the four vertic~s, the resultant structure
would be floppy. We have consider"able freedom to rearrange the shape,
and of the various configurations that can be set up, some will enclose a
larger area than' others.

1 Common Assessment Task - part of the senior years' assessment process in Victorian
schools.

2This is important in, engineering and is the .principle underlying the cross-bracing of
buildings. It is the second of the four "basic principles of Civil Engineering", which are:
(1) Water flows downhill, (2) Buildings are made of triangles, (3) Use beams on their edges,
not on the flat, (4) You can't push a string. I learned these principles from Sir Louis
Matheson, an eminent civil engineer and Monash's first Vice-Chancellor.
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This leads us to ask if there is not some such configuration that max­
imises the enclosed area. This is a question asked by the Greek mathemati­
cians of antiquity, and indeed (at least in part) answered by them. That
answer takes the fo~lowing form.

Given the four side lengths of a quadrilateral) the area of the'
quadrilateral is maximised when its vertices are so arranged as
to lie on a eire Ie.

It seems not to have occurred to them to ask whether this is always
possible; in fact it is, but this is a matter requiring proof. But let us
postpone the question for the moment and assume tl1at such arrangement
can in fact always be achieved.

This problem is one of a class of so-called "isoperimetric problems" in
which the perimeter of a shape is determined and it is required to maximise
the area. 3 The classic isoperimetric problem supposes a length of flexible.
but i~extensible string (let us say). We form this into a loop and wish
to arrange this loop on a flat surface in such a way as to maximise the
enclosed area. It was known to the Greeks of antiquity that the answer
was supplied by arranging the loop so as' to form a circle.

(Just as an illustration, suppose the loop .to have length L. If we ar­
ranged it in the form of a square, let us say, each side would have length
L / 4, and so the total area would be L2/16. However, if we made it into a
circle, the radius would be L j21r and the area would be L2

/ 41r. As 1r < 4,
this second area is the larger. In fact, if A is the area enclosed by a loop
of length L, then we may write A/L2 :::; 1/41r.)

Now in the case of the quadrilateral, the perimeter was the sum of the
four side lengths and these were given. Thus we have a related problem,
but weare unable to achieve the circular (and maximal) configuration,
because the sides are rigid. Only at the joints may the quadrilateral "flop
about". But it does the best it can and gets as close to the circular form
as possible - having its vertices lie on a circle when the -area is maximised.

This much and indeed much more was clearly known by about 400 AD,
but I want now to move on to questions not asked back then and only
raised in comparatively modern times. TIle triangle (any. triallgle) is rigid
and furtllermore its vertices necessarily lie 011 a lluiqllely defined circle. The

3The word "isoperimetric" comes from the Greek and means "equal perimeter" .
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quadrilateral will have maximal area if its vertices are so arranged as to lie
on a circle. What then about higher polygons, pentagons, hexagons, and
the like?

This is the question no-one seems to have asked for over, a thousand
years (except in very special cases such as regular polygons whose ve'rtices
necessarily lie on a circle). However, in 1843, Hermann Umpfenbach, a
rather minor mathematician4 , stated the theorem

\
If the sides of any n-gon are given, but its angles are not specified,
then its area may be maximised by so arranging the vertices that
they lie on a circle.

He gave a proof for the case n = 5, and that only.5 This was, I imagine
you will agree, an unsatisfactory state of affairs. However, it turI;led out to
.be short-lived. For in that same year6, Eduard Fasbender7 gave a general
prqof. That proof comprised two parts. The first was a d~tailed (and rather
clumsy) demonstration or" the case n = 4. (Fasbender seems to have been
unaware of tIle fact that this was known from antiquity, and that much
better proofs were already available. ,A quick proof will be given here in
Appendix A.) The second was a short and very elegant demonstration that
the case n := 4 in fact implied all subsequent cases. This too will be given
below (Appendix B). .

The theorem tllUS was first proved 'by Fasbender and it would seem that
his nalue has been applied to it in recognition of this fact. However, this is
not a completely watertight conclusion. Of my own resources, I was able to
find only one other reference to the theorem: Section 12.5 of Ivan Niven's

41798-1862.
5His proof was published in Volume 25 of Grelle's Journal. The official title of this

journal is Journal fur die reine und angewandte Mathematik (Journal of Pure and Applied
Mathematics); it is often affectionately called after its founder and first editor. There are
now hundreds (many hundreds) of periodicals devoted to the publication of mathematics.
However, Crelle's was the first and it remains one of the foremost. It would seem to be a
lapse from their usually very high standards to allow the publication of a theorem whose
proof was incomplete. Incidentally, the proof Umpfenbach gave uses as standard theorems
concerned with the properties of quadrilaterals (and akin to the sine and cosine rules for
triangles) that seem now to be utterly ·forgotten. I had never heard of them nor could I find '
them in the reference books I consulted. It took some effort for me to prove these results for
myself. The problems at- the end of this article invite the reader to expend the same effort.

6In the next volume of G7~elle.

71816-1892. Another minor ll1athemat'ician.
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Maxima and Minima without Calculus. Niven's proof is different, a:p.d also
very elegant. It is given below (Appendix C).8

This was the state of my knowledge wIlen I did resort to the Internet,
posing three questions.

1. Was th.ere anywilere a published reference naming the theorem as Fas-'
bender's?

2. Could anyone supply a simple and elementary proof that the vertices
could in fact be so arranged as to lie on a circle? '

3. If the classic isoperirnetric problem (the one with tIle loop of string
which ultimately is disposed as a. circle) is attacked by a modern
technique called "the finite element method", the answer ,reached is
that achieved by maximising tIle area of a polygon with prescribed
sides. Thus Fasbender's Theorem says that the solutions to the classi­
cal isoperimetric problem produced by the finite element method are
the best possible. Was the theorem known in this form?

In reply, I got no answers to question 3, and no satisfactory answers to
question 1. But I did get several on question 2. One in particular was most
elegant and I reproduce it here as Appendix D. It came from Professor' Chih­
ijanSah of the Stonybrook campus of the State University of New York
and attracted much favourable attention when he first posted it. Sadly,
however, it turned out that the proof llad already and independently been
discovered by someone else, so Professor Sah was unable to claim priority
for it. 9 -

So there is more to be discovered but enough already to follow the main
lines of the st~ry.10

, Following the technical details in the appendices are two problems you
might like to try.

8Niven in fact gives two proofs. The first, that of Appendix C, would seem to be his
own; the second is Fasbender's. Many of Niven's results are accompanied by notes which
supply some of the history. Sadly, this section has no notes.

9The first adequate account would seem to be that in Z A Melzak's (1983) Introduction
to Geometry (pp. 8-10), but this may depend on an earlier discussion, D S McNab's in
The Mathematical Gazette, Vol. 65 (1981), pp. 22-28. McNab's discussion is, however,
incomplete and thus his proof is flawed.

laThe above discussion ignores the order in which the sides are placed. If the sides can
be reconnected (but leaving their lengths intact), there are a few lninor complications but
of a fairly simple sort! These ar~ left for the reader to explore.
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Appendix A: Proof for the case n = 4

Start with Figure 1 depicting a ,quadrilateral with sides (in order) a, b, c, d and angles
A, B, C, D as shown. Let its area be S. Since 3 is the sum of the areas of the triangles
6ABC and 6ACD, we find

43 = 2absinB +2cdsinD.,

D

d

c

Figure 1

c

1 _
s = 2(a + b+ c +d),

We may also apply the cosine rule to determine the length of the diagonal AC and so reach

a2 + b'2 - 2abcos I! = c2 +d2
- 2cd cos D.

By rearranging this latter equation, squaring both equations and then adding them we
reach, after a little work,

16S2 + (a2 + b'2 - c'2 - d'2)'2 = 4a2 b'2 +4c2 d2
- 8abcdcos(B + D).

This last equation 'may in its turn be rewritten. Again the details will be omitted, but if we
write

we obtain
. B+D

3 2 = (s - a)(s - b)(s - c)(s - d) - abcdcos'2(-2-)'

It is clear that the final. term of this expression (following the minus sign) is always
non-negative. So 3 2 , and hence S, will be maximised if this final term is zero. This will be
achieved if B +D = 1800

• This last equation is known to apply exactly if and only if the
quadrilateral is cyclic, that is to SC1y, can be inscribed ina circle (a result known to Euclid).

This proves the theorem in the case n = 4. 11

Appendix B: Fasbender's deduction of the general case

Fasbender argued from Figure 2. He supposed that the polygon ABCDEF .. ., whose
sides AB, BC, CD, DE, EF, . .. are supposed known, was so set up as to maximise its area,
but that it could not be inscribed in a circle. He next supposed that all the lower half of the

11This proof comes from a once very influential textbook: Q V Durell and A Robson's
Advanced Trigonometry (1930), pp. 24-27, where more detail is given. Although they give
some' historical details, it is not quite clear how old this particular proof is. It is, however,
simpler and more elementary than that provided by Fasbender. '
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figure, DEF ... A vIas held rigid, hut that Band C vvere allowed to move as indicated. But
if A, B, C, D did not lie on a circle, then the a~'ea of ABCD could be increased by adjusting
the positions of Band C so that they did.

This, however, would increase the total area of the entire polygon (as DEF . .. A was
held rigid), and we have already assumed it to be maximal. Thus ABGD must already lie
on a circle. This circle is completely specified by the positions of B, C and D.

Next consider the quadrilateral BGDE. The same argument applies. These four vertices
must lie on a circle, and since the positions of B, C and D suffice to determine this circle,
it must be the same circle as we found before.

Continuing in this way, we find that all the vertices must lie on this same circle, and so
the proof is complete.

o

E

F

Figure 2

Appendix C: Niven's proof of the general case

Consider a polygon inscribed in a circle as shown in Figure 3a.12 Each side of the
polygon comes equipped with a corresponding arc and these arcs together make up a circle
of radius T'. Their total length is thus fixed at 27fT'.

Now suppose that we cut up Figure 3a, but keeping each side still attached to its arc.
(The shape made up by the side and the arc is a segment of the original circle. We keep
these segments intact.) Now rearrange the pieces, e.g. as shown in Figure 3b, in which the
bounding curve is no longer circular. The length of the perimeter is quite unaltered, as is
the total area of the segments.

However, the total enclosed area has been reduc.ed (because of the classical isoperimetric
property). Thus the cut and re-paste must have reduced the area of the enclosed polygon.

12The case illustrated is n =4, but the argun1ent is perfectly general.
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It follows that the original area was the maximum that could be achieved.
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Figure 3a Figure 3b

Appendix D: Proof that the vertices may be made to lie on a circle

All the technical detail in appendices A, B,. C above assumes that it is actually possible
so. to arrange the vertices of the polygon that they .lie on a circle. This is in f~ct the case,
but the matter requires proof. It's far from intuitively obvious; so let us now proceed to
this proof.

If we take n given lengths, these may be connected into a polygon in exactly the case
that the longest of them is shorter than the total length of all the others. I3 So, find the
longest side of the polygon. (If two or more are equally long, choose anyone of these.) Now
imagine the polygon disconnected at one vertex and stretched out to form a straight line
with this longest side at the extremeright-hand end.

Q B A

Figure 4

o p

Call the right-hand end-point P and the other end of this longest side O. To the left of
o are strung out the other vertices: A, B, . .. , Q (say). See Figure 4. On the point 0 place
a very large circle such that the line formed from the polygon is tangent to the circle, at the
point O. Having done this, push the side 0 P upwards so that P. lies on the circle. Do the
same with the points on the left of 0) so that all of these also lie on the circle. The result
is Figure 5.

Also shown on Figure 5 is a point pI, which is the point as far up the circle on the left
of 0 as P is on the right.

Now let the radius of the circle gradually decrease. The points P and pI will slowly
rise, and if the process of shrinkage goes on long enough, they will meet at a point vertically
above O. While this is going on, the point Q will also slowly rise up on the left-hand side.
InitiaUy Q lies between pi and P. As. the shrinkage goes on,. we could have one of the
following scenarios.

13This is obvious once you .think about it. For an interesting extension of this question,
see F7.£nction, Vol 5, PaTt 3, p. 8. .
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1: The point pI meets Q at some stage of the process;

2. The point Q stays ahead of .Pl, continues over the top of the circle and as it comes
down meets P on its way up;

3. The points P, pI and Q all ~ome together at the top.

Q

8

A

" ....

...

o

Figure 5

p

These are the only possibilities and each corresponds to a situation in which the various
vertices are so arranged as to lie on the circumference of a circle. In case 1, the circle is
shrunk until pI and Q coincide; at that stage the edge 0 pi should replace the edge 0 P to
obtain the polygon.

Not.e also that in case 1, the centre of the circle lies outside the polygon; in case 2 it is
inside, and in case 3 it just happens to lie at the mid-point of the longest side. These are
the only possibilities.14

_

Problems

See 'if you can prove the technical results used by Umpfenbach, and
evidently once widely known. They refer to properties of the quadrilateral
and will be stated in the notation of Figure 1 and Appendix A. The first
is related to a formula for area in the case of triangles (and itself closely
related to the sine rUle); the second is the appropriate generalisation of the
cosine rule.

25 == bcsinC + cdsinD - bdsin(C + D)

a2 == b2 + c2 + d2
- 2bc.cos C - 2cd cos P + 2bd cos(C + D).

* * * * *

14This proof is Melzak's, as rediscovered by Sah. McNab's earlier discussion failed to
include the point pi and thus overlooked case 1.
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COMPUTERS AND COMPUTING

Finding x-intercepts with Mathematics Software

Cristina Varsavsky

Computers are radically changing the way we "do ,mathematics". Nowa­
days we hav~ access to sophisticated software capable of performing long
calculations or displaying complicated graphs at the touch of a button.
Of particular importance are the so-called computer algebra ~ystems which
manipulate not only numbers but also symbols.

In a .computer algebra system, irrational numbers such as .j2 or 1r can
be manipulated as symbols, that is, they are not converted into their ap­
proximate decimal 'forms. When a calculator is used to find -172, it gives
the approximate answer 8.4852814; a computer algebra system returns the
exact simplified expression, 6.j2. Because they can handle symbols, these
systems can also solve equations,. calculate integrals, find derivatives and
simplify mathematical expressions; they can actually do most of secondary
and 'tertiary level mathematics, and morel.

You might have heard of or used one such system; among the most
widely available are DERIVE, MAPLE, MATHEMATICA, and THEO­
RIST. There are also hand-held calculators which can manipulate symbols.

A -typical problem a high school student will try to solve with a computer
is to find the x-intercepts of a polynomial function p(x), that is the real
solutions to the equation p(x) = O. This is done through a command
usually called solve. By using this command students do not have trouble
finding solutions to a quadratic, cubic, or quartic equation, although some
equations may require a computer to be working for a long while, returning
a long string of surds and quotients.

When it comes to a quintic (i.e. a fifth degree polynomial), students
usually become puzzle~ with the behaviour of the computer program as
it echoes back the same equation. Why is the program refusing to pro­
duce solutions? Well, this is because it does not have an in-built formula
to solve such polynomial equations. Furthermore, it will never have one.
The Norwegian mathematician Niels Abel proved in·1826 that polynomial
equations of degree greater than 4 cannot be solved; i:n general, tlsing the

lSee also related articles· in Function) Vol 15 Part 5, and Function) Vol 16 Part 1.



98 Function 3/96

four operations and the extraction of roots. In other words, tllere will never
be a "quintic formula" > as there is for the quadratic, cubic and quartic.

If a polynomial equation cannot be solved exactly, it can always be
solved approximately. Computer algebra systems usually do so using nu­
Inerical methods for successive approximations (you must have learnt at
school some of these methods, most probably the Newton-Raphson method).
To apply a numerical technique a first approximation is needed, usually, an
upper and a lower bound for the true solution. If two or more solutions
lie in the starting interval, such a numerical method will produce at most
one of them and miss the rest. Consequently we need to start the numeri­
cal method with an isolating interval, an interval which contains only one
solution.

So, unless tile polynomial equation of degree higher than 4 is of a partic­
ular lcind, only approximate real solutions can be found. In th~s case there
are two steps involved in the search for real·soll.~.tions: firstly, finding an
isolating interval for each of them; secondly, obtaining the solution within
each interval to the desired accuracy.

In simpler computer algebra systems like DERIVE, the isolation has
to be done by the user. A graphical approach usually helps to visualise
the isolating intervals. This isolating task must be performed with care.
In some cases the' scale used to produce the graph may lead to a false
conclusion,; also, some solutions may lie outside the screen. We always
need to ask "Are there any other solutions?" and have a solid argument
for the answer. Once the isolating 'intervals are found, the ;approximation
has to be performed by first switching to approximate mode and then using
repeatedly the solve command to find each solution.

In more sophisticated systems like MAPLE, we only need to use the
command for approximate solutions2 to obtain all x-intercepts; these sys­
tems have an in-built isolating routine. Although the details of the isolating
algorithms are rather complex, they are based on a very simple technique
of sign variations of a polynomial sequence within the interval under con­
sideration. One such sequence is the Fourier sequence of the successive
derivatives of a polynomial. An important result says that the number of
sign variations lost from the left end to the right end of an interval must
either be the number of solutions in it or exceed that number by a multiple
of two.

2In MAPLE this command is fsolve.
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We illustrate this with an example. Take the polynomial

p(x) = 36x3 + 27x2
- 4x - 3,

with the corresponding derivatives

p'(x}= 108x2 + 54x - 4, p"(x) = 216x + 54, and pll/(x) = 216.

To find out the number of solutions in the interval (-1,1), we evaluate the
Fourier sequence at the two end values. For x = -1 we have

{pC -l),p'(-l),p"(-l),plll(-I)} = {-8, 50~ -162, 216}

Within this sequence, the sign changes 3 times. Now for x = 1, we have

{p(l),p'(l),pl/(l),pll/(l)} = {56, 158,270, 216},

with no sign variations. Then the number of sign variations lost from -1 to
1 is 3, meaning that there are one or three solutions in the interval (-1,1).
Since this information is not very helpful we split the interval in half, and
obtain the Fourier sequence for x = 0:

{p(O),p'(O),p"(O),plll(O)} ,= {-3, -4,54, 216}

It has only one sign variation~ Then the number of sign variations lost from
-1 to 0 is 2, and from °to 1 is 1. Therefore there is exactly one solution to
the equation. p(x) = 0 in the interval (0, 1) and two or none in the interval
(-1,0). We investigate further and split this latter interval in half. We
have

{p( -0.5), p'(-0.5),p"(-O.5),plll (-0.5)} = {1.25, -4, -54, 216}

with two sign variations. This fully isolates the three solutions in the
intervals (-1, -0.5), (-0.5, 0), and (0,1).

The Fourier sequence isolation technique is based on the following basic
result:

If a is a simple real solution to p(x) = 0, then it is possible to
find a (small) interval around a, (a - €, a + E), so that p(x) and
p' (x) have opposite signs in the interval (a - €, a) and equal signs
in the interval (a, a + E).

That is, the sequence {p,p'} loses one sign variation at a simple solution.
'Can you see why this is true?

The higher derivatives in the Fourier sequence are there for detecting
solutiol1S of lligher multiplicity.

* * * * *
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SOLUTIONS

PROBLEM 20.1.1

PROBLEM CORNER

FUl1ction 3/96

If a hen and a half lay an egg and a half in a day and a half, how many
.hens will lay. two eggs in three days?

SOLUTION

A hen and a half lay an egg and' a half in the same time as one hen lays
one egg. One hen therefore lays one egg in a day and a half and hence two
eggs in three days.

PROBLEM 20.1.2 (Claudio Arconcher, Sao Paulo, Brazil)

Find solutions in positive integers for

(a) XX + yY = 2xy

SOLUTION

(b) xX+yY+zz=,xy+xz+yz.

Suppose firstly that x 2:: y in equation (a). If x 2:: 3 then
xX+yY > XX 2: x 3 > 2xy, so there.are no solutions with x ~ 3. Checking the
potential solutions (1,1), (2,2) and (2,1), we discover that only the first two
are solutions. Because of the .symmetry between x and y in the equat~on,

the case x :::; y yields no further solutions. The solutions are (x, y) = (1,1)
and (x,y) = (2,2).

Equation (b) can be solved in a similar way. Begin by assuming that
x ~ y ~ z. If x 2: 3, then XX + yY + ZZ > XX :2: x 3 ~ 3x2 2::. xy + xz + yz,
giving no solutions. Checking all potential solutions with x equal to 1 or 2
gives just the two solutions (1,1,1) and (2,2,2). Dropping the assumption
x ~ Y 2: z gives no further solutions, because of the symmetry between the
three variables in the equation.

Also solved by Peter Bullock (Norwood Secondary College).

PROBLEM 20.1',3

Prove tllat for any positive integer n, Ln + -JTi + ~J is not a perfect
square. (The notation LxJ denotes the greatest integer less than or equal
to x.)
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SOLUTION

Since n is an integer, In +.vn + ~J = n + lvn + !J= n +'m, where
m =. Lvn + ~J. In order to show that ln +vn +!J is not a perfect square,
it is sufficient to show that n + m lies stri.ctly between m 2 and (m + 1)2.
We can do this in the following way. From the definition of m, we deduce
m ::; vn-+ ~ < m +.1. Subtracting! from each expression and then
squaring, we· obtain

Tllerefore
1 1

(m- 2)2+ m ~ n+m < (m+ 2)2+ m .

Expallding the brackets and simplifying, we obtain

1 - - 1
m 2 + - < n + m < m2 + 2m + -.4 - 4

Rewriting this as m2 + ~ ::; n + m < (m + 1)~ - !, we conclude that n + m
is between m 2 and (m + 1)2, as required.

PROBLEM 20.1.4 (1994 Old Mutual Mathematics Olympiad" South Africa;
reprinted from Mathematical Digest, January 1995, University of Cape Town)

A, B, C, D and E are distinct poi~ts in three-dimensional space, such
tllat A, Band C lie on the surface of a sphere. Prove that at most one of
the four-sided figures XYDE, where X and Yare two of the points A, B
alld C, can be a parallelogram.

SOLUTION from Mathematical Digest

Since any -three non-collinear points lie on a circle (and hence on the
surface of a sphere), the condition on A, Band C means simply that they
are ·non-collinear.

Figure 1
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Suppose ABDE is a parallelograln (see Figure 1). Then ABIIED and
hence neither BC nor AC is parallel to ED. So neither BCDE nor ACDE
is a parallelogram. So at Inost one of the quadrilaterals is a parallelograln.
In fact, at Illost one is a trapeziuln.

It is, however, possible that ABDE and ADCE are parallelograms (see
Figure 2) but the problem specifies that DE. must be a side, not a diagonal,
of any parallelogram.

c

E~__-Jl-----:::,,\D

A

Figure 2

B

PROBLEM 20.1.5 (from Mathematical Mayhem, Vol 7, Issue 5, University of
Toronto)

Let G(n) be the number of strictly increasing or decreasing sequences
formed using the values 1,2, ... , n, e.g. for n == 2 there are 4 sequences (1),
(2), (1,2), (2,1). Find an explicit formula for G(n) in terms of n.

SOLUTION

There are 2n different ways of selecting the values in the sequence, since
each of the n values 1,2, ... , n is either included in a sequence or ,not.
One of these selections corresponds to .choosing none of the numbers, there
are n selections in which one number is chosen (each of which yields just
one sequence), and the remaining 2n - n - 1 selections each yield two se­
quences, one increasing and one decreasing. The total number of sequences
is therefore n + 2(2n

- n - 1), or 2n+1 - n - 2.
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PROBLEM 20.1.6 (from Swedish Mathematical Olympiad, 1979 Qualifying
Round; reprinted from Mathematical Mayhem, Vol 8, Issue 1, University of
Toronto)

For which real values' of a, a~ 1, is /a + 2ya-=-r + Ja - 2va=1 = 2?

SOLUTION

Let b = .Ja=l. Then a = b2 +1. Substituting into the given equation,
we obtain

Therefore
V(b+ 1)2 + J(b - 1)2 = 2.

We can write this as Ib + 11 + Ib - 11 = 2. Since b 2:: 0, we can remove
the first pair of absolute value signs and write b+ 1 + Ib - 11 = 2, which
simplifies to b+ Ib - 11 = 1. The case b ~ 1 yields b + b - 1 = 1,80 b = 1
and hence a = 2. The case b < 1 :yields b + 1 - b = 1, which imposes no
further restriction on b; in this case, the restriction b < 1 implies a < 2.
The possible values of a are therefore 1 ~ a ~ 2.

PROBLEM 20.1.7 (based on a problem seen on the Internet)

1. Let two circles C1 and C2 be given, with C1 inside C2~ A third circle,
C3 , moves around the region between C1 and C2 , in such a way that it
is always tangent to both circles. Prove that the locus of the centre of
C3 is an ellipse.

2. Now suppose the problem in (1) is-modified so that C1 is outside rather
than inside C2. What type of figure is described by the locus of the
centre of C3 in this situation?

3. What happens if C1 and C2 overlap?

SOLUTION

With C1 inside C2 , let the centres of'CI , C2 and C3 be A, Band C
respectively, and let their radii be Tl, T2 and r3 respectively; note that Tl and
T2 are constants and r3 is a variable. Then AC = rl +T3 and C B = r2 - T3,

so AC + CB = 1"'1 + 'f2, which is a constant, independent of the location of
the circle C3• By one of the defining properties of an ellipse, the lOClIS of
C is all ellipse with fo.ci at A and B. .
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With C\ outside C2 and using the same notation as before, AC = Tl +r3
and CB == r2 + r3, so AC - CB = rl - r2, which is a ·constant. This is
a defining property of one br~nch of a hyperbola, so the locus of C is a
branch of a hyperbola with foci at A and B. (The degenerate case rl == T2

is an exception; in this case, the locus is a line.)

Now let 0 1 and C2 overlap. If C3 is in tile region of overlap, we get part
of one branch of a hyperbola. The rest of the branch is obtained when 0 3

is outside both 0 1 and C2• If C3 is in one of the other two regi<?ns (inside
one circle and outside the other), we get part of an ellipse, the two parts
together forming the complete figure.

Also solved by Claudio Arconcher (Sao Paulo, Brazil).

PROBLEM 20.1.8 (from the Internet, author unknown)

From each corner of a unit square draw a quarter of an insc.ribed unit
circle. Find the area of the central diamond shape where the four quarter
circles overlap.

SOLUTION

This .problem was poorly worded; it should have said "an inscribed
quarter of a unit circle" rather than "a quarter of an inscribed unit circle",
and the central region is where the ~our quadrants (rather than quarter
circles) overlap.

Let the areas 'of the three differently shaped regions arising in the prob-
lem be x, y and z ~ shown in Figure 3. .

A _=---------:~.B

D

Figure 3

c
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(4)

From the area of the square a!1d the area of a quadrant respectively, we
obtain the following two equations conJtecting x, y and z:

x +4y + 4z = 1 (1)
7r

x +3y +2z = "4' (2)

A third equation is obtained- by dividing the square into four regions: the
equilateral triangle with vertices at C, D and E (indicated by dotted lines
in the figure), the two sectors DAE and CBE, and the region bounded by
the side AB and the arcs AE and BE:

vIS 1 1r
4" + 2 x 2" x 6" + z = 1. (3)

Solving equation (3) for z and substituting into equations (1) and (2), we
obtain

;;; 211"
X +4y = -3 + v 3 + "3

vIS 77r
X + 3y = -2 + 2 + 12' (5)

Eliminating y from equations (4) and (5) yields the solution for x, which
is the required area:

K R S Sastry (Dodballapur, India) obtained a solution for the more
. general problem in which the square is replaced by a rhombus with angle
BAD = f), where 600 < () :s; 900

• (The restriction is necessary in order to
ensure that the region whose area is to be found' falls within the rhombus.)
He showed that the area in this case is sin{} - J3 + t. Of course, the
solution to the original problem can then be obtained by putting () = 900

•

This problem was also solved 'by Peter Bullock (Norwood Secondary
College).

PROBLEMS

Readers are invited to send in solutions (complete or partial) to any or all of
these problems. All solutions received in sufficient time will be acknowledged
in the next issue but one~ and the best solutions will be published.
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PROBLEM 20.3 ..1.(modified from a problem in Alpha, August 1995)

Find a straightedge and compasses construction of a triangle ABC,
given tllree points X, Y, Z where the circumscribed circle intersects respec­
tively the extensiqn of the median through C, the extension of the altitude
through C, and the extension of the' angle bisector at C.

PROBLEM 20.3.2 (based on a problem on the Internet)

Ten girls and ten boys are at a party. All the girls prefer cakes, and all
the boys prefer ice creams. The children sit around a ro~nd table in no
particular order, and each of them is served either a cake or an ice cream.
Show that it is possible to rotate the table in such a way that at least ten
children get what they pref~r.

PROBLEM 20.3.3 (1995 Old Mutual Mathematics Olympiad, South Africa;
reprinted from Mathematical Digest, Octob,er 1995, University of Cape Town)

Suppose that al, a2, as, ... , an are the numbers 1, 2,3, ... ,n but written
in any order. Prove that

is always even.

PROBLEM 20.3.4 (from Alpha, July 1995)

Prove that for every natural number n such that n ~ 2 and every natural
number k, the number (1 + k -+ k2+... + kn )2 - kn is not prime.

PROBLEM 20.3.5 (posted on the Internet by Bill Taylor, University of Can­
terbury, New Zealand)

Given any fOUf points on the circumference of a circle, mark the four
midpoints of the arcs between adjacent pairs of points. Form two chords
by joining the opposite pairs of midpoints. Prove that these two chords
cross at right angles.

(Bill Taylor has pointed out that the assertion in this problem appeared
originally as a statement of fact, without any proof, as part of the proof of
another result in a published paper. Presumably the author of the paper
thought it was obvious!)

* * * * *
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OLYMPIAD NEWS

Hans Lausch

1. The Eighth Asian Pacific Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (A PM0), an annual competi­
tion, was started in 1989 by Australia, Canada) Hong Kong and Singapore.
Since then the number of participating Pacific Rim countries has grown to
nearly twenty. Moreover, Argentina, South Africa, and Trinidad and To­
bago were using the contest questions for their national competitions. In
Australia, 26 students sat this four-hour examination on 12 March.

Time allowed: 4 hours. No calculators to be used. Each question
is worth 7 points.

1. Let ABCD be a quadrilateral with AB == BC == CD == DA. Let
MN and PQ be two segments perpendicular to the diagonal ED and
such tIlat. tIle distance between them}s d > ED /2, with MEAD,
N E DC, P E AB, and Q E BC. Show that the perimeter of the
hexagon AMN CQP does not depend on the position of M Nand PQ
so long as the distance between them relnains constant.

2. Let m and n be posit.ive integers such that n ~ m. Prove that

2nn! < (m + n)! < (m2 + m)n.
-(m-n)!-

3. Let PI, P2, P3 , P4 be four PQints on a circle, and let II be the incentre
of the triangle P2P3P4, 12 be the incentre of the triangle PIP3P4, Is be
the incentre of the triangle P1P2P4 , I4 be tIle incentre of the triangle
P2P3P'1. Prove that II, [2, 13, 14 are the vertices of a rectangle.

4. The National Marriage Council wishes to invite· n couples to form 17
discussion groups under the following conditions:

(1) All members of a group Inust be the same sex; i.e. they are either
alllnale or all female.

(2) The difference in the size of any two groups is eitller 0 or 1.

(3) All groups llave at least one Inelnber.

(4) Each person Inllst belong to one and 0111y one grollp.
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Find all values of n~ n ::; 1996, for v'\Thich this is possible. Justjfy your
ans\ver.

5. Let a, b, C be the lengths of the. sides of a triangle. Prove that

via + b - c + Vb + c - a + Vc + a - b ~ va +Vb + vIC
and deterlnine \vhen equality occurs.

2.. Australians at the XXXVII International Mathematical
Olympiad

The performance of students at the APMO was us~d in selecting ten
candidates for the team which is to repres ent Australia at this year's In­
ternationallvIathematical Olympiad (IMO). Also, fifteen highly gifted stu­
dents, with at least one more year of secondary education ahead of them,
were s'ingled out for further training.

These 25 students participated in the ten-day Team Selection School of
the Australian Mathematical Olympiad Committee. Following a tradition,
the School was held in Sydney. Participants had to undergo a day and
evening prograrnme consisting of tests and examinations, problem sessions
and lectures by mathematicians. Finally, the 1996 Australian IMO team
was selected.

Bombay (Mumbai) is the venue of the XXXVIIIMO scheduled for July.
There. the Australian team will have to contend with six problems during 9
hours spread equally over two days in succession. The Australian team is:

John Dethridge, Year 12, Melbourne Grammar School, Melbourne, Vic-:
toria; Daniel Ford, Year 12, James Sheahan High School, Orange, NSW;
Jian He, Year 12, University High School, Melbourne, Victoria; Alexandre
Mah, Year 12, NQI'th Sydney Boys' High School, Sydney, NSW; Dalliel
Mathews, Year 11, Scotch College, Melbourne, Victoria; Brett Parker,
Year 12, Penleigh & Essendon Grammar Schooi, Melbourne, Victoria.

Reserve: Brian Scerri, Year 12, Canberra Granlmar School~ Canberra,
ACT.

Good luck to them all!

* * * * *
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Function is a mathematics magazine produced by the Department of
Mathematics at Monash University. The .magazine was founded in 1977
by Prof G B Preston. Function is_addressed princip~lly to.students in the
upper years of secondary schools, and more generally to anyone _who is
interested in mathematics.

Function deals with mathematics iIi all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, mathematical games,
careers in mathematics, and mathematics in society. The items t~at appear
in each issue of Function include articles on a broad range of mathemat­
ical topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address tllem to:

The Editors, Function
Department of Mathematics, Monash University
900 Dandenong Rd
Caulfield East VIC 3145, Australia
F~x: +61 (03) 9903 2227
e-mail: function@maths.monash.edu.au

Function is published five tiInes a year, appearing in February, April,
June, August, and October. Price for five issues (including postage):
$17.00*; single issues $4.00. Payments should be sent to: The Business
Manager, Function, Mathelnatics Departlnellt, Monash University, Clayton
VIC 3168; cheques and money orders should be made payable to Monash
University. Ellquiries about advertising should be directed to the Business
Manager.

For more informatioll about F'lLnction see the magazine home page at
http://www.maths.monash.edu.au/-cristina/function.htm1.

*$8.50 for bona fide secondary or tertiary students.
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