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EDITORIAL

We include in this issue of Function a variety of articles, letters, and
problems which we hope you will enjoy.

G J Greenbury presents in the Front Cover article an interesting way of
visualising the .real and imaginary parts of the complex solutions to cubic
equations. On the other hand, K R S Sastry's article looks at the positive
real roots, particularly integers, of cubic polynomials, finding relationships
between the roots, side-lengths of an associated triangle, its perimeter and
area. The article includes several related problems which you can try. The
second feature article also poses a puzzle for you to solve, which originates
with a business venture.

Following the February Hi.story of Mathematics column on the armillary
sphere, M Deakin. presents another instrument used to read information
su.ch as the time of the day; the latitude, and the direction of travel: the
astrolabe. Although more sophisticated instruments are used these days, an
understanding of the three-dimensional mathematics involved is as relevant
today as it was in the past.

The Computers and Computing column is devoted to the renowned
Mandelbrot set; a computer program is included which gives you the el­
ements to produce· an unlimited number of stunning pictures.

Kim Dean sent us another of her puzzling letters giving a proof she
received from the eccentric physicist and mathematician DaiFwls ap Rhyll,
which questions the .concept of probability. See if you can solve her problem.

As usual, P Gross~an has prepared a challenging Problem Corner, with
solutions to the problems include~ in the second last issue, and a number of
new problems. You will also find the problems presented· to the participants,
at the 1996 Australian Mathematical Olympiad.

Happy reading!

* * * * *



38

THE FRONT COVER

Complex Solutions

Garnet J Greenbury

Function 2/96

Every high school student knows that the real solutions of a polynomial
equation are also the x-intercepts of the graph of the corresponding poly­
nomial function. The geometric meaning of the complex solutions is not so
widely known; this article shows one of the possible interpretations l .

Let us start with a quadratic equation. From "the quadratic formula we
find that the complex solutions2 are of the form a+bi and a-biG Assuming,
without loss of generality, that the coefficient of x 2 is 1, we can write the
quadratic equation as

(x - a)2 + b2= 0

The graph of the corresponding function y = (x - a)2 + b2 appears in
Figure 1, indicating also the minimum point (a, b2).

y

x

Figure 1

We could also interpret the meaning of the real and imaginary parts of
the solutions in the following way:

1 Another visualisation of complex roots was presented" in Function Vol 15 Part 3.
2 A short introduction to complex numbers is included in the Computers and Computing

column.
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Consider the points of intersection of the line y = 2b2 and the parabola;
we find them by equating the corresponding expressions:.

. -

This leads to the solutions x = a + b and x = a-b. Graphically, the line
y = 2b2 intersects the parabola at points with x-coordinates a+b and a-b.
In Figure 1, as ~ a, the real part of the solutions, and MS = SN = b
correspond to the imaginary parts of the solutions.

L~t us turn now to cubic equations. It is easy to verify that if a + bi is
a solution to a cubic equation, then its conjugate, a - bi, is also a solution.
This means that complex solutions come in pairs; therefore a cubic under
consideration has a real solution, say. x = c, and two -complex -solutions
x = a + biand x = a - biG The equation then has the form

(x - c)[(x - a)2 + b2] = 0

The corresponding graph is drawn in Figure 2 and on the front cover 0

y

a

y =b2 (x-c)

x

Figure 2

Consider the line y = m(x - c) passing through U and tangent at T.
The line intersects the cubic where

m(x - c) = (x - c)[(x - a)2 + b2]
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which is equivalent to x = c or (x·- a)2 + b2 ~. m = O. The line intersects
the cubic only twice, so this last quadratic equation must have only one
solution, .which occurs when the discriminant is zero,

4a2
- 4(a2 + b2

- m) = 0

Thus m = b2• Then the x-coordinate of T is a.

Consider now the intersections of the line y = 2b2( X - c)' (notice the 2
again) and the cubic; we solve the equation

which gives x = a + b, x = a - b, and ~so x = c.

Therefore the line y = 2b2(x - c) cuts the graph of the cubic function
y = (x - c)[(x - a)2 + b2] at three points. One of them corresponds to the
real solution; the ·x-coordinates of the other two are a + band a- b. In
Figure 2, as = a, the real part of the complex roots, and MS = SN = b
corresponds to the imagi.nary parts.

We stop here with the question: is it possible to extend this idea to a
polynomial equation of a higher degree?

* * * * *

How to get rich quick!

Here is a simple mathematical way to convert one cent into one dollar.
With just a few applications you can be rich in no time.

lc = $0.01

= ($0.1)2

= (10c)2

= 10Dc

= $1

*****'
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CUBI.C POLYNOMIALS AND TRIANGLES

K R S Sastry

Does it surprise you to learn that the cubic polynomial x3+9x2+20x+12
yields the triangle whose side lengths are 8, 7 and 3 units, together with
its area, the radius of the incircle (inradius), and the three exradii1 - all
almost effortlessly? (See Figure 1_) Additionally it yields the area of the
triangle with side lengths VB, J7 and' v'3 units with the same ease!

Figure 1

More generally, suppose a, f3 and, are any positive real numbers, and
let u, v andw be positive real numbers such that

x 3 + ux2 + vx +w = (x + a)(x + ,B) (x + ,)_
The~ there is a triangle with

. Tl. side lengths (a, b, c) = (,8+" ,+ 0', 0' +,8)

T2. semiperimeter s = !Ca + b+c) = u

( T3. area'A = VUW
T4 - d- rw. d' d-- IUW' IUW IUW· lura Ius r = .V 17' an exra 11 r a = a , r b = f3 ' r c = 'Y

and a triangle with

T5. side lengths va,Vb, y'C, and area A' = !.JV'-
1An exradius is the radius of a circle which is tangent to one of the sides of the triangle

and to the extensions of the other two sides.
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In what follows, we will use the results that the formula for t,he inradius
of a triangle with area A, side lengths a, b, c, and semiperimeter s, is r = 1,
and the formulae for the exradii are ra = s~a' rb = s~b' rc = s~c; see, for
example, H S M Coxeter's Introduction to Geometry.

Proof of the claims Tl - T5

We begin with,the fact that

x3 + ux2 +VX + w = (x + O')(x + (3)(x +1)
= x3 + (a + {3 + ,)x2 + (0'13 + 13, + ,o')x + al3,

By equating the coefficients of like powers of x on both sides, we get

0'+ 13 +, = u, O'{3 + (3, + ,a = v, a{3, = w. (1)

A' =

Let a= 13+" b = ,+a, and c = a+{3. Then a+b= O'+{3+2, = c+2, > c,
and similarly b+ c > a and c + a > ,b; so a, b, care the side lengths of a
triangle. This gives Tl. T2 follows from the first of the equations (1), as
you may readily check. We obtain T3 from Heron's formula for the area of
a triangle:

A = ';s(s - a)(s - b)(s - c) = l(a + {3 + ,)a{3, = VUW.

T4 can be obtained by noting that·r = d =e = ffff., r a = ~ = ./uw,
s u V u s-a Q

and sirnila~ly for rb and r c.

To deduce'T5 we need to do some algebra using Heron's formula. A
triangle with side lengths va, Vb, v'C has semiperimeter !(va+ Vb + v'C),
so its area is

1 IT 1 It 1 It 1
2(va+v b+v'C)2(-va+v b+v'C)2(va-v b+v'C)2(va+Jb- v'C)

= ~v'-a2 -b2 - c2 + 2ab + 2bc + 2ca
4

= ~v'40:,8 + 4,81' + 41'0: on putting a =,8 + 1', b = l' + 0:, C = 0: + ,8

1
= 2VO:,8 +,81' + 1'0:

1
= 2VV.
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It Js left as an exercise for you to .show that a triangle with these side.
lengths always exists, i.e. that the triangle inequality is satisfied.

To illustrate these r~sults numerically, let us take the cubic polynomial
with which we opened our discussion and apply the formulae Tl, ... , T5:

x3 + 9x2 + 20x + 12 = (x + t)(x +2)(x +6).

For this polynomial, u = 9, v = 20, W = 12, .n = 1, (3 = 2, , = 6.
Therefore we obtain:

TI. (a, b, c) = «(3 + 1,1' + n, a + (3) = (S, 7,3)

T2. s = u = 9

T3. A = yUW = JI0S = 6V3
. T4 r - /W. - ffl. - I! - M r - ~ - M - 6 M3• - V u - V"9 - V3 - 3' a - Q - 1 - V 0,

rb -~-M-3!i;3 r -~-M-/i)3- f3 - 2 - v~, c - '1 - 6 - v~

T5. A' = !VV = ~V20 = vg..

We close this section with some problems for further discussion.

1. Find the cubic polynomial that can be associated with the right angled
triangle of side lengths 5, 4, 3.

2. If a, b, c denote the side lengths of a triangle, show that va, Vb, VC·
are necessarily also the side lengths of a triangle. Give an example to
show that if va, Vb, VC are side lengths of a triangle, then a, b, care
not necessarily side lengths of a triangle.

Some problems related to cubic polynomials

In this section, 0:, {3, 1', u, v, ware assuIIl:ed to be positive integers. The
formulae Tl, ... , T5 continue to hold in this section. As we shall now
see, this new restriction on the parameters enables us to consider several
interesting pto.blems.

PROBLEM I. Determine .all cubic polynomials of the form
x 3 + ux2 + VX + 12 subject to the above restricti~ns. Which of the tri­
angles associated with these polynomials has the maximum area?
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SOLUTION'. For this polynomial, w = 12 = 0:(3, and 0', (3" are positive
integers. So we consider all possible ways of factorising 12 into three factors,
,repetition of a factor being allowed:'

12 = 1 x 1 x 12 = 1 x 2 x 6 = 1 x 3 x. 4 = 2 x 2 x 30

Hence there are four distinct solutions:

(i) (x + l)(x + l)(x + 12) ;:: x3 + 14x2 + 25x + 12

(ii) (x + l)(x + 2)(x + 6) = x3 + 9~2 + 20x + 1~

(iii) (x + l)(x+ 3)(x + 4) = x3 + 8x2 + 19x + 12

(iv) (x + 2)(x + 2)(x + 3) = x3 + 7x2 + 16x + 12

The triangles associated with these polynomials have areas, respectively,
,J14 x 12, y'9XI2, y'8X12, J7 x 12. Clearly, the maximum area,
v'14 x 12 = 2v'42, is given by the isosceles triangle with side lengths 13,
13,2.

PROBLEM II. Find the polynomials associated with triangles having
the property that the area measure equals the perimeter measure. Hence
determine all such triangles.

SOLUTION. For the area measure to equal the perimeter measure~ we
must have ...;uw = 2u, so w = 4u.

To determine these triangles, let

. x3 + ux2 +vx + 4u = (x + a)(x + ,B)(x + ,)
= x3 + (0: + {3 + ,)x2 + (0:(3 + (3,'+ ,a)x + 0:(3,.

Then a +{3 + , = u, and

a{3,'= 4u = 4(a + (3 +,).

Solving equation (2) for " we obtain

4(a + (6)
1= a{3 - 4 '

(2)

(3)

where a{3 > 4 because 0:, {3" are positive. Without'loss of generality we
lnay assume that a ~ {3 ~ ,. Then 0: + {3 +, :5 3[, so ~a,6, .:::; 31, from (2).
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Thus a{3 ~ 12, so 0:'2 $ 12 and therefore 0:' ::;Vf2. Hence a equals 1, 2 or
3 because a is a positive integer. Also, since f3 ~ I' we obtain from (3)

f3 < 4(a + (3) .
- 0:'(3 - 4

Rearranging this inequality gives

a(32 - 8(3 - 40:' ~ o.
Hence f3 must lie between the two roots of the corresponding quadratic
equation; in, particular, f3 is less than or equal to the larger root:

f3~' 4+2R"+4. (4)
a

Case 1. Q = 1. From (4), (3 ~ 4 + 2v'5. Because f3 is a positive integer
and af3 > 4, we have 5 ~ f3 ~ 8., From (3),

4(0:' + (3) 4(1 + (3)
1- ----- a{3 - 4 - f3 - 4

which is a positive integer if f3 equals 5, 6 or 8. This analysis yields
(a,{3,/) = (1,5,24); (1,6,14); (1,8,9). In turn this yields (a,b,c) =
«(3 + I' 1 + a, 0:'+(3) = (29, 25, 6); (20, 15, 7); (17, 10, 9).

Case 2. a = 2.- Applying the steps used in the above analysis we obtain

(a,{3'/) = (2,3,10); (2,4,6)

(a,b,c) = (13,12',5);(10,8,6)

Case 3. 'This case does not yield any solutions for 1 in positive integers.

In summary, we have five triangles in which the area ,measure equals
the perimeter measure:

(29,25,6);(20,15,7);(17,10,9);(13,12,5);(10,8,6)

the last two being right angled triangles.

Problems for further discussion

'I. Give a geometric interpretation to the polynomial x3+ux2 + VX +m 2u,
in the manner of Problem II in this -section., Show that for every
positive integer 1n there is at least, one triangle with integer valued
sides.
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2. It is possible to interpret u, v, W, 0', (3 and l' in other ways. For example,
we may interpret Q', {3, l' in

as the edge lengths of a rectangular box. Then what interpretation can
be given to u, v, w? What bo~ problem have·we solved simultaneously
with Problem II? What rectangular box-related interpretation can be
given· to Problem I which was solved earlier in this section? Answer
this last question with regard to problem 1 above.

3. A triangle is called a Heron triangle if the sides and area are all positive
integers. For example, all the five triangles determined in Problem II
are Heron triangles. A Heron triangle will be generated by the poly­
nomial x3 + ux2 + VX + w if uw = m2 for some nat'ural number m.
Describe a construction to generate Heron triangles in the manner of
our discussion.

Reference

Coxeter, H S M Introduction to Geometry, 1969, New York, Wiley.

* * * * *

Readers of Function will be familiar with the name K R S, Sastry. He
has taught mathematics in India and Ethiopia. His problem proposals 'and
articles appear in a number of mathematics journals. He has photography
as a hobby.

* * * * *

It is unworthy of excellent persons to lose hours like slaves in the labour of
calculations.

- Gottfried Wilhelm von Leibnitz

* * * * *
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WHOLESALE PROFIT
Michael A B Deakin, Monash Univer.sity

About a year ago, we were driving through western Victoria and stopped
for a cup of coffee at a ·bright..;looking cafe-cum-craftshop. It turned-out to
be run by a couple who had been forced off the land by the drought and
who had started this venture to revive their flagging fortunes. Much of the
craftwork they were selling oli behalf of various individuals who used their
business as an outlet to the public.

The wife told us that she had different business arrangements with these
various suppliers. Some specified that the price to the public w~ to be so
much and of this they expected such-and-such a percentage; others stipu­
lated a figure they expected to receive and left the mark-up to the retailer
to decide. She had noticed a curious thing, she told us.

In order to explain it better, I will use some simple mathematical nota­
tion, although she did not. But let us call the Wholesale Price Wand
the Retail Price R. Then the Markup (the shop's Profit) M, say, will
be given by

M=R-W.

The first type of supplier specified both R and also M (expressed as a per­
centage of R) . .The second type specified Wand left it to the storekeepers
to fix their own value of M.

What she had noticed was that if a supplier of the first type specified
25% (Le. 1/4) of R as many did, this corresponded to her imposing a
markup of 33% (more accurately 1/3) of W in the case of a supplier of the
second type~ (As an example, suppose the supplier wanted a stuffed toy
koala sold for $100 and awarded her 25% of this amount, this was the same
as if another supplier had wanted $75 for an equivalent stuffed koala and
-she had marked it up by 1/3 (Le. $25) and so ended up selling both koalas
at $100.)

Her question was this: why is there t~is relation between the 1/4 and
the 1/3?

Can 'you supply the answer? Can you' also supply a more general rule
of which this is just a special case? And if you can, can you show why it
works?

Over to you!

* * * * *
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HISTORY OF MATHEMATICS

The Astrolabe

Michael A B Deakin

Function 2/96

My last article was devoted to an astronomical instrument known as the
armillary sphere. The armillary sphere was, in essence, a metal replica of
the heavens and it could be used to mimic their motions and so to facilitate
astronomical calculations. To be at all accurate, an armillary sphere had ~o

be very large and so a usable instrument was rather unwieldy and certainly
not portable.

However, the discovery was made that the same ends could be served
by a smaller, fiat instrument: the subject of this month's column. This ad­
vance may have been due to the' early astronomer Hipparchus (2nd century
Be) and most certainly was known to the later Ptolemy.

Both the armillary sphere and the smaller,' practical instrument yvere
referred to by the Greeks as "astrolabes" , the latter being specifically called
the "little astrolabe". Nowadays, however, we reserve the term "astrolabe"
for the smaller instrument.

Its main purpose was to observe the sky, and, from the positions of the
sun or the stars, tell the time of day or night and determine one's latitude
and direction of travel. It could also be used as a basic surveying device to
find, say, the angle between the sun and zenith or to determine the height
of a mountain.

The principle on which ·it depended was based on a perspective ren­
dering of the heav~ns onto a flat surface which goes by the name "stereo­
graphic projection". The theory of stereographic projection was given by
Ptolemy in his Planisphaerium, which shows how to project. the various
3-dimensional components of the armillary sphere onto a flat surface.

Much of this theory was passed on to the later astronomers Theon and
his daughter Hypatia and through her to her pupil Synesius. Synesius,
with Hypatia's help, designed an astrolabe and had it made up by an
expert silversmith. He presented it to an official of the Roman Empire, a
man with whom he wished to curry favour. We still have the covering letter
that he wrote to accompany his gift. It may be, as some have suggested,
that he also produced a longer monograph on the theory, a more technical
work than the surviving letter, but if so this must have become lost.
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Let us now see how the theory of stereographic projection worked.
Because Ptolemy, Theon, Hypatia and Synesius' all lived and worked in
Alexandria, we shall look at matters from their point of view, rather than
from our own here in Melbourne. (Almost all astrolabes ever built were
designed for use in the northern, rather than the southern, hemisphere.)

As noted in the previous column, the- celestial sphere, the' apparent
shape of the heavens with its fixed pattern of stars, may be analysed exactly
as a replica of the terrestrial globe. As we saw, this appears to rotate once
over the course of each 24 hours, each star, therefore, tracing out a circle
in the observer's sky. This circle will be a circle of latitude on the celestial
sphere.

This is one way of looking at the matter. Another is to take the sky
as seen by the observer at anyone time. Directly overhead is the point of
zenith, and below this is a hemisphere of the celestial sphere: the visible
part lying above the observer's horizon. Between these extremes are circles
of what we might call "observer latitude": 80° above the horizon is an 80°
circle, etc. (The technical name for such a circle of "observer latitude" is an
almucantar.) The observer's celestial sphere will be· tilted with respect to
the standard one and 'vice versa. For an observer at, say, 31° north latitude
(the approximate latitude of Alexandria), the north celestial pole will be
31° above the horizon, or 59° below the zenith.

Equivalently, we may adopt a standard orientation and thus seek to
accommodate the peculiar features of the observer's latitude. .Take the
observer's celestial sphere and so orient it that the north celestial pole is
at the top (and the south celestial pole at the bottom). Figure 1'shows in
cross-section the geometry involved. The north celestial pole will still be
on the circle 31° above" the observer's horiz·on. This 31° circle is one of a
number that could be drawn on the, now tilted, observer's celestial sphere.

Passing through this tilted sphere is the plane of the celestial equator.
Consider now the set of lines connecting _the south celestial pole to one of
these almucantars, say the 59° circle that just touches the horizon. Each of
these lines will pass through the plane of the celestial equator, and together
they define a curve upon it. This curve is in fact a circle. See Figure 2,
which shows the 59° almucantar. Indeed, .each of the almucantars gives rise
to such a circle. We may make a diagram of the various circles set up by so
projecting each of the almucantars onto the plane of the celestial equator.
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North Celestial Pole

Zenith

-------- ---.....-.------ Equator

Horizon

Figure 1. A cross-section of the Utilt" as applicable to Alexan­
dria. The celestial equator is shown as horizontal, and zenith is 31 0

above this. The observe(s horizon is thus sho~n inclined. The ob­
server's experience, of course, is that zenith is' vertically above. To
recover this point of view, rotate the diagram.

The projections of the alIIlucClJl.tars\yere en.graved o~toa circular plate
known as the mater and forming one component of the astrolabe. Therim
of the mater was usually taken to be the circle representing the 'fropic of
Capricorn. Thus almucantars which intersected this were not shown in full,
but only as circular arcs.

Furthermore, lines of equal azimuth, which are lines of "observer longi­
tude" (as the almucantars are lines of "observer latitude"), project by this'
same means into circles, and these too are engraved onto the mater and
the various "climates".

A .third set of lines was engraved on the ~ater of the instrument as
well. These were curves representing the various "hour angles"; the details
of these will here be omitted.

As the earlier discussion implies, the pattern of lines on the mater is
specific to one particular latitllde. If the instrument was to be used else­
\vhere, the mater was overlaid with the pattern for that latitude. SUCll
overlays were called eli'mates.
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As well as the mater and' the climates, the astrolabe had other com­
ponents. The next we need to consider is the re.te (the word means "net"
and it somewhat resembles a net; it was also called the "spider" for SImilar
reasons). The rete was designed to represent the various major stars: most
notably those of the constellations of the zodiac. These are those parts
of the sky through which the sun appears to pass in the course of a year,
as ascertained by its points of rising and setting. These lie abo~t another
circle in the celestial sphere --. Known as the ecliptic.

North Celestial Pole

Projection
of Almucantar

South Celestial Pole

Figure 2. The projection of the 590 almucantar, shown in a
perspective rendering. Lines through the south celestial pole and
through the oblique circle (the 590 almucantar) intersect the plane of
the equator in another circle. Each other almucantar does likewise
(although the various circles so produced .are not concentric).

The ecliptic also projects, by the same means, into a circle and this was
moulded in metal to form the principal feature of the rete. The various
stars occupy fixed positions with respect to the ecliptic. The rete was a
highly intricate patterned device, whose shape incorporated ~the circular
arc of the ecliptic and various points which represented the major fixed
stars.

.Thus the ret,e gives the positions of the fixed stars in the celestialsphere,
and does so moreover in a two-dimensional format. This remains unchanged
whatever the position of the observer. The mater (and the climates), by
contrast, show those features of the situation tllat depend llpon the position
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(Le., the latitude) of the observer. Thus in applications to navigation, one
rete suffices (as long as the various stars used in it remain visible), but the
appropriate climate mu~tbe inserted to replace the mater.

The third, and simplest, component is the alidade. This is essentially a
sighting 'device. 'By aligning the line of sight to some major star along the
alidade, and reading off the angle from a scale engraved on the back of the
mater, the star's angle of elevation could be determined.

From simple observations of this type and by the use of rotations of
the rete relative to the mater (or the appropriate climate), as well as by
use of the various tables that might be engraved on the back of the mater,
the astrolabe enabled the mechanical, or partly mechanical, computation
of time, direction and other such quantities.

Each of the computations depended on the correct placement of some
point of the rete relative to the relevant climate, and this in turn duplicated
the corresponding operation on an armillary sphere. The portability of the
instrument, its small size (typically some 25, cm across), and its eaSe of
handling made it popular and practical. It waS known from ancient times
and continued in use till the seventeenth century AD.

The armillary sphere -is, in essence, a scale model of the heavens, so
that computations relating to the real-life situation may be carried out by
means of simulations performed on the model. The theory of stereographic
projection allow~ the use, instead of the sphere, of a less obvious replica,
but one in which all the essential features are preserved and which has the
advantages of portability and practicality.

For over a thousand years the astrolabe was in widespread use. In our
Western tradition of navigation it came to be replaced by the sextant, but
in Arab tradition it continued and even today has a small place in Islamic
ritual.

, Figure 3 shows the front and 'Figure 4 the back of an astrolabe lent
to us by Robin Turner, formerly of the Monash University department of
Physics. It is a small one, being some 10 'cm across; and is described in
an accompanying flyer as "Issued and Authenticated by the [US] National
Maritime Historical Society [and] Crafted by the Franklin Mint". It is
almost certainly a replica of a French instrument from about 1580.

The base-plate with its set of engraved lines in Figure 3 (at the very
back) is the mater. Forward of this and able to rotate with respect to
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it is an elaborate and ornate rete incorp'orating the ecliptic circle marked
with the signs of the zodiac. The prominent linear structure running from
top left to bottom right is the rule (an aid to reading the instrument) and
forward of this is a locking pin (running from lower left to uprer right).

Figure 3. The front of an astrolabe

Figure 4 shows the ecliptic (with zodiacal signs) around the rim and the ali­
dade. Just visible in this latter are the sight-holes that enable the elevations
of stars to be measured. For this purpose, the instrument was suspended
by the ring at the top, thus ensuring that it was aligned vertically.
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Figure 4. The back of an astrolabe

Further Reading

A good and reasonably accessible account of the astrolabe is given by
J D North in his article in Scientific American (January 1974). Regrettably
it contains two minor errors that readers should know about. The first is
that North states that Hipparchus visited Alexandria. This was once widely
believed, but it is now known not to have been the case. The second- occurs
in the caption to the· figure on North's p.IOD. This figure is a diagram
similar to Figure 2 of this article. It states that it applies for a. latitude
of 40° North; this should be 50°. On .p.130 of the same issue of Scientific
American is a list of furtller reading matter.
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COMPUTERS AND COMPUTING

A Colourful Map of the Complex Plane

Cristina Varsavsky

One of the great advantages of the availability of computer power is the
opportunity it provides for the graphical display 'of information, adding
another dimension to the analysis of many. mathematical situations and
problems.

Figure'l

You must have already seen the picture depicted in Figure 1, most likely .
displayed with stunning colours, which unfortunately we cannot reproduce
in this journal. You probably also know its name: it is known as the
Mandelbrot set. It was defined in 1905 by the French mathematician Pierre
Fatou but its visual representation was made possible only with the advent
of computers. In this article, we will present the basic principles behind
Figure 1, and also a simple computer program to prodllce 'it on your screen.
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We often hear that a picture is worth a thousand words, and this is
certainly true about Figure 1. The Mandelbrot set is not just a pretty
picture, it actually displays the intricate behaviour of complex numbers
under a particular and very simple iteration, namely

(1)

That is, a complex number, Zn+l, is generated from the complex number
Zn; the number c is a complex parameter. Figure 1 is a map displaying the
behaviour of each complex number C'·-as the generator of the iteration (1).

If complex numbers are not yet kn~wn to you, here is a brief introduction
which should be enough for the purpose of this article. Complex numbers
are numbers of the form

z=a+bi

where a is a real number called the real part, b is a real. number called the
imaginary part, and i is an imaginary number such that i 2 = -1. Note that
if b = 0, the corresponding complex number is a real number. We represent
complex numbers as points in the complex·plane, where the horizontal axis
is for the real part and the vertical axis for the imaginary part of the
complex number; that is, the point (a , b) represents the complex number
a+bi. The m~gnitudeof the complex number z is defined as Izi = va2 + b2,

which coincides with the notion of distance to the origin.

The algebra of complex numbers is an extension of the algebra of real
numbers. We have (a +bi) ±(c+di) = (a ± c) + (b± d)i. For the product,
we expand in the usual way and recall·that i 2 = -1:

(a+ bi) >< (c + di) = ac + adi + bci + bdi2

= (ae -'bd) + (ad+ be)i

Now let us go back to Fi.gure 1 to see how it is produced with the itera­
tive formula (1). For each complex number c an iteration is started using
formula (1) with the starting value of ZQ = 0, generating a sequence Zo,
Zl, Z2, Z3," ., called the orbit of the complex number c. Some orbits may
remain bounded, while others. escape towards infinity. According to this
behaviour, the complex number c is classified either as a prisoner or as an
escapee. For example, take e = 0; then ZQ = 0 and as we square it we obtain
zero again, so only zeros are generated with this formula, tllerefore e = 0
is a prisoner.
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Now take a more "complex" example, c = -2 + 1.5i. We have'zo = O.
Then

Zl = z5 + (-2 + 1.5i) = -2 + 1.5i

Apply (1) again to obtain

Z2= zr + c = (-2 + 1.5i)2 +(-2 + 1.5i) = -0.25 - 4.5i

Then Z3 = -22.19 + 3.75i, Z4 = 476.22 - 164.91i, ZS = 1.99 X lOs ­
1.57 x 105i, ...; the sequence rapidly tends towards infinity, which means
that -2 + 1.5i is an escapee.

The Mandelbiot set is the set of all prisoners; it appears in th'e middle
of Figure 1 and it is also sh<?wn in ~igure 2. The rest of Figure 1 is shaded
according to the speed with which the sequence escapes toward infinity.

imaginary axis

1

'·1.5

Figure 2

1

real axis

The computer program is now very simple. For each pixel on a 640 x 480
screen with coordinates (a, b) we do the following:

Step 1: Obtain the corresponding complex number c with real part Cl and
imaginary part C2. This transformation depends on what' part of the plane
we 'want to have 011 the screen. For tIle part of the plane with -2 ::; x ::; 2,
-1.5 ::; y ~ 1.5, the corresponding transformations are cl = (a *4/640) - 2
and C2 = b* (-3)/480 + 1.5.
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Step 2: Apply iteration formula (1), using C obtained in Step 1 and Zo = O.
We use the pairs (u, v) and (x, y) for the old and new terms of the sequence
respectively. Using formula (1) we have

x+yi = (u+vi)2+(Cl+C2i)

= (u2 - v2+ 2uvi) + (el + C2 i )

= (u2 - v2+Cl) + (2uv + c2)i

Step 3: Decide whether C is a prisoner or an escapee. As it is diJIicult to
write code for testing convergence or divergence of the sequence, we make
a practical approximation: if after 100 iterations the sequence remains in
the circle centred at the origin with radius 2, we decide this is a prisoner
and we paint it black. If it escapes that circle, it is an escapee and we
paint it according to the number of iterations it takes to go 'outside that
circle. The definitio~ of the picture will improve if the upper bound of the
number of iterations is increased. '

Here is the QuickBasic code for the program:

SCREEN 12
FOR b = 1 TO 480

FOR a = 1 TO 640
u = 0: v'= 0
c_1 = (a * 4 / 640) - 2
c_2 = b * (-3) / 480 + 1.5

x = u * u - v * v + c_1
y 2 * u * v + c_2

count = 1
check = x~2 + y-2

WHILE «check <= 4) AND (count <= 100»
u = x: v = y
x = u * u - v * v + c_1
y = 2 * u * v + c_2
count = count + 1
check = x~2 +'y-2

WEND
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IF count >= 30 THEN COLOR 7
ELSEIF count >= 5 THEN

COLOR 5
ELSEIF count >= 4 THEN

COLOR 4
ELSEIF count >= 3 THEN

COLOR 3
ELSEIF count )=. 2 THEN

COLOR 2
ELSE

COLOR 1
ENDIF

PSET (a, b)

NEXT a
NEXT b

59

QuickBasic is not the best language for this sort of task; you may actu­
ally need to leave your computer working for quite a while to produce the
picture. A more.powerful language such as C is. recommended here; the
translation should not present any difficulties.

Figure 3
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You can produce many other stunning pictures by slightly modifying
this program. Zooming into regions close to the boundary of the Mandel­
brot set will provide more. detail, revealing greater beauty and complex­
ity. For this you need only to change the formulas in Step 1. Figure 3,
for example, depicts the behaviour of complex numbers iterated through
equation (1) in the region

.-1.475 ~ real part ~ -1.225 , -0.09375 ~ imaginary part ~ 0.09375

Another interesting approach is to change.formula (1), or even the way
formula (1) is u&ed to define a set. For example, for a fixed constant .c
we can paint the pixels according to t}le behaviour of the corresponding
complex number as the starting point Zo for formula (1). You' ~ill then be
exploring what are known as Julia sets.

Further reading

There are numerous books about fractals which include the Mandelbrot
set. The following are good sources to learn ·more about them. In the
reference [3] there is an interesting foreword by Benoit Mandelbrot titled
Fractals and the Rebirth of Experimental Mathematics.

1. Gleick J, Chaos - Making a New Science, 1987, Viking.

2. "Mandelbrot B, The Fractal Geometry of Nature, 1982, San Francisco,
Freeman.

3. Peitgen H, Jurgens H, Saupe D, Fractals for the Classroom, 1992, Sprin­
ger-Verlag.

* * * * *

Nature exhibits not simply a higher degree but an altogether dif­
ferent level of complexity. The number of distinct scales of length of
natural patterns is for all practical purposes infinite.

- Benoit Mandelbrot, The Fractal' Geometry of Nature

* * * * *
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LETTER TO THE EDITOR

It had been some time since I had heard from my erratic correspondent,
the eccentric Welsh physicist and mathematician Dai Fwls ap Rhyll. In
fact, though a year ago I surmised that he had put a rather ·interesting
posting ~n the Internet, I had had no direct communication since 1991. I
was beginning again to wonder what he was up to and why he had not
bothered to write.

However, I have got used t~ his little ways and so was pleased and
relieved to get a letter from him. .It -seems that he has been concerned
with the foundations of probability theory - a difficult topic that I can well
imagine occupying his time for the bulk of five years. He sees this branch
of mathematics as badly in need of an overhaul. I give below one of his
most telling examples.

The problem is to draw a chord at random in a fixed.circle. If the circle
has radius 1 (for example, though this makes no real difference), what is
the probability that the length of the chord exceeds /3?

He shows that this question has at least three different answers, and
so we learn either that t = 1= t or else that probability is not a viable
concept!

All three approaches use the fact that /3 is the length of the side of an
equilateral triangle inscribed in the circle. (You may care to verify this for
yourselves.) .

Now he takes such a triangle (Figure 1) and allows one of its sides,
Be, to be bisected ·at M. Through M he draws a diameter AK~ Let
o be the centre of the circle and let N be the point on AI< such that
OM = ON. We find that MN = !AI{. (Again I leave this as an exercise
in simple geometry.) But now if we take any chord parallel to BC, then
either its centre will lie inside M N or else outside it, each with probability
!. 'Furthermore, this calculation will apply however ~e place the side BC
(whatever its orientation). Thus the required probability is !.

Next he considers Figure 2. This time he takes the vertex A and consid­
ers the set of chords passing through A. To assist with the analysis, draw

. tIle tangent EAD touching the circle at A. Suppose the chord to make an
angle () with this tangent. If () lies between 600 and 1200

, then the chord has
length greater than /3; otherwise not~But the probability that () indeed
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lies in this range is l. Again the calculation will apply however we place
the side Be (whatever its orientation). Thus the required probability is 1.

A

K

Figure 1

A
D----~....--=:-----E

Figure 2

Finally he takes Figure 3. Inside the equilateral tria:ngle ABC he in­
scribes a circle, centre 0 and touching the side Be at M.' By an extension
of his first argument, he readily shows that the chord has length greater
than .j3 if its midpoint lies inside this new circle. But it is quite easy
to see that the radius of the small circle is !. (Again you may prove this
as an easy exercise.) So the required .probability is the probability tllat
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the midpoint of the chord lies inside the small circle. This probability is
precisely the ratio of the area of the small circle to th~t of the large. That
is to say, ~, a figure you may readily .deduce.

A

K

Figure 3

As so often happens, I can see no flaw in Dr Fwls's reasoning, and
so must agree with him that there are indeed problems with the notion
of probability (for the possibility that ! = i = ~ is just too painful to
contemplate) !

Kim Dean
Union College

Windsor

*****

[There is a] computer disease that anybody who works with com­
puters knows about. It's a very serious disease and interferes com­
pletely with the work. The trouble with computers is that you play
with them!

- Richard Feynman

* * * * *
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SOLUTIONS

PROBLEM CORNER

Function 2/96

PROBLEM 19.5.1 (Garnet J Greenbury, Upper Mt Gravatt,Qld)

Prove that, in a right triangle,

2 -1 (hypotenuse - base), _ -1 (height)
tan h · h - tan b'elg t ase

SOLUTION by Benito Hernandez-Bermejo (Universidad Nacional de Educacion
a Distancia, Madrid, Spain)

Let h be the hypotenuse, x the base and y the height. Since ,the triangle
is right-angled, we have h2'- x 2 = (h - x)(h + x) = y2, so

'h-x y
--y- = h+x·

Then we have equivalently to prove that

2tan-1 (h ~ x) = tan-1
(;) ,

or, briefly, 2{3 = Q;' (see Figure 1, in which BCD is the original triangle).

c

A

Figure 1

y

o

But notice that the triangle ABC is isosceles, since two of its sides are
of length h. Then the three angles of ABC are {3, {3 and 1f - a. Since the
sum of the angles of ABC must be equal to 1f, we have

2{3+1f-a=7f,

or 2(3 = Q. This proves the result.
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Also solved by Sani Susanto (Monash University), Keith Anker (Monash
University), and the proposer.

PROBLEM 19.5.2

Let ABC be a triangle, and. let 0 be any interior point of ABC. Prove
that AB+AC > OB+OC. .

SOLUTION

Produce CO to meet AB in !{ (~ee Figure 2). Then

AB+AC = BI{+I{A+AC

> BI{ +!{C

= BI{ +1(0+OC

> BO+.OC

= OB+OC

A

B· C

Figure 2

Also solved by Keith Anker (Monash University).

PROBLEM 19.5.3

There is a unique number such that its square and its cube together use
each of the 10 digits exactly once. Find the number.

SOLUTION (composite of solutions by Claudio Arconcher (Sao Paulo. Brazil).
Keith Anker (Monash University). and the editors)

Let n denote the number required. Then n2 and n 3 together use each
of the 10 digits exactly once. If n < 47 then n 2 has at most 4 digits and
n 3 has at most 5, so this is impossible. Similarly, if n > "99 then n 2 has
at least 5 digits' and n 3 has q,t least 7, so this too is ."impossible. Therefore
47 ::; n ::; 99.
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The last digit of n cannot be 0, 1, 5 or 6, since then n2 and n3 would
both end in the same digit.

At this point, the number of cases to check is small enough to be man­
ageable' with a calculator.. Nevertheless, we can get a bit· further using
general arguments. By the "casting out nines" rule (equivalently, using
arithmetic modulo 9), n2 + n3 must be divisible by 9 because the sum of
the digits from 0 to 9 is divisible by 9. Therefore 91 n2(n + 1), so 91 n2 or
91 n + 1, since n2 and n + 1 are coprime. Hence 31 n or 9 In + 1.

The numbers still under consideration are therefore

48,53,54,57,62,63,69,72,78,84,87,89,93,98,99.

Now using a calculator, the cubes of all but three of these numbers (69,
84 and 93) are found to. contain repeated digits. On checking'these three
numbers, we find that 69· is the unique number satisfying the conditions:
692 = 4761 and 693 = 328509.

PROBLEM 19.5.4

Positive integers are to be expressed using the digits 1, 2, 3 and 4
exactly once each, together with the binary operations +, -, x, /, the unary
operations of negation and square root, and logarithm to a base, where the
base must be supplied from the available digits. For example, 4 can be
expressed as:

/f+3log2 4.

Which positive integers can be expressed in this way?

SOLUTION

All of them! The number n is given by the expression

-log210g3~1 JJ. ..Vi!
"""-..---'

n+l

Solution.to an earlier problem

The solution to the following problem from the J~ne 1992 issue has not
previous~yappeared in Function.

PROBLEM 16.3.2 (Juan-Bosco Romero Marquez, Valladolid, Spain)

Let ABC and A'B'C' be two right-angled triangles with sides a, b, c and
a' , b' , c' respectively. Suppose that a > b ~ c and a' > b' ~ c' and that
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LABC> LA'B'G'. Let A"BI/G" be the triangle with sides a",b",c" -such
that a" = aa', b" = bb' + ee' and e" = be' - b'e. Prove that ,6A"B"Gil 'is
right-angled, and evaluate its area, circumradi~s and inradius as well as
LAI/B"G". .

SOLUTION

The hypotenuses of ABC and A'B'G' are the' sides with lengths a and
a' respectively, so a 2 ~ b2+ c2 and a,2 = b'2+ e,2. Therefore

b,,2 + C"2 = (bb' + ee')2 +.(be' - b'c)2

= b2b'2 + 2bb'ec' + c2e,2 + b2e/2 - 2bb'ec'+ b'2c2
= b2b,2 + e2c,2 + b2e'2 + b,2e2

= (b2 +e2)(b'2 +c/2
)

= a2a,2

= (aa')2

= a"2

Hence 6 A"B"Gil is right-angled" with hypotenuse of length a". Its, area
is clearly !b"e", and its circumradius is !a" (since the circumradius of a
right-angled triangle equals 'half the length of the hypotenuse).

Let r be the inradius of .6A"B"G" . Let D be the incentre, and let
E, F and G denote the points of tangency of the incircle with the sides
A"B" , A"G" and B"Gil respectively. Then the right-angled, triangles
.6B"DE and 6B"DG are congruent, so BilE = B"G, and similarly GilF =
GilG. Hence a" = B"Gil = B"G +G"G = BilE +GilF = e" - r + b" - r, so

b"+e"-a"
r = 2 •

b"= artand,
bb' + ee'

= artan be' - b'e
b' c

-t Ci+ij= ar an
1

_ b'e
be'

b' c
Ci+ij

= artan
1

_ !!.£
c'b

b' e
= artand + artanb.
= LA'B'e' + LACB
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-PROBLEMS
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Readers are invited to send in soluti-ons (complete or partial) to any or all of
these problems. All solutions received in sufficient time will be acknowledged
in the next issue but one, and the best solutions will be published.

PROBLEM 20.2.1 (modifi~d from a problem in Alpha. a German mathematics
magazine, September 1995)

It is known that the teachers for classes 5A to 5E will be Mr Brown,
Mrs -Green, Mr -Black, Mr Gray and Ms White, but it- has not yet been
an~ouncedwhich teacher will be in charge of which class. The table below
shows the predictions by two students. The first student made two correct
guesses associating teacher and class, and the--second made three correct
guesses. Who is the teacher for each class?

~ Class

l
Ist student's guess:
2nd student's guess:

SA 5B 5C 5D 5E ~

PROBLEM 20.2.2 (modified from a problem in Alpha, June 1995)

"It's curious", says Karen. "I decided to select the PIN for my Bankcard
by dividing my year of birth by the street number of our house and choosing
the last four digits shown on my calculator. They turn out to be 1996."

"How many digits does your street numb"er have?" asks Melissa.

"Two."

"In that case you made a mistak~.or your calculator is' not operating
properly. You cannot get the digits 1, 9, 9, 6 in sequence among the decimal
places when you divide an integer by a two-digit integer."

Prove that Melissa is right.

PROBLEM 20.2.3 (from Alpha, June 1995)

Let ABCS be a regular pyramid with base ~ABC and apex S. Let
the angle at S in each side face be a. Let M be a point on a side face at a
dist<:tnce I from the -apex. Determine the length of the sllortest closed path
through M and enclosing S, if it exists.
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PROBLEM 20.2.4
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Let P be a point inside a triangle ABC. Let D, E and F be on AB, AC
and BG re~pectively, such that PD..LAB, PE..LAG, -and PF..LBG (see
Figure 3). It is required to choose P so as to. minimise PD +.PE + PF.
Show that if ~ABC is.not isosceles then P must be situated at a vertex.
What happens if 6ABC is (a) isosceles; (b) equilateral?

A

B ~--_-a...&. """';;:::' C
F

Figure 3

PROBLEM 20.2.5 (from Mathematical Digest, July 1995, University of (-ape
Town)

Exactly one of the following five statements is true. Which one?

(1) All of the following.

(2) None of the following.

(3) Some .of the following.

(4) All of the above.

(5) None of the above.

PROBLEM 20.2.6 (from Mathematical Mayhem, Vol 8, Issue 3, University of
Toronto)

Show that the sum of any. 1996 consecutiveintegers cannot be a power
of an integer with exponent greater than one.

* * * * *
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The 1996 Australian Mathematical Olympiad

The contest was held in Australian schools on February 6 and 7. On
each day students had to sit a paper consisting of four problems, for which
they were given four hours. About 120 students in years 9 to 12 sat the
examinations. On March 12, top scorers participated in the Asian Pacific
Mathematics Olympiad (A PMO), a major international competition for
which twenty Pacific Rim countries registered. In addition, students from
Argentina, South Africa, and Trinidad and Tobago have tested their 'skills
on the APMO problems.

1. Let ABCDE be a convex pentagQn such that BC == CD = DE and
each diagonal of the pentagon is parallel to one of its sides.
'Prove that all the angles in the pentagon are equal, and that all sides
are equal.

2
1
• Let p(x) be a cubic polynomial with roots rl, r2, r3. Suppose that

pC!) + p(-!) = 1000
. p(O) .

Find the value of _1_ + _1_ + _1_.
rl r2 r2 r 3 r3 r l

3. A number of tubes are bundled together into a hexagonal form.

The number of tubes in the bundle can be 1, 7, 19, 37 (as shown in
the figure below), 61, 91, .... If this sequence is continued, it will be
noticed that the total number of tubes is often a number ending in 69.

What is the 69th number in the sequence which ends in 69?

0000
00000

000000
000000.0
000000
.0 0 0 00
0000
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4. For which positive integers n can we rearrange the sequence 1,2, ... , n
to at, a2,· · ., an in such a way that lak - kl = lal - 11 =1= 0 for
k = 2,3, ... , n?

5. Let aI, a2, .. 0 ,an be real numbers and 8 a non-negative real number
such that

(i) at $ a2 $ · · · :5 an ;

(ii) al + a2 + 00. + an = 0 ;

(iii) lall + la21 + 0 0 • + lanl = s . . '

Prove that
28

an - al ~ - ..
n

6. Let ABCDbe a cyclic quadrilateral and let P and Qbe. points on the
sides AB and AD respectively such that AP' = CD and AQ = Be 0

Let M be the point of intersection of AC and PQ.
Show that M is the midpoint of PQ.

7. For each positive integer n, let a(n) denote the sum" of all positive
integers that divide n. Let k be .a positive integer and
nl < n2 < ... be an infinite sequence of positive' integers with the
property that a(ni) - ni = k for i = 1,2, ....
Prove that ni is a prime for i = 1,2, ....

8. Let f be a function that is defined for all integers and takes only the
values 0 and 1. Suppose f has the following properties:

(i) f( n + 1996) =.f(n) for all integers n ;

(ii) J(I) + J(2) + ... + f(1996) = 45.

Prove that there exists an integer t such that f (n + t) = 0 for· all n for
which fen) = 1 holds.

Most of the students who participated in the Australian Mathematic~l

Olympiad had gathered experience from last year's Senior Contest of the
Australian Mathematical Olympiad Committee. Students had been given
four hours to solve the following five problems:

1. Let ABC be a triangle having area 1, and let x be a number with
o< x < 1. Let A', B' and C' be points on Be, CA and AB respectively
such that BA' : A~C = GB' : B'A = AG' : G'B = (1- x) : x.
Express the area of the triangle" A'B'C' in terms of x.
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2. The digits 1234567891011 ... 19.941995 are written on the blackboard
forming the number Nt. The digits of Nl at even places are wiped
off the blackboard. Let N 2 denote the number that is left over. Now
the digits of N 2 at odd places are wiped off the blackboard. Let N 3

denote the number that is left over. The digits of N3 ·at even places
are wiped off the blackboard. Let N 4 denote the number that is left
over and so on. This process continues until only one digit remains on
·the blackboard. Find this digit.

(Note: places ar~ counted from the left, e.g. in the number 12345, the
digit 1 is at the first place, the digit 2 at the second, etc.)

3. Determine all quadruples (Pl,P2,P3,P4) of primes that satisfy

(i) PI < P2 < P3 < P4 ;

(ii) PIP2 +P2P3 +P3P4 +P4Pl =882.

4. Determine all polynomials p(x) with real coefficients such that

tp(t .... 1) = (t ~ 2)p(t)

for all real numbers t.

5. Let 6. be a right-angled triangle with the following properties:

(i) both sides enclosIng the right angle are of integer length;

(ii) if the perimeter of ~ is, say, n centimetres, then its area is n square
centimetres.

Determine the side lengths of ~.

* * * * *
Someone once asked [New Zealand-born] A C Aitken, professor at Edin­

burgh University, to make 4 divided by 47 into a decimal. After four .seconds
he started and gave another digit every three-quarters of a second: ."point
08510638297872340425531914". He stopped (after twenty-four seconds), dis­
cussed the problem for one minute, and then restarted: "191489" - five-second
pause - "361702127659574468. Now that's the repeating point. It starts· again
wit~ 085. So if that's forty-six places, I'm right." To many of us such a man
is from another planet, particularly in his final comment.

from Antll0ny Smith, The Mind, 1984, London, Hodder & .Stoughton

* * * * *
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June, August, and October. Price for five issues (including postage):
$17.00*; single issues $4.00. Payments should be sent to: The Business
Manager, Function, Mathematics Department, Monash University, Clayton
VIC 3168; cheques and money orders should be made payable to Monash
University. Enquiries about advertising should be directed to the Business
Manager.

Fo~" more information about Function see the magazine home page at
http://www.maths.monash.edu.au/-cristina/function.htm1.

*$8.50 f~r bona fide secondary or tertiary students.
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