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Function is a mathematics magazine produced by the Department of
Mathematics at Monash University. The magazine ~as founded in 1977

, by Prof G B Preston. Function is ad,dressed principally to students in the
upper years of secondary schools, and more generally to anyone who is
interested in mathematics.

Function a.eals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the ,
natural and social sciences, history of mathematics, mathematical games,
careers in!llathematics, and mathematics in society. The items that appear
in each issue o~ Function include articles on a broad range' of mathemat­
ical topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them to:

The Editors, Function
Depart:rr;tent of Mathematics, Monash University
900 Dandenong Rd
Caulfield East VIC 3145, Australia
Fax: +61 (03) 9903 2227
e-mail: function@maths.monash.edu.au

Punction is published five times a year, appearing in February, April,
June, A'ugus~" and October. Pri'ce for five issues (including postage):
$17.00*; single issues $4.00~ Payments should be sent to:' The B_usiness
Manager, Function, Mathematics Department, Monash University, Clayton
VIC 3168; cheques and money orders should be m~de payable to Monash
University. Enquiries about advertising should be directed to the BU$iness
Manager.

For more information about Function see the magazine home 'page at
http://www.maths.monash.edu.au/~cristina/function.htm1.

*$8.50 for bona fide secondary or tertiary students.
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. EDITORIAL

We welcome new and old readers alike with our twentieth volume of
Function. We hope you find in it many interesting and enjoyable items.

The le.af-shaped curve depicted on the front cover, called the unifolium,
arises in a construction by geometric means of the cube roots of numbers.'
TIle Front Cover article explains how this is done.

In tIle feature article, H C Bolton looks at the mathematics related to
the shapes most pebbles take after abrasion, and the shapes of bars of soap
as tlley are worn down.

In the History of Mathematics column you will find adescription of the .
armillary sphere, the Inathematics behind it, and also a practical example
of how it can be used for de-ciding where to 'plant the trees in your back
yard, by estimating the shade they will make at different times.of the year.

In the Computers and Computing section there is a short introduction to.
automated reasoning, more particularly to program~ing languages which
c~n be used to program the computer to make deductions and to answer
questions ..

The number of articles written about 1f seems to be endless, but there
is always some~hing interesting to say about this popular number. In this
issue of Function we present a less well known way of approxi~ating 1f.We
also include another news item on sundials, and as usual, solutions to
problems we have published, and a few more new ones to work on.

Finally, we thanl~ all those readers who sent us letters, comments, solu­
tions, and articles. We always welcome your contributions.

* * * * *
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THE FRONT COVER

A Curve that Gives us Cube Roots

Michael A B Deakin

AM MI
"A]( = ](D

One of the classic problems of ancient geometry was the so-called "dupli­
'cation of the cube" 1 - the construction by geometric means of the number
~. O~e solution to this problem has been reconstructed by Wilbur Knorr,
a historian of ancient mathematics.

Here is how it proceeds. Let AD be the diameter of a circle and let
]( be a point on the circumference of that circle. For future reference, let
L](AD = () and choose AD = 1.

K

A t::::-~------------~-"'""j 0

"Figure 1

From }( draw a line }(I perpendicular to AD and meeting AD in I.
Then from I draw a line I M perpendicular to A}( and meeting Al( in M.

Now LAI{D is an angle inscribed in a semicircle and thus it isa right
angle. In consequence, A]( = cos (). Since ~](AD and 6.MAI are similar,
we have

1There'· are generally reckoned to be three such problems. (See for example V !{atz,
A History of lVlathematics, pp' 47-48.) The others are the "squaring of the circle" (i.e. a
geometric construction giving a straight line of length 'Tr times a given unit length) aild the
trisection of an arbitrary angle. All three are now known to be impossible with ruler arid
compass constructions alone. For more on angle trisection, se~ Function, Vol 3, Part 3.
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and then
MI }(! cosO 3

AM = cos (} J(D = cos (} J(I / cos (} = cos (}.

We now have AI( ~ 1 and

AM = A!(3. (1)

Now for every position of !( on the circumference of the circle a cor­
responding !VI maybe constructed, and in each case equation (1) will ~e

.satisfied. So we may imagine·!( moving around the circle and M tracing
out a curve as shown on the cover and reproduced ~s Figure 1.

This cu~ve is known as the unifolium (meaningC "single leaf") and it may
have been used in ancient times as a means of constructing cube roots ­
some authorities think it was, others are not so sure.2

Here is how it can be made to work.

The value of AM can be made to take any yalue from 0 to 1 (0 when M
coincides with A, 1 when it coincides with D). So let us start with numbers
in the range (0,1). Suppose for example we choose AM = ~. We move
around the unifolium to the requited point (it occurs where the unifolium
intersects a circle centred at A and with radius !) and we then join this
M to the point A. If we now extend the line AM so produced to meet the

, circle in }(, then
A!( = AM1/ 3 (2)

in consequence of equation (1). If AM = !' then AI( = V1.
We may in this way construct the cube root of any number between 0

and 1. To generate cube roots of numbers larger than 1 (?"2 for' example)
a minor modificati.on will do the trick. Look at Figure 2. On the line Ai<
(extended) ·m(ark off a point ,L such that AD = AL (= 1). Through L draw
a line LN parallel to !(D and meeting AD (also exten,ded) in N. Then if
AM = !' it follows that AN =?"2. (I leave the proof of this as a simple
exercise to the reader.)

It should be noted that, although, given any }(, we may construct the
corresponding M using only the classical tools of ruler and compasses, we
cannot construc;t tIle entire unifolil.1m in this way, as. there are infinitely

2Some ascribe this use of the curve to the much later figure Juan Bautista Villalpando.
Villalpando was a 16th-century Spanish Jesuit, a mathematician and architectural theorist.
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many points on it. Thus the existence of this construction does not contra­
dict the theorem that cube roots cannot, in general, be constructed using
only classical means.

A

Figure 2

I learned of this material via an Internet newsgroup on the history
of mathematics. The fullest fairly accessible discussion is to be found in
Wilbur Knorr~s book The Ancient Tradition of Geometric Problems (espe­
cially pp 50-52), but one of my principal sources for this article'is a posting
by Danny Otero of Xavier University, Cincinnati. He in turn quotes from
several other books, but these alas are rare and were not available to me.

* * * * *

The words or language, as they are written or spoken, do not
seem to play any role in my mechanisms of thought. The physical
entities which seem to serve as elements in thought are certain signs
·and more or less clear images which can be voluntarily reproduced
and combined.

- Albert Einstein

* * * * *
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THE SHAPES OF PEBBLES AND

.BARS OF SOAP

H C Bolton, University of Melbourne

The relationship between mathematics and physics is very profound.
Here is a physical problem where. a little is known of some observations of
natural objects and where mathematics can help to 'organise these obser­
vations.

Most persons like pebbles, especially those that they find in rivers or on
the beach, or in digging in a garden. The smoothness and roundness of the
pebbles are attractive. I have two pebbles from a favourite beach near my
home town, where r enjoyed swimming, climbing the cliffs and watching.
the sea birds; I carry those pebbles about with me. When we think how
the pebbles were formed, we immediately find a physical problem. They
·all start from pieces of rock broken from cliffs or boulders. These pieces
of rock gradually move downhill, falling into .a stream or· into the sea. In
both cases, the rocl{s get tumbled over and over in all directions and the
once sharp edges become rounded by abrasion with other rocks ~r sand.
Also, rocks can disintegrate by the growth of minute organisms on their
surfaces, such as lichens and mosses. The abrasion arising in the tumbling
motion can be made artificially. It is possible t<? buy tumbled pebbles from
a gemmological shop; small collections of these pebbles, often· of differently
c;oloured rocks, are very attractive as ornaments. These pebbles are made
by putting rough stones into a closed tin and rotating them for several
hours on a lathe. .

We would expect that the sharpest corners and edges of a rough piece of
rock would abrade most quickly an~ this suggests that the ultimate shape
of a pebble would be a sphere which had its roundness, however defined, the
same·at all points. There. are indeed some spherical pebbles but not many
and it is found that many pebbles have a long axis which predominates even
for small pebbles. There are many scientific parts to the story that have
to be just mentioned; thus the crystals out of which some rocks are made
are often inhomogeneous and" this probably controls the rates of abrasion.
Leaving this aside, we ought to ask if there is a collection of photographs
of pebbles so tllat their shapes can be studied. OJ?e of the best books
was written in Melbourne by E J Dunn in 1911, when he was Director of
tIle Victorian Geological Survey. The book is called "Pebbles" and "has a
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(1)

large collection of photographs of pebbles of ,all kinds' of rock and from all
over the world. The author makes an interesting point that the shape 'of a
pebble contains information from which its history can be unfolded. OUf

mathematical discussion here is only part of the story of pebbles. 'rhe book
by Dunn is very rare. The State Library of Victoria in Swanston Street,
Melbourne, has a copy.

Dunn says that there are three cOlJlmon types of shapes. The first is the
sphere, the second is an ovoid which has one of the long ends more pointed
than the opposite end, and thirdly there is the ellipsoid, which has three
axes at right angles and the cross-sections of the pebble are ellipses. The
discussion on the shapes of pebbles was presented mathematically by Lord
Rayleigh and his articles were written from Engl~nd duri~g the 1939-1945
war. He was interested in collecting more pebbles but, at that. time, many
beaches, especially in the south of England, were forbidden to the general
public because of the fear of invasion. The articles are in the Proceedings of
the Royal S,ociety o/London (1942-43) Vo1181, pp 107-118 and (1943-44)
Vol 182, pp 321-335.

The eliipse has the equation

x2 y2
a2 + b2 = 1

and it is conventional to have a > b. Figure 1 shows an ellipse (the full
curve) for a = 3, b = 2. The ellipse is close to the shape of a cross-section of
'many pebbles and is also similar to the shape of many pie¢es of soap when
most of the original corners of the bar have been worn away in use. We will
return to the soap shapes later. Notice that the graph of equation (1) has
symmetry about the x and y axes; the equation remains unchanged when
x is replaced by -x and when y is replaced by -yo

The concept of roundedness is expressed by the. curvature at any point
on the curve and this is defined as the reciprocal of the radius of curvature
at the point. We consider a circle going, along the curve near the point in
question. Figure I shows the circle centred at the point (CA , 0) which fits
the ellipse near the point A = (a,O). The radius of curvature at this point
is called RA and

(2)
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Figure 1. Sketch of the ellipse equation (1) with a = 3, b = 2.
The centres of curvature at the ends of the axes (a, 0) and (0, b) are
given by CA and CB and the circles fitting the ends of the axes are
shown dotted.

Tl1ere is a sophisticated way of getting RA but we give a simple deriva­
tion. Consider the part of the ellipse near (a,O) where y small. Rewrite
equation (1) as

a2y2
x 2 = a2

---
b2

We add to the rigllt. hand side of this eq~ation the term ~ which is
negligible for small" y. This gives an approximation fox x 2 which permits
us to write it as a square:

x 2~ a2 _ a
2y2 + a

2y4 = (a _ a
y2

)2
b2 4b4 2b2 (3)

Equation (3) then leads to the following approximation for x:

. ay2
x~a-- (4)

2b2

The points in question also lie very nearly on the circle of radius RA
and celltre CA , which has the eqllation

(5)
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Much in the same way as we obtained the approximation (4) for x we
can obtain another approximation for x but now using equation (5):

(6)

If we now compare equations (4) and (6), making use of equation (2),
we find '

(7)

For a = 3, b = 2 we·. get RA = 1kand this circle is shown dotted in
Figure 1.

The expression (7) holds for the ellipse if x and y and simultaneously a
and b are interchanged. The radius of curvature at the point B = (0, b) is

a2 1
RB = b =42

Part of the corresponding circle is also shown dotted in Figure 1.

(8)
x 2 y2 z2
-+-+-=1
a2 b2 c2

with conventionally, a 2:: b ~ c.

The pebble is in three dimensions and its common shape is an ellipsoid
with an equation

Special cases are:

a > b = c; a prolate spheroid
a = b > c; an oblate spheroid

The shape of the earth is very close to an oblate spheroid with the polar
axis less than those on the equator. The reason for this is that in earlier
geological times, the material of the earth was more fluid than it is now
and it moved outwards along the equator, whilst rotating, because of the
centrifugal effect.

The radius of curvature of an ellipsoid depends 011 the plane s~ction

being considered. From equation (8), if z is Pllt equal to zero, an ellipse
is given with radius of curvature at the point (a, Q, 0) being b2/ a. If y is
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(9)

put equal to zero, an ellipse is given with radius of curvature c2/ a. In
three dimensions the specific curvature is defined as the product of the
two two-dimensional curvatures. For the end of the x axis of the ellipsoid,
the specific curvature at tIle point (a, 0, 0) is a2/b2c2. Rayleigh performed
experiments on pebbles, tumbling them as the gemmologists make their
pebbles, and showed that a prolate spheroid could maintain its shape un­
der abrasion, that is, the ratio of the lengths of the axes a, b, c(= b) were
unaltered. FrOln this he deduced that the rate of abrasion was propor­
tional to the fourth root of the specific curvature. Since the fourth roots
of numbers greater than one are considerably smaller than the numbers
thelnselves, tIle regions of a pebble with large curvatures are only slowly
abraded and the spheroidal shape is preserved down _to small sizes.

Some 'of Rayleigh's experiments were on soapstone, a soft mineral with
a "soapy" feel, and it is almost certain that lle saw the way a bar of. soap
abrades whe~ used for waslling. A bar of soap initially is basically a cuboid
with sides of length 2a, 2b, 2c. Because abrasion takes place more rapidly
at corners where tll~ curvature is greatest, we might expect that the bar
will cllange into an ellipsoid. But we must be careful: the pebbles of stone
found in nature and in Rayleigh's experiments are produced by tumbling
in all directions. But a bar of soap is not used in this way; when we wash
our hands with a new bar of soap we rotate it about its longest axis, which
we llave called the x-axis. Also, when· the soap is thin, we may only rub
it between our palms. So the physics of abrasion of soap may not be the
same as for a pebble.

Looking at an old piece of soap on a soap dish, we see the x and y axes
horizontal and the z axis vertical. It looks lilce the ellipse in Figure 1 but it
is wise to check this. In Figure 2 the outline of a piece of soap is reproduced
and the ellipse is drawn with the same values oia, b. We see that the ellipse
lies inside the soap shape. This was' confirmed with another piece of soap.

The ellipse is one member of a family of curves of curves given byl

(~)m + (t)m = 1, x ~ 0 and y ~ 0

where m is any number, integral or non-integral greater than or equal to
2, and the rest of the curve can be given by reflection in the axes. At this
point ill tIle argument a computer program could be writtell to draw the
Cllrves in (9) for various values of 1n. ·As 1n tends' to infillity the curves will

lSee F'l.tnction 1/0l14, Part 2.
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be found to approach more and more closely to the vertical line through
(a,O) and' the horizontal line through (0, b), which is the original shape of
the cross-section through the bar of soap. After ·some· trials, it was found
that the value of m in (9) that gave a curve fitting the soap curve was
m == 3. Indeed, the soap curve in Figure 2 has been produced using m == 3
and equation (9) for x ~ 0 an<i -y ~ 0.

SOAP

Y.

x
a

Figure 2.. Sketch of the shape of a bar of soap after much use.
The ellipse is shown and the curve representing the soap is the same
as that given by equation (9) with m == 3.

(a- Ca _ ::)2+ y2 = R~.
By approximating as we did before we obtain

2aymRa 2 2aym-2Ra 1
---==y so ==

mbm mbm

and for m =1= 2~ Ra is no longer a constant. In fact, as ytends to zero, Ra

tends to infinity which means a flat surface. This does not imply that the
soap does not abrade; its surfaces dissolve in water.

As an exercise, plot some of the computed curves described by equa­
tion '(9) and try to find the shape of your own pieces of soap. Is m == 3 a
universal l1umber?

One characteristic of the sets of curves obtained with (9) is that for
m other than 2 the curvature is zero at the ends x == ±a, y == 0 and
y == ±b, x == 0.' We can repeat the argument used to obtain equation (5) to
get

* * * * *
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HISTORY OF MATHEMATICS

The Armillary Sphere

Michael A B Deakin

,Figure 1 shows an instrument known as an "armillary sphere". It is in
essence a stylised model of the heavens, and it allows astronomical calcu­
lations to be made by means of computations relating to its geometry, or
else to allow the re~ults of such computations to be derived from analogue
measurements made on the device itself.

It later gave place to a different instrument: the astrolabe, and this
will be the subject of a later article in this series. But first we need to
understand the theory of the armillary sphere.

If we look at the sky at night, we see a fixed pattern of stars which moves
as a whole over the course of a 24-hour period and also (more slowly) over
the course of a year. The pattern itself, however, never alters. The Southern
Cross, for example, retains ·its shape always and it also retains the same
relation to neighbouring stars like thePointers,whatever the time of day
or season of the year. Against this fixed pattern, the moon and the planets
move, as also does the sun (as evidenced by the positions of its rising and
setting).

TIle ancients, who did not have .distractions like television, inconve­
niences like smog or tall buildings, or competing sources of illumination
like, streetlights, were much more. familiar than we with the pattern of the
nigh~ sky and were also much more able than we to use it to tell the time or
for purposes such as navigation. The science of astronomy Was perhaps the
first science to reach a high level of deve~opment. Certainly by the time of
Ptolemy (the second century AD), it had advanced to the extent that the
movements of the planets against the fixed pattern of stars could be pre­
dicted, as could unusual events like eclipses. (Because Ptolemy's system of
astronomy has since been superseded by Copernicus;s, we tend nowadays
to discount it. This however is unfair; the Ptolemaic system is actually
very good.)

It was in the context of this background that first the armillary sphere
and later the astrolabe were developed. The armillary sphere comprised a
model of the lleavens, conceived as a sphere representing the fixed pattern
of stars; the spllere we see as we look up at· the llight sky. The earth's
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axis passes through this sphere (the celestial sphere) at points known as
the north and sout? celestial poles. (The first of these is the approximate
position of the star Polaris.) The circle connecting all the points equidistant
between these poles is the celestial equator.

Figure 1. An armillary sphere. This example is in possession of
the author and was designed by Brian Greig of Southern Skies Astron­
omy Pty Ltd of Melbourne. Photograph by Steve Morton (Physics
Department, Monash University).

The armillary sphere was a Inetal replica of SaIne aspects of the celestial
sphere, comprising various circles represellting the celestial equator, tIle
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ecliptic (the appar~nt path of the sun through the heavens), various lines
of latitude and longitude; and possibly a plumb line to adjust th"e device
to the local horizontal, a job done by the stand in Figure 1.

An armillary sphere could be set up with its "equator" parallel to the
real equator and so with its axis parallel to "that of the earth (as the gnomon
of a sundial is so aligned), and the~ used to determine (e.g.) the day of
the equinox, when the shadow cast 'by the upper half of the instrument's
"equator" exactly covered the lower half. Other observations could also be
made, sometimes with the aid of.holes drilled in the metal circles, or by
means of graduated scales carried upon them.

Armillary spheres came in a wide range of sizes, from large instruments
that, in essence, constituted parts of ancient observatories, to small hand­
held models that were in effect instructional toys. The large ones achieved
accuracy and practicality at the expense of being unwieldy and not easily
portable, but they could be adapted to a variety of uses as clocks, calendars
and directional aids.

The larger ones allowed for careful measurement and so allowed practical
problems to be solved without computation as such; they were rather like
"special purpose analogue c0!Uputers. Smaller ones could not realistically
be used in this manner as the errors involved in the measurement were too
great.

Ptolemy wrote, it is thought, a treatise on the armillary sphere, and it
is also thought that the later Theon of Alexandria wrote a commentary on
that boole All this work is now lost, but there are grounds for the sug­
gestion that it is partially preserved as the common source of several later
worl{s, some of which present aspects of it in translation (into Arabic and
Syriac). These are among the first astro~omers l{nown to have worked on
tIle subject, but ,it is generally believed that an earlier figure, Hippar~hus,

was also aware' of much of the theory.

Ptolemy and Theon lived and worked in Alexandria, which is in Egypt,
but. in those days was a centre of Greek culture. Theon was the father of
Hypatia, an early woman mathematician (see Function, Vol 16, Part 1).
Much of what we know of Hypatia comes from her best-l{nown pupil, whose
name was Synesius. We will see in the sequel that Synesius learned much
of this theory from his teacher, and is himself an important figure in the
relevant history.

The celestial spllere, the apparent shape of the heavens with its fixed
pattern of stars, may be analysed exactly as a replica of the terrestrial
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sinn

globe. Because of the rotation of the earth the celestial sphere will appear,
to observers on the surface of the earth and thinking of themselves as fixed
in space, to rotate once over the course. of each 24 hours.. This apparent
rotation will take place about an axis which passes from the north to the
south celestial pole. Each star, therefore, will trace out a circle in the
observer's sky. This circle will be a circle of latitude on the celestial sphere.
In particular, one such circle of latitude is the celestial equator.

North and south of the celestial equator are the tropics of Cancer and
of Capricorn r~spectively. On December 22nd, the path of the .sun through
the heavens follows the tropic of Capricorn, and this is our longest day
and the northern hemisphere's shortest; on June 22nd, the path of the sun
follows the tropic of Can~er, and this is our shortest day and the northern
hemisphere's longest. Between these dates, it follows lines of latitude on
the celestial sphere and Figure 2 shows how these vary in the ~ourse of
the year. We have ±23.5° as the latitudes of the two tropics. If d is the
number of days since December 22nd, and if a is the latitude of the ~un's

path, then we have!:

sin a = sin 23.50 cos(0.9856d)0 =.0.3987 cos(0.9856d)0 0

(The number 0.9856 is the number of degrees in a circle (360} divided by
the number of days in a year (365.25).) .

N

s

Figure 2. A cross-section of ~he c~lestial sphere and the sun's ap­

parent path th rough the heavens.

This is to take a geocentric (or earth-centred) view of the matter, and
there is nothing wrong with this; it served us well for some 2000 years! Let
us continue to think in this way2. Look again at Figure 1. The armillary

1For another, more detailed, derivation of this law, see Aidan Sudbury's article in Func­
tion, Vol 19, Part 3.

2 Aidan Sudbury's article uses the heliocentric (sun-centred) approach, but the results
are the same in both cases.
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sphere l1as been alig~ed in such a way that the axis. is parallel to the axis
of the earth ,as seen in Melbourne. Melbourne lies at latitude 37.75° south
and the photograph shows the, axis of the armillary sphere set at an angle
of about this amount to the horizontal circle of the mount.

This horizontal circle of the stand represents the horizon. So now, in
order to find the length of the day for any day of the year, we need to
determine the length of the arc of a latitude circle of the relevant latitude c¥,

that lies above the horizon. This is a relatively simple exercise in geometry,
and indeed with a large enough and sufficiently detailed armillary sphere,
measurement, rather than 'calculation, would do the job for us. With a
smaller instrument such as that shown here, this is insufficiently accurate
and so we need to calculate and we merely use the device to help us visualise
the situation.

The relevant mathematics forms the subject matter of sp~erical

trigonometry3. The answer is that· the day is (12 + 2'ljJ/15) hours long
where'ljJ (in degrees) satisfies the equation

sin 1/J = tan c¥ tan 37.75°,

a being the angle found before and 37.75° being the latitude of Melbourne4 •

More detailed calculations, involving the longitude as well as the lati­
tude, could'tell us the times of sunri$e and sunset.

I had occasion to use my armillary sphere the other day when two of
my friends, who have just built a new house, wanted to. get some advice on
where to plant. some trees in their garden. Their new back yard faces west
and they wanted to know the approximate position of the sun in summer
and. winter. The extremes occur on the shortest day (June 22nd) when
tIle sun travels along the tropic of Cancer in the celestial sphere. Figure 3
shows a vertical cross-section of Figure 1, and P represents the position of
the sun at midday5. Then the sun will appear to be due north of their back
wall. It will be at an elevation of 28.,75° when it first shines over all their
baclc yard. Similarly on the longest day, their back yard will be in full sun

3See Function, Vol 6 Parts 4 and 5, and for related articles, Vol 4 Part 1, Vol 5 Part 5
and Vol IS Part 2.

4 Again, see Aidan Sudbury's article for an alternative (and more fully detailed)
derivation. .

5This is the true, or local, midday; because of the way in which, for social and legal
reasons, we actually measure time, it will not correspond exactly with 12 noon.
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after midday and will see the sun at an angle of 75.75°.

N
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Figure 3. A vertical cross~section of an armillary sphere aligned for
the latitude of Melbourne

/ Tropic of Capricorn

To south
celestial pole

S --t--~--+~~---4-- N

Figure 4. A schematic representation of a similarly aligned armil­
lary sphere

Figure 4 now shows a schematic picture of the armillary sphere. The
horizontal circle NWSE represents the horizon, and the circle representing
the tropic of Capricorn is indicated. The point P represents the position of
the setting sun on the longest day. A little 3-dimensional geometry ~hows

that the angle POvV (not drawn on the diagram) is very nearly 30°. Thus
on the longest day, the sun sets some 30Q south of~ west. Similarly on the
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shortest day it sets some 300 north of west.

Sunset, shortest day

17

w

Sunset, .longest day

Figure 5. Positions of sunset for a we~t-facing house in Melbourne

Figure 5 now shows my friends' back yard. At true noon, the sun
appears above the point marked A. On a fine day, the entire back yard will
be in sunlight from this time until sunset and. as the sun moves westward,
its rays will shine into the back window. In the depths of winter, the sun's
rays will shine at sunset along the parallel lines RB, PO and AC, so that
only the triangular area ABC will receive direct sunlight. As it is desirable
to preserve this, the area ABR should be kept clear (at least of evergreen
shrubs). Once, the weather warms up, we will have sunlight across the
entire back wall and so entering the back of the house. Even at sunset, the
area ABD will be illuminated directly. Particularly during the hotter parts
of the day, we will want to shade the" wall AB. We could pl~nt evergreens
west of the line RB to this end. Deciduous trees and shrubs planted in the
triangle ABR would shade the back of the house in summer, but not so
greatly impede the light in winter.

Further Reading

Much material is given on the armillary sphere in a good and reasonably
accessible account of the astrolabe by J D North and published in Scientific
American (January 1974). I will have more to say on this article in my
subsequent account of the astrolabe. For some related material, see the
articles on the Monash Sundial in earlier issues of Function or, better still,
C F Moppert's booklet The Mo~ash Sundial.

* * * * *
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COMPUTERS AND COMPUTING

Answers from Facts and Rules

Cristina Varsavsky

Automated reasoning is a young but. rapidly progressing· field of com­
puter science. Researchers are producing expert systems that play an im­
portant role in assisting professionals in medical diagnosis, geological ex­
ploration, solving engineering problems, answering legal questions, etc.

The purpose of automated reasoning is to write programs that answer
questions which require reasoning. You are already familiar with some
programming languages; in this section we usually use QuickBasic, but
you have probably written, or at least seen, .programs in Pascal, C, or
perhaps Fortran. The programs written in these programming languages
are all very focused: they clearly and unambiguou~lydefine the steps to
be followed in order to perform a task. This time we will use a different
programming .language, a language that has the in-built facility to draw
conclusions from facts.

This is best explained with an example: suppose we want to write a
program that could answer questions about family blood relations, ques­
tions like "Who is Peter's grandfather?" or "Does he have a child?" or "Is
Gabi married?" But our program does not have any information yet about
this family. So for· a~y reasoning to take place, first Vfe have to supply the
computer with the base knowledge: a set of facts a~d Teasoning rules that
adequately describe the situation. Let us start with a few facts. We enter
the first line

(1) child(Sofi, Andrew)

meaning that Sofi is Andrew's child.. We enter a few more facts:

(2) child(Carol.Gustav)
(4) child(lvy,Maria)
(6) ch iId (Sonia ,Ivy)
(8) child(Frank,Mary)
(10)· child(Gustav,Rosa)
(12) . child(Andrew,lvy)
(14) wife(Gabi,Andrew)
(16) wife(Maria,Ludvig)

(3)
(5)
(7)
(9)
(11)
(13)
(15)

child(Sofi,Ga bi)
child(Peter,Gabi)
child(Catalina,Ludvig)
child(Gabi,Rosa)
child(Valeria ,Sonia)
wife(Sonia ,Jeremy)
wife(lvy,Frank)
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We could go on wi'th the list and enter all relations such as grandparent,
husband, uncle, etc. But since these are related to the ones we have already
defined, it is preferable to enter rules for reasoning. For ex:ample wife(X,Y)
also means that Y is the husband of X - this we express as

(17) husband(Y,X):- wife(X,Y)

and a few more:

(18) female(X):- wife(X,Y)
(19) parent(X,Y):- child(Y,X)

or a slightly more complicated one:

(20) grandchild(X,Y):- child(X,Z), child(Z,Y)

and finally

(21) grandparent(X,Y):- grandchild(Y,X)

While the entries (1) to (16) are simple facts, the entries (17) to (21)
are the rules for automated reasoning. Single capital letters such as X, Y,
Z represent variables; they do not have values - or rather names '- assigned
to them. When we enter (17) the program understands "if for a pair X,Y
the statement wife(X,Y) is true, then the statement husband(Y)<) is also
true". The entry (20) is interpreted as a procedure. We translate this into
English as follows:

To se~ whether X is a grandchild of Y, first find out if there is a Z
such that X is a child of Z. If so, the next" step is to determine if Z
is a child of Y.

Now that we have supplied the computer with facts about this family
and procedures for finding out more facts, we c.an start making queries.
We asl{ questions using the same syntax; the question "Does Ivy have a
child?" is entered into the computer as

Question- child(X,lvy)
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When the program reads this question, it searches through the list of facts
to see if there is one of the kind of child(X,lvy) for some X. As it finds the
statement (6) it returns

Sonia

It also finds (12) and returns

Andrew

Now try another query: "Who is a grandparent of Sofi?" - this we ask
as

Question- grandparent(P.Sofi)

The only entry related to grandparent is (21). With this; the program
converts the query to grandchild(Sofi,P). Next it finds the definition -for
grandchild(X,Y) in the entry (20). This procedure tells the program how to
go about finding out grandparents for Sofi. There are two steps involved;
each of them is called a subgoal and they have to be performed in the order
they appear from left to' right: the first subgoal is to find entries of the
form child(Sofi,Z), and the second subgoal is to match child(Z,P) for each
Z found in the first subgoal. The search corresponding to the first subgoal
gives (1) child(Sofi, Andrew) and (3) child(Sofi, Gabi). For each of them
the program proceeds to the second subgoal. First it searches amatcn for
child(Andrew, P). It finds (12) and returns

Ivy

Now the program goes back to the second match in the first subgoal
and searches for child(Gabi,P); it finds (9), returns

Rosa

and stops. Although every child has four grandparents, the program work­
ing on the list of facts and procedures can find only two. If we add the ­
line

(22) child(X,Z):- child(X,Y), wife(Y,Z)
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then another grandparent is found for ·S-o£1, "namely Frank, because (12)
and (15) give child(Andrew, Ivy). Note that (22) may not be true for every
family.

The more information we fee"d the computer with, the mor~ sophisti­
cated are tIle questions we can ask. If we want the program to answer
questions like "Who are the cousins of Peter?" we need" to define the pro­
cedure for cOllsin, for which we ~lso need the procedure to find siblings:

(23) cousin(X,Y):- child(X,Z), sibling(Z,W), child(Y,W)
(24) sibling(X,"Y):- child(X,Z.),child(Y,Z)

So for the query

Question- cousin(Peter,C)

the search goes as follows. The procedure cousin is defined in (23) through
three subgoals. The first su~goal is to match.·child(Peter,Z). The program
finds (5) child(Peter,Gabi), and through (22) and (14) it finds out that
child(Peter,Andrew) is true. The program leaves the second match in mem­
ory, and goes to the second subgoal to find if Gabi has siblings, i.e, to
start the search for sibt"ing(Gabi,W), which according to (~4) has to pro­
ceed through two further subgoals. It finds (9) child(Gabi,Rosa) and then
(10) child(Gustav, Rosa). S6 Gabi has a sibling, Gustav. Now to the third
subgoal of (23), to search for child(Y,Gustav); (2) child(Carol, Gustav) is the
only one found and the program outputs

Carol

The next step is to go back to the second match" that waS left in mem­
ory, child(Peter,Andrew), and to proceed to the second subgoal: to match
sibling(Andrew,W). For (24) it finds (12) child(Andrew,lvy) and also, using
(22) and (15), child(Andrew,Frank). Now with each of-them it goes to the
second subgoal of (24) and finds that sibling(Andrew, Sonia) is true.

Finally, the program" moves to the third subgoal of (23) to search for
child(Y, Sonia). It finds only V:~leria; giving the last ~utput

Valeria
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The interesting feature of this programming language is that we can keep
adding lines, facts and rules, to expand its knowledge base. I leave to you

, as an exercise to define the procedures uncle(X,Y), aunt(X,Y), brother(X,Y),
sister(X,Y), andniece(X,Y), to pose related questions and trace your proce­
dures. Note that 'not every question can be answered completely because
the program doesn't haye enough information. For .example, if we leave the
program with the 24 lines we entered, the task of finding all female mem­
bers of this family will lead to ~ list of all married females, disregarding
those that are not listed as wife(X,Y). Although it might well be common
knowledge that Catalina is a female name, this is in our knowledge base,
which has been built up through our living- experience; but the program
knows only the information we provide. Also, as with any other program­
ming language, if the rules Q,re not defined in a precise manner, we may get
strange answers.. Note that when we searched for Gabi's sib~irigs, we found
only Gustav, .but the program would have also returned Gabi, because we
did not specify that X and Y in (24) cannot be the same.

As another exercise, 'you could also try to imagine what a program that
performed the same family relations searching task, would look like in a
traditional programming language such as Pascal or Basic. How many
lines will you ~eed to do the job (23) does? How much processing would
be involved to find all Peter's cousins? How would you ask the question in
the first place? _

With the above example we have given a very brief introduction to'
the area known as logic programming; this is one of the various ways of
tackling automated reasoning. The syntax we used is very similar to that
of PROLOG, one of the best-known logic programming Ia~guages.Using

any such language requires a significant amount of practice to have the
programs running effectively and efficiently: procedures must be defined
precisely and the order of the lines of information must be carefully chosen
to economise processing time.

Traditional programming languages are good at performing mechanical
and focused tasks, while" logic programming languages, because of their
in-built logical power, are ideal for rather unfocused tasks like answering
questions about facts entered into the computer.

If you would like to learn ,more about logic programming in particular
and automated reasoning in· general, a good book yOll can start witll is
Automated Reasoning, Introduction and Applications by Larry Was et aI,
published by Prentice Hall in 1984.
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APPROXIMATING PIl

We start with the triangle OA'B (Figure 1) in which

oA = 1 + t 2
, 0 B = 1 - t2 and AB = 2t, 0 < t < 1

It is very easy to show that

OA2 = OB2 + AB2

which implies immediately that LB is a right angle. (See Figure 1.)

A

2
1+t

e
o 2

1-t

Figure 1

B

If we set LAOB = (), then we have

2t
tan 8 = --2'

I-t

Figure 2 is an elaboration of Figure 1. Here OC = OA and thus we
may readily prove that LBAC = ~ .. We also find BC = 2t2, and thus from
the triangle ABC we have tan ~ = t.

But now tan B = 1~tt2 and if we put T = tan (), by using the formula for
the solutions to ..a quadratic equation and discarding the negative solution,
we find

-1 + VI +T2
t= .. T (1)

tan i = -1 +v'2 ~ 0.4142 ....

Now consider the special case B = t, T = tan () = 1 and apply equation
(1) to find

IThis approximation of 1r is based on an article written. by our reader A Woodman
(Cranbourne, Victoria).
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If we apply equation (1) yet again, we will find

1r -1+V4+2)2
tan -6 =)2 ~ 0.1989 ....

1 2-1

A
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o

e

Figure 2

B c

e/2

But we may continue in this way to find tan 31"' tan f4, etc. These
different numbers, f(n) say, will gi~e the values of tan(7f/2n ) and as n
gets larger, the angle 1[/2n gets smaller. Thus, because we are working in
radians, we have2

t(n) = tan(7f/2n
) ~ 7r/2n

,

and the approximation gets better the smaller the angle becomes, that is
to say, the larger the value of n. It thus follows that

Table 1 shows the successive values. of appro:?Cimations to 1r calc~lated

using a spreadsheet.3 It will be seen that the successive values of 2n t(n)
approach 7r until we reach the limits of the available software.

2The graph of the function tan(x) is very well approximated by the straight line y = x
when x is very close to o. -You can check this by plotting their graphs with a computer
program.

3See Function, Vo117, Part 3, pp 76-82.
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0 t(n) 2A o * t(o)
-1

3 0.4142 3.313708499
4 0.1989 3.18-2597878
5 0.0985 3.151724907
6 0.0491 3.144118385
7 0.0245 3.14222363
8 0.0123 3.141750369
9 0.0061 3.141632081

10 0.0031 3.14160251
11 0.0015 3.141595118
12 0.0008 3.14159327
13 0.0004 3.141592808
14 0.0002 3.141592691
15 1E-04 3.141592676

Table 1

* * * * *

Once upon atime a professor accidentally (and temporarily) landed
in an~ther world right at the feet of Socrates. The following conver­
sation ensued.
PROFESSOR: But, Socrates, I had so many questions to ask you.
Instead, you have asked all the questions..
SOCRATES: I am sorry. It's what I do. I have always maintained my
ignorance, but when I ask questions, I learn and my students learn.
The moment I start giving answers, their sense of inquiry goes to
sleep, and the lesson is over.

25

-Kennesaw State College (GA) Newsletter; Spring 1991

* * * * *
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Letter to the Editor
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In the interesting article Sand or Water: Telling them Apart in Func­
tion, Vol 19, Part 5, a statistic z was calculated, on page 149, as having
the value 0.536, because "the value of Vii cancels out". Unfortunately, z
should be 1.268; there are rea.lly two different Vii's which do not cancel
out. In the expression for G', namely vnpq, the appropriate n is the number
of guesses made by each person, namely 10, not the "number of persons in
the group". On the other hand, in the expression

x-J.L
z=--

a/Vii
the n here is the "number of persons in the group" over which the average
x is calculated, namely 56.

The revised value of z does not change the conclusion that the Skeptics
could have been just guessing, without having any real skill at distinguish­
ing between the boxes which. contained sand and those which contained
water.

I There are two other matters of importance in this experiment:

• It is because Vii does not really cancel out, that the experiment be­
comes better, the more people attempt it. If the same results had
been achieved by a larger group of people, then that may have been
convincing evidence in favour of water-divining powers.

• The formula for (J assumes that each person makes their 10 guesses as
statistically independent trials, so that the number of correct guesses
has the binomial probability distribution. If, however, some people
assume that there will be five boxes of sand and five of water .(1 note
that they were not told this) and that their task is simply to decide
which are which, then a different (smaller) value applies for G' because
the number of correct guesses would then have a hypergeometric prob­
ability distribution.

Geoff Watterson

Ed Dr Watterson is correct, and his z-value should replace that quoted
in the article. As a result of this amendment some of the other numerical
values given in the sllbsequent discussion also require revision. However, as
Dr Watterson remarks, tIle conclusions remain intact. A corrected version
of the article can be obtained by writing to DrM Deakin.
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NEWS: ANOTHER SUNDIAL

We have had several articles on the unusual Monash sundial. (See Func­
tion, 'Vol 5, Part 5; Voll4, Part 4; Voll5, Part 3.) This tells us both the
time and the date by the position of a shadow on the north· wall of the
Union building. The scale on the wall comprises a number of "analem­
mas" (figure-8 shapes) which identify the hours and a further set of curves
representing dates.

A sim~lar principle underlies a new (and even more elegant) sundial to
be seen in the central mall of the main (Hobart) campus of the University
of Tasmania. The accompanying photograph shows the sundial and its
designer: Dr Tony Sprent of the Department of Surveying in Hobart.

The main component of the instrument is a bronze loop housed in two
pivots, one at the top and the other at the bottom. The loop may thus
turn about an axis running between these and·this rotation may be brought
about by means of the knob at lower right of the movement.

The axis of rotation is so aligned as to be perpendicular to the earth's
axis and also perpendicular to the line from east to west. Through its
upper loop, a pinhole (not visible in. the'photograph) has been drilled and
the geometry is so set up that this may be lined up precisely with the rays
of the sun merely by turning the knob. .

The point of light then falls onto a carefully· engraved analemma (again
not visible in the photograph) on the lower loop. The,point of the analemma
on which the light shines gives the date on a scale engraved in the brass it­
self. The hours and minutes come from scales at the base of the instrument.
Hours are on the lower pivot and minutes on the turning knob.

Dr Sprent sees his instrument as combining Science, the Arts and Tech­
nology in a unity fitting for the university, which (as its name implies)
seeks a synthesis of knowleq.ge. The detailed calculations he himself per­
formed supply the Science. The sculptor (Marti Wolfhaggen) who made the
beautiful instrument supplied the Art, and Kirwan Engineering and Ret­
las Bronze, who between them completed the actual fabrication, represent
Technology.

The sundial is accurate to within about a minute and Dr Sprent recalls
seeing a student use it to see if he was running late. for a lecture. At least,
tllis is how thillgS shollld be and usually are. But like our Monash sundial,
Tasmania's has had its ups alid downs. Recelltly a watet main burst and
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the subsequent flood caused the stone base to settle at the wrong angl~

and so to be about 10 minutes (or, if you like, a week) out. It had to be
realigned to allow' the sundiaL once more to demonstrate its full potential.

Dr Tony Spre.nt next to the new sundial in the central mall, Hobart
campus (Photo taken from the Alumni Review UTESAA, April 1994)

* * * * *

Once, when Isaac Newton was asked how' he made all of his dis­
coveries, he replied "lf I have seen further than others, it is by standing
on the shoulders of gi.ants."

* * * * *
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PROBLEM CORNER

SOLUTIONS

PROBLEM 19.4.1 (K R S Sastry, Dodballapur, India)

.In the convex quadrilateral ABCD, the diagonal AC is the bisector
of angle DAB and a trisector of angle BCD, and the diagonal BD is a
trisector of angle CDA and a quad~isector of angle ABC, as indicated
in Figure 1. Also, a, {3, [, b are natural numbers -of degree measures of
the angles indicated. Find the possible degree measures of the angles of
ABeD.

A

aa

\

'-l..----:---D.

Figure 1

SOLUTION by K R.S Sastry

From the figure it follows that

a +2[ = {3 + 8

a+ 38 = 2{3 +[
a + {3 +48 = 180

From (1) a~d (2) we have

a = -5, + 58

(3 = -3, + 48

Then from (3), -81 + 138 = 180, and 8 > I from (4), i.e.

58+ 8(8 - ,) = 180.

(1)
(2)
(3)

(4)
(5)

(6)
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Since 5 and 8 do not have common divisors and 5 does not divide 180, it
must be that 5 divides (8 - ,).

Suppose [) - I = 5. Then from (6), 8 = 28; from (4), a = 25; , = 23;
from (5), (3 = 43. Hence A = (2a)0 = 50°, B = (48)° =.112°, C = (3(3)° =
129°, D = (3,)° = 69°.

Suppose 8 - , = 10. This yields a = (3 = 50, ')' = 10, [) = 20, and so
A = 100°, B = 80°, C = 150°, D = 030°.

{; - , > 10 is impossible.

Solutions were also received from John Barton (Carlton North, Vic) and
Keith Anker (Monash University).

PROBLEM 19.4.2 (Juan-Bosco Romero Marquez, Departamento de Algebra,
Geometrfa y Topologfa. Unoiversidad de Valladolid, Valladplid, Spain)

Find all solutions in positive integers of the Diophantine equation
4xy = ~(x + y).

SOLUTI.ON by Keith Anker (Monash University)

Multiply the equation by 4 and rearrange to obtain 4x·4y-9(4x+4y) =
O. By adding 81 to both sides and factorising, the equation can be written
(4x - 9)(4y - 9) = 81. Therefore 4x - 9 is a factor (positive or negative) of
81, so 4x - 9 E {±1,±3,±9,±~7,±81}.Checking each value in tu:n, we
obtain (x,y) = (3,9) and (x,y) = (9,3) as the only solutions.

Also solved by John Barton and the proposer.

PROBLEM 19.4.3 (South African 1993 Old Mutual Mathematics Olympiad)

For which values of n is the number Sn = I! + 2! + ... + n! the square
of an integer?

SOLUTION by John~Barton

Every factorial beyond 4! is congruent to amodulo 10. The sums up to
41 are 1, 3, 9, 33, of which the first and third are square. All sums beyond
this point are congruent to 3 modulo 10, and hence are not square. The
required values of n are 1 and 3.

Also solved by Derek Garson (Lane Cove, NSW) and !(eith Anker.
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PROBLEM 19.4.4 (South ,African 199~ Old Mutual Mathematics Olympiad)

For every pair· of natural numbers .p and q a circle is drawn above the x­

axis; it has diameter ~ and it touches the x-axis at the point (~, 0). Prove
that no two circles intersect, and determine the condition for t&ngency.

SOLUTION by John Barton

Consider two of the circles, with contact points (~, 0) and (f" 0) and

radii 2~2 and 2:'2 respectively (Figure 2). The separation s of their centres
is given by

2 . (pI p) 2 (1 1 ) 2S= q' - q + 2q'2 ~ 2q2

( ~I'OJ

Figure 2

The sum of the radii is 2
1
'2 + 212 == U, say, and we haveq _. q

S2_(J2 = (::-~r+~(q:2- :2r -~(q:2+ :2r
(p'q _ pql)2 - 1

q'2q2

> 0, because p'q - pq' is an integer.

Equality occurs only when Ip'q - pq'l = 1 and this will give a sufficient
condition for tangency. If Ip'q - pq'l> 1 then 8

2
- a 2 > 0, so 8 > u and 'the

circles do 110t illtersect.
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We also note that if p'q - pq' = 0, that is, ~ = .P., then the circles areqq

tangent at (~, 0). If p and q are coprime, all the circles corresponding to

the pair of natural numbers O!p and' O!q (O! = 2, 3,4, ...) touch the circle
corresponding to p and q, and lie inside it.

We can summarise the condition for tangency as p'q - pq' E {O, ±1}.

PROBLEM 19.4.5 (from Trigg C W, Mathematical Quickies, 1967, McGraw­
Hill)

During a period of days, it was observed that when it rained in the
afternoon, it had been clear in the morning, and when it rained in the
morning, it was clear in the afternoon. It rained on 9 days, and was clear
on 6 afternoons and 7 mornings. How long was this period? '.

SOLUTION by Benito Hernande~-Bermejo, Madrid

From the conditions of the problem we observe that the only possi­
ble combinations are clear/rain, rain/clear and clear/clear in the morn­
ing/afternoon, respectively. That is, the only forbidden possibility is
rain/rain. We shall make the following definitions:

x = number of days in which we have clear/rain
y = number of days in which we have-rain/clear
z = number of days in which we have clear/clear

Then, from the data of the problem:

x + y = number of days with rain = 9
x + z = number of clear mornings = 7
y + z = number of clear afternoons = 6

And, of course, x +y +z equals the number of days of the period, which. is
the unknown..Adding the three equations, we are·led to:

2(x + y + z) = 22, so x + y + z = 11,

which is the solution. Notice that we do not need to solve t,he system in
full detail to find· the answer. However, you can check that x = 5, y = 4
and z = 2.
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A misprint in the problem when it was originally stated led to an awk­
ward "solution" involving fractions of a day. Two readers, John Barton
and Keith Anker, solved the problem in this form.

PROBLEM 19.4.6 (from Trigg C W, Mathematical Quickies, 1967, McGraw­
Hill)

Albert and Bertha Jones have five children: Christine, Daniel, Eliz­
abeth, Fredericl{ and Grace. The father decided that he would like to
determine a cycle of seating arrangements at their circular dinner table so
that each person would sit by every other person exactly once during the
cycle of meals. How did he do it?

SOLUTION by John Barton and Keith Anker

There is no loss of generality if we assume that the family is seated in
alphabetical order for the first meal: "ABCDEFG. The neatest solution is
obtained by tal(ing every second name in cyclic order for the second m~al,

ACEGBDF, and every third name for the third meal, ADGCFBE.

The extent to which this approach can be generalised to other family
sizes is left to our readers to explore.

Solution to an earlier problem

The problem below appeared in the April 1992 issue of Function. A
solution has not been published previously in. Function.

PROBLEM 16.2.4 (from Juan-Bosco Romero Marquez, Valladolid, Spain)

Let T and T' be two right-angled triangles. Let R, rand R', r' be the
circumradius and inradius of T and T' respectively. Prove that if R/R' =r=
r / r', then T and T' are similar. Does this theorem hold for a larger class
of triangles?

SOLUTION

Let the triangle T have vertices at A, Band C, with the right angle at C.
Let a and b denote the lengths of the sides opposite A and B respectively.
The centre of tIle circumcircle of a right-angled triangle is the midpoint of
the hypotelll1se, so the length of the hypotenuse m~st be 2R, Le. twice the
circllmradills. Let D be the incentre of the tri~ngle, and let E, F and G be
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the bases of the perpendiculars to the sides BC, AC and AB respectively,
passing through D. (See Figure 3.)

A

b

E
a

Figure 3

B

From the figure, triangles BDE and BDG are congruent, so BE = BG and
thus BG = a - r. Similarly, AG = b - r. Therefore a + b - 2r = AB = 2R,
so

a+b=2(R+r)

From the original triangle T, we also have the equation

a
2 + b2 = 4R2

From equations (1) and (2) we obtain

(a+b)2 _ (R+r)2
a2 + b2 - R2

This equation can be written in the form

(1)

(2)

(3)
(%+1)2 _ ( r)2
(~)2 + 1 - 1+ R

Upon replacing alb and rIR by U and v respectively, equation (3) becomes
a quadratic equation in u. You can· solve it if you wish, but there is no
need; all that matters is that equation (3) has at most two solutions for U

in terms of v. In fact, if u = UQ is one solution then u = l/uQ is the otller,
since swapping a and b does no.t change the geometry of the problem, bllt
corresponds merely ~o relabelling the two sides of ~he triangle.
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Now, if we have two triangles, T and T' , and if RIR' = rlr', then
equation (3) must apply to Tand T' with the same value of v. Therefore
either alb = a'lb' or alb = b'la', so T and T' are similar.

If T is not a right-angled triangle, we can calculate the ratio rIR for
T and try to solve equation (3) using this value. If a real solution alb
exists, form a right-angled triangle T' whose sides adjacent to the rig"ht
angle are in the ratio a : b. Then RIR'= rIr' but the triangles are not
similar, so the theorem could not be extended to a larger class of triangles
containing T. However, there "are classes of triangles for which the ratio
r IR is such that equation (3) has no real solutions - equilateral triangles
(for which r IR = !) are an example, as you may check. Thus the theorem
can be extended, albeit rather artificially, to larg~r classes of triangles - for
example, the class comprising all right-angled triangles and all equilateral
triangles.

PROBLEMS

Readers are invited to send in solutions (complete or"partial) to any
or all of these problems. All solutions received in sufficient time will be
acknowledged in the next issue but one, and the best solutions will be pub­
lished.

Just for a warm-up, the first problem for 1996 is an amusing exercise in
proportions from Keith Anker of Monash University.

PROBLEM 20.1.1

If a hen and a half lay an egg and a half in a day and a half, how many
hens will lay two eggs in three days? (Complaints to the editors about the
unreality of this problem are not encouraged!) .

And now for some "real" problems:

PROBLEM ,20.1.2 (Claudio Arconcher, Sao Paolo, Brazil)

Find solutions in positive integers for

(a) XX + yY = 2xy

PROBLEM 20.1.3

(b) xX+yY+zz=xy+xz+yz.

Prove that for any positive integer n, In + .;n + ~J is not a perfect
sCluare. (The il0tation LxJ denotes the greatest integer less than or equal
to x.)
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PROBLEM 20.1.4 (1994 Old Mutual Mathematics Olympiad, South Africa:
reprinted from Mathematical Digest, Ja"nuary 1995, University of Cape Town)

A, B, C, D and E are distinct points in three-dimensional space, such
that A, B ·and C lie on the surface of a sphere. Prove that at most one of
the four-sided figures XYDE, where X and Yare two of the points A, B
and C, can be a parallelogram.

PROBLEM 20.1.5 (from Mathematical Mayhem, Vol 7, Issue 5, University of
Toronto)

Let G(n) be the number of strictly increasing or decreasing sequences
formed using the values 1,2, ... )n, e.g. for n = 2 there are 4 sequences (1),
(2), (1,2), (2,1). Find an explicit formula forG(n) in terms ofn.

PROBLEM 20.1.6 (from Sweedi~h Mathematical Olympiad, 1979 Qualifying
Round; reprinted from Mathematic;al Mayhem, Vol 8, Issue 1, University of
Toronto)

For which real values of a, a ~ 1, is Va + 2va=1" + ja--:- 2va=1" = 2?

PROBLEM 20.1.7 (based on a problem seen on the Internet)

1. Let two circles C1 and C2 be given, with C1 inside C2• A third circle,
C3 , moves around the region between C1 and C2 , in such a way that it
is always tangent to both circles. Prove that the locus of the centre of
C3 is an ellipse.

2. Now suppose the problem in (1) is modified so that C1 is outside rather
than inside C2. What type of figure is described by the locus of the
centre of C3 in this situation?

3. What happens if C1 and C2 overlap?

PROBLEM 20.1.8 (from the -Internet, author unknown)

From each corner of a unit square draw a quarter of an inscribed unit
circle. Find the area of the central diamond shape where the four quarter
circles overlap.

* * * * *
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