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Function is a mathematics magazine prod~cedby the Department of
Mathematics at Monash University. The magazine was founded in 1977
by Prof G B Preston. Function is ·addressed prinGipally to students in the
upper years of secondary schools, and more generally to anyone who is
interested in mathematics.

Function deals with mathematics in all its aspects: pure mathematics,
statistics, mathematics in computing, applications of mathematics to the
natural and social sciences, history of mathematics, m~thematicalgames,
careers in mathematics, and mathematics in society. The items that appear
in each issue of Funct~on include articles on a broad range of mathemat­
ical topics, news items on recent mathematical advances, book reviews,
problems, letters, anecdotes and cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other
material for publication are invited. Address them t?:

The Editors, Function
Department of Mathematics, Monash University
900 .Dandenong Rd
Caulfield East.VIC 3145, Australia
Fax: +61 (03) 9903 2227
e-mail: function@maths.monash.edu.au

Alternatively, correspondence may be addressed individually to any .of
the editors at the mathematics departments of the institutions listed on
the inside back cover.

Function is published five times a year, appearing in February, April,
June, August, and: October. Price for five issues (including postage):
$17.00*; single issues $4.00. Payments should be sent to: The Business
Manager, Function, Mathemati<;s Department, Monash University, Clayton
VIC 3168; cheques and money orders should be made payable to Monash
University. Enquiries about advertising should be directed to the Business
Manager.

*$8.50 for bona fide secondary or tertiary students.



101

EDITORIAL

Welcome to this fourth issue of Function for this year.

The three feature articles included in this issue cover different areas of
mathematics: number theory, geometry, and logic. Michael Deakin ex­
plains the patterns of certain sequences ori~inating in irrational numbers
and uses one of them to present a winning strategy for a Nim-type game.
R Soemant!i, extending an earlier article, looks at the design of a road
that would allow a polygonal wheel to roll along, keeping its centre on a
level.· Peter Grossman takes us to the world of logic to solve a problem in
a community of monks.

The topics in our regular History and Comp·uters and Computing sec­
tions are related. Paul Grossman gives a recollection of. the different ways
people performe~arithmetic calculations before calculators and computers
became available. Michael Deakin focuses on one necessary skill before the
advent of calculators: he explains some simple calculating techniques for
mental arithmetic used by ordinary people, and other more sophisticated
ones developed by some gifted mathematicians.

Peter Grossman has prepared a selection of new problems to challenge
your mind. Solutions to the problems published in the April issue are also
included.

As usual, we encourage our readers to send letters, solutions, problems,
and articles, and we thank all who have made contributions to Function in­
one of those forms.

* * * * *
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THE FRONT COVER

Converging Circles

Cristina Varsavsky

Function 4/95

The geometric construction on the. front cover consists of an equilateral
triangle with an inscribed circle tangent to the three sides, and sequences
of circles approaching the vertices, each of them touching the preceding
circle and two sides of the triangle.

It is a simple ~ask to see how fast these circles converge to the vertex,
or in other words, how fast each sequence of radii approaches zero.

c
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A

Figure 1

We can work this out from Figure 1 which represents one third of the
original figure determined by two medians of the triangle. Since the angle
BAG of the right angle triangle ABC measures 60°, we have

. 0 1 rl
cos60 ="2 = AC

Then AC == 2rl. By a similar analysis, we obtain DC = 2r2. Therefore
2rl == AC = rl + r2 + 2r2 from which we conclude that rl = 3r2. The same
relationship can be established for any pair of consecutive radii, giving the
general relationship

rk == 3rk+l , k == 1,2,3,4, ...
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Thus the sequence of radii is a geometric sequence with ratio q = 1/3 and·
first radius Tl = 11(2V3), with 1being the side length of the triangle.

A natural extension is to start with a regular n-sided polygon and in­
scribe circles in the same way with n sequences converging' to the corre­
sponding vertices. Figure 2 depicts one n-th of that polygon.

C
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A

Figure 2

We have now
Tl

cos(I80°In) = AC

Thus AC = TIl cos(I80°In). Also, DC = T21 cos(180°In). Then, as before,

rl r2---- = AC = rl + T2 +---­
cos(180oln) cos(180oln)

which results in
. 1 + cos(I80° jn) .

rl = r2
1- cos(180ojn)

indicating that the sequences of radii again form a geometric sequence,
with ratio qn = [1 +cos(180°In)]/[l- cos(1800jn)]. As the number .of sides
increases the denominator of this last expression will approach. zero, and
the ratio will become larger. The ratio qs is already about 25; most of the
octagon is occupied by the first circle inscribed in it.

* * * * *
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NUMBER PATTERNS AND WYTHOFF'S GAME

Michael A"B Deakin

I learned of these rather delightful number patterns by attending a lec­
ture by Professor ,A M Vaidya of Gujarat University, India. I hope you: too
will enjoy and learn from them.

First, start with the number /2 and multiply it successively by
1,2,3,.4, .... This gives:

1.4142 ... , 2.8284 .. ~ , 4.2426 ... , 5.6568 ... , etc.

However, in each case we keep oJ;lly the part that comes before the decimal
point: 1,2,4,5, ... . (This is the function represented math~matically

by [n/2] , where the square brackets mean "the integral part of". Many
calculators and computer packages use the notation INT( ).)

Continuing in this way, we set up the first two lines of Table 1, where I
have written an for [n/2].

n 1 .2 3 4 5 6 7 8 9 10 11 12
an 1 2 4 5 7 8 9 11 12 14 15 16
bn 3 6 10 13 17
Bn 3 6 10 13 17 20 23 27 30 34 .37 40
en 2 4 6 8 10

Table 1

The third line of the table lists in order the numbers not contained in
the second. These are to be called bn •

For the moment, skip the next line (Bn ) 'and go to the bottom line which
lists en, where en ='bn - an' But this looks very simple. We seem to have

(1)

In fact we do, and now let us see why.

Let 0:' be any ,irrational number bigger than 1 (/2 is one such) and form
the sequence of numbers rna] just as we formed the numbers an. Call this
sequence A.

Now consider another number (3 satisfying the equation 0:' + (3 = a(3,
that is to say, 1/a+ 11f3 = 1. We readily find that'(3 = 0'./(0:-1). This new
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number gives rise to some nice patterns. To see this, form the sequence
B by calculating the numbers [n,B]. In the ·case of Table 1, this gives the
fourth line, the values Bn .

We seem to have, in our example, Bn = bn , and indeed this.is so.

To show this, Le.· that' the sequence of numbers not in A is precisely the
sequence B, we need to prove two things:

(i) Eve"ry number is in either A or B.

(ii) N<? number can be in both sequences ..

These statements will be proved in the Appendix. So, accepting these
results, we now have B n = bn and so the result (1), which we'want to
establish, may now be written

(2)

in the case where a = V2'.
But now

Bn = [(nV2)/(V2 -,1)] = [(nV2)(V2 + 1)]

= [2n + nV2] = 2n+ [nV2] = 2n + an

where the step [2n + nV2'] = 2n + [nV2'] follows because 2n is an integer.
This proves the result (1).

Now take a different value of a. We choose

. a = T = (1 + v'5)/2 = 1.618 ... > 1.

(This value of a, Le. T, is t~e so-called "golden ratio"; see Function, Voll6,
Part 5.) Now construct a table (Table 2) similar toTable 1.

n 1 2 3 4 5 6 7, 8 9 10 11 12
an 1 3 4 6 8 9 11 12 14 16 17 19
bn 2 5 7 10 13 15 18 20
Bn 2 5 7 10 13 15 18 20 23 26 28 31
en 1 2 3 4 5 6 7 8

Table 2
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Here the general features are the same as for Table 1 but instead of
Cn = 2n, we now have Cn = n. The details of the proof in this case are left
to the reader. .

This brings us to Wythoff's game. It is one of those Nim-like games you
play with matches, pebbles, counters or the like, and it is named after the
mathematician who invented ite'arly this. century. It is an example of what
a recent article (Function, Vol 19, Part 1) called an "impartial game", and
the general remarks of that article all" hold in this special case. Here are
the rules.

We take two piles of matches with N matches in one pile and M in the
other. Players move alternately and the player whose turn it is may take
either:

any number of matches from one or the other pile,

or else

equal numbers of matches' from both piles.

The objective is to take the last match: whoever does so wins.

The winning technique is this: so adjust the piles th'at for some value of
n in Table 2 you leave your opponent with an matches .in one pile and bn in
the other.. E.g., suppose that when you come to move there are 19 matches
in the first pile and 20 matches in the second. You take 7 matches from
the first pile and leave your opponent with a (12,20) situation - the case
n = 8 in Table 2. It will always be possible to do this, unless the situation
you begin with is already one of the pairs from .Table 2. (This you may
prove for yourself.)

The. interesting point,. and I leave this as a project for the reader, is that
if the situation in front of the player is that of a number pair from Table 2
(i.e. if N = an and M = bn for some value ofn), then no single move.can
produce another such number pair; conversely, any other situa~ion can be
converted in a single move to such a pair.

The rule is thus that the player .whose opponent is faced. with one of the
Table 2 pairs will be the winner.

To continue the above example. Suppose you have left your opponent
with (12,20) as envisaged above. The opponent takes (say) 2 matches from
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the larger pile. You now face (12,18). Take 1 match from the smaller pile
to set up (11, 18) - notice that this pair occurs in Table 2. S~ppose your
opponent takes one match from the larger pile. You now face (11,17). This
time take 2 matches from each pile and so set up (9,15). Etc.

Playa few such games against yourself, or with a friend.

The key to the success of the method is that the loser is faced with
(1, 2), and no matter _what move is then made, the situation is hopeless.

Appendix

We now need to prove the main postponed result, namely that for any a as defined in
the body of the article, every number lies in precisely one of the sequence~ A, B defined
there. First to prove the truth of the statement labelled as (ii) in the body of the text.

No number can lie in -both sequences.

For suppose some number k was .a -member of both sequences A and -B. Then because
k is in A there is a natural number such that .

o< k - na < 1. (1)

(This is to say k ::::: [na] in a slightly different way - note that we can never have k ::::: na,
as a is irrational.)

Similarly, as k is supposed also to be in B, there is a natural number m such that

o< k - mf3 < 1.

Multiplying (I) throughout by fJand (~) throughout by a and adding, we find

o< k(a +(8) - (n + m )0:,8 < 0: +13.

and we recall that a +fJ = a,8, and so deduce

n+m<k<n+m+1.

(2)

(3)

(4)

'This is impossible, as no integer k can possibly lie between the two consecutive integers
n +m and n+m + 1.

Thus we have proved the second of our requirements. Now to the first.

Every number must lie' in one of the sequences.

The proof uses the same ideas just employed.

What we must show is that there is no number k that is "skipped over" in the sequence
produced by combining A and B. If the number k is skipped over in A, then for all n, na - k
is either negative or greater than 1. (Thus, in Table 1, nV2 - 10 is negative if 11. < 8, but
8V2 - 10 == 1.313J ••• > 1~ and 9v12 - 10, etc. a.re correspondingly larger.)
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Thus we have, for some n depending on the value of k,

nO'. < k and (n + 1)0'. > k + 1.

Function 4/95

(5)

The first of the inequalities in (5) may be written as -k < -nO'. and thus we find ka - k <
kex - nO'.. This last may be rewritten as k(a - 1) < (k - n )0'., so we deduce

ex
k < (k - n)- == (k - n)f3.

a-I
(6)

Similarly, from the second inequality in (5) we have k +1 < an +a; then k - 0'.+1 < an
and so -k + ex - 1 > -an. We add ka to both sides to obtain (k + l)(a - 1) > a(k - n).
Then,

(k - n)f3 < k +1

(6) and (7) may be combined to give

k < (k - n)f3 < k + 1.

(7)

This last inequality tells us that [f3(k - n)] = k, which is to say that k must be a term of
the sequence B.

Th.is completes the proof.

Problem: What values of a would you need to give en = 3n, 4n, etc.?

* * * * *

Subversive Sets

Eberhardt Schmidt (born 1876 in Dorpat Tartu, capital of Estonia,
. then Russia) lived in Germany, but once visited his family in tsarist

Russia. His book on set theory was confiscated by the police because
it mentioned "Machtigkeit cler Menge" which means "Powers of Sets"
but also "Powers of Masses" .

* * * * *
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SQUARE AND POLYGONAL WHEELS

R Soemantri, Universitas Ga~jah Mada, Indonesia

In Function, Vol 16, Part 2, there was an article that discussed, a~ong
other things,' the design of a road that allowed a square wheel to roll along
it, so that its centre stayed on a level, neither risingn~rfalling as the motion
progress~d. Figure 1 shows the result. It also depicts the coordinate system
used to analyse the problem. Note that the y-axis points down;

Figure 1

Before extending the analysis of that earlier article, I will revise for
the reader's benefit some of the mathematical backg~ound. We require two
mathematical functions that readers may not have met. These functions are
called "cosh x" and "sinh x" , where the latter is pronounced as "shine x";
they are defined as follows:

eX + e-X . eX _ e-X

cosh x = 2 and sinh x = 2 '

. where eX is the exponential function. Many calculators have these func­
tions as part of their "library", and they are very like the more familiar
trigonometric functions. (E.g. cosh2 x - sinh2 x = 1, and there- are other
such similarities.)
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Now look again at Figure 1, and let OA= a. The result is then that
the road is to have the' shape depicted: a succession of arcs~ The first of
these has the equation1

x
y=acosh(-), (1)

a
and this equation is valid for a range of x about x = O. In fact we have

Ixl ~ X,

where X satisfies the equation

s~nh(X) = 1.
a

(2)

(Approximately this gives X = -o.S8a.)

For values of x outside the range from -X to +X, we reproduce this
primary arc as shown in the diagram. It is equation (2) that tells us when
to finish the first arc' and to start the second. Now we need to see where
this equation has come from and for this purpose, look again at Figure 1.
When the wheel has rolled through an angle of 1r/4 radians (i.e. 450

),

the line PQ must make an angle of 1r/ 4 radians with the horizontal; this
ensures that the right angle at the point' P fits snugly into the depression
in the road. '

Thus at the point P, the slope2 of the curve (1) must be tan(1r/4),'i.e.
1. The slope of the curve (I) is to be found by differentiating it, ~ndthis. '

gIves

dy = sinh(~).
dx a

Setting t~s equal to 1 gives equation (2).

Now the angle in a square, at the point where two adjacent sides meet,
is 7r/2, Le. twice 1r/4, and we may similarly analyse any other regular
polygon. The regular n-gon, the polygon with nsides, has its adjacent
sides meet at an angle of 21rIn. It thus follows that if an n-sided wheel is
to roll smoothly along a bumpy road, then equation ,(2) is to be replaced
by

sinh(X/a) = tan(~), (3)
" n

where the right-hand side has· been chosen to give the correct slope as the
corner fits the depress~on in the road.

IThis equation is discussed in more detail in the article alluded to above.
2Notice that the y-axis is down.
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Furthermore, the "radius" of the wheel, let us call it r, is defined as the
distance from the centre to a ·vertex. It is not difficult to show that

. 1r
rcos(-) = a,

n

wh~re a is the distance from the centre to the mid-point of a side (as above
in the case n = 4).,

Thus in the case of a square whee~, r = aV2 and. so X ~ O.88a ~ O.62r.

In the case of a triangular wheel, n = 3, equation (3) has the approx­
imate solution X ="O.93r. All other values of n will be necessarily larger
than 4. When n = 5, we have X ~ O.48r and for n"~ 6, X ~O.39r, etc.
Notice that as n increases X becomes smaller and smaller. Look again at
Figure 1. The individual arcs become smaller as n increases, and they also
crowd clos~r and closer together. Thus as n gets larger and larger, the
depressions become less and less pronounced; in .other wor~s, the road gets
smoother.

In the limit as n ~ 00, the road becomes perfectly straight and smooth,
for by this time the wheel has become circular!

*****

Dr R Soemantri is a lektor" kepala (principal lecturer) in mathematics at
Universitas "Gadjah Mada (UGM). "UGM is one of Indonesia's oldest and
best universities; it has a special twinning relation.ship with Monash Uni­
versity.

* * * * *

My theory stands as- firm as arock; every arrow directed against it
will return quickly to its archer. How do I know this? Because I have
studied it from all sides for many years; because I .have examined all
objections which have ever been made against the infinite. numbers;
and above all beca~use I have followed its roots, so to speak, to the
first infallible cause of all created things.

Georg Ca ntor

* * * * *
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THE PROBLEM OF l'HE MONKS

Peter Grossman

The following .problem in logical reasoning, by Monique Parker of the
Universite Libre de Bruxelles, Belgium, appeared in a recent issue of the
BelgiQ,n school mathematics magazine Math-Jeunes [11.

In a faraway country there lives a community of monks. The monks
have very strict rules: they may not communicate with each other, either
by talking or in'any other way, and no monk may look at his own image
(in'a mirror or otherwise). Once each day they meet around a table. One
day, the abbot (who is permitted to speak if the matter is serious - yes, I
know this is all very contrived, but bear with me) says to the monks:

"A terrible disease has struck some of our members. This disease can
be recognis~d 'by the appearance of a black spot on the forehead. As soon
as anyone of you knows he has the disease, he must leave immediately
and seek treatment." (In the original version of the problem,.the monk is
told to commit suicide for the sake of the rest ·of the community. With
due"apologies to Monique Parker, I have "taken the liberty of allowing the
monks to follow a less drastic course of action.)

All the monks are experts at logical reasoning, and 'know that· their
fel~ow monks are as expert as they are themselves. Determine the number
of days before ~he monks with the disease leave, as a function of the number
N of monks with the disease (where N ~ 1).

At this point, you may wish to try to solve the problem before reading
further.

The solution provided by· Monique Parker runs as follows.

Suppose just one monk has the disease. On the first day, he' sees that
no-one else has a spot on his forehead. Since··he·knows that at least one
monk has the disease, he d~duces that he must have the disease himself,
and leaves.

Now suppose that two monks have the disease, say A and B. On the
first day, one of them, say A, reasons as follows: "Either B alone has the
disease, or B and I both have it. If B is the only one with the disease, then
by the reasoning in the previous paragraph he won't be here tomorrow."
The next d,ay, A sees that B is still there, and deduces that he himself must
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have the disease. He therefore leaves. Since. B reasons in the same way,
both monks will leave on the second day. .

Similar reasoning can be applied for N =3, 4, .... to show that if there
are N monks with the disease then they will leave on the N-th day. A
rigorous proof proceeds by.induction. We have shown that the result is
true when N = 1. Now suppose the result is already known to be true for
N - 1. The N monks with the disease can each see N - 1 of their fellow
monks with spots on their foreheads, and (by assumption) they will deduce
that if they themselves do not have the disease then the other N -- 1 monks
will leave on day N -- 1. When they see that they are all still there on day
N, they each know then that they have the disease.

That is the end of the problem as far as the a;rticle in Math-Jeunes is
concerned. There is, however, a minor variation of the problem which leads
to a curious and somewhat paradoxical result.

Suppose, instead of saying. the disease has struck some of the monks
(implying that .at least one monk has the· disease), the abbot merely says
that it may have struck. This leaves open the possibility that none of the
monks. have the disease, and changes the problem completely.

Suppose one monk has the disease. He sees no other monk with the
disease, but he is now no longer able to deduce that he has it himself.
The second day provides him with no further information" nor does any
subsequent day. Therefore he has no way of knowing whether he has the
disease o;rnot.

Since the case N = 1 provided the base for the entire chain of reasoning
in the original problem, we see that the deduction falls down completely in
the modified version. If two monks have the disease~ it is no longer possible
for on~ .of them to reason, as he did before, that the other m~nk will leave
if he himself is free of the disease. If he waits another day, he is none the
wiser. Neither of the monks will leave. Continlting in this way, we see that
none of the monks will leave, regardless of how many have the disease.

We now have the following strange situation. Suppose, for example,
that ten monks have the disease. If the abbot merely announces that som~,

of the monks might have the disease, nothing happens. If he adds that at
least one of the monks actually. has the disease, then the ten monks with
the disease will leave ten days later. What is curious is that the additional
information affects the outcome, even though the abbot is only t~lling the
monks something they already know! The world of logic can be strange
indeed.
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Peter Grossman is a lecturer in mathematics at Monash University, and
-the Problems and Solutions editor of Function.

*****

Pop.ulation implosion

We hear a lot these days about how fast the earth's population is grow­
ing. Mr Ninny, president of the League Against Birth Control, disagrees.
He thinks the world's p~pulati9n is decreasing.and soon everyone will have
more space than he or she. needs. Here is ·his argument:

"Every person alive has two parents. Each parent had two
parents. That makes four grandparents. 'And each. grandparent
had two parents, so that makes eight great-grandparents. The
number of ancestors doubles for each generation you go back. If
you go' back for twenty generations to the Middle Ages, you would
have 1 048 576 ancestors! And this applies to every person .alive
today, so the population of the Middle Ages must have been a
million times what it .is now!"

Mr Ninny cannot be right, but where is the flaw in his reasoning?

From M Gardner aha! Gotcha:paradoxes to puzzle and delight
1982, W H Freeman and. Company

* * * * *
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HISTORY OF MATHEMATIC-S

Mental as Anything

Michael A BDeakin

Nowadays, anyone. faced with even a moderately involved calculation
would automatically reach for'a calculator, but it has only· been in recent
years that these have become routinely available.1 Early electronic calcu­
lators (as distinct from computers) app.eared in the late 1960s, and the
hand-held models a little after that. Prior to this there were mechanical
and electro-mechanical calculators, but these were more than somewhat
unwieldy (besides being' extremely noisy). The abacus, used widely in the
East, seems to have dropped out of service ~n the West.

Here, people used pencil and paper or else their heads. When I went for
my first job.(in Woolworths' as a casual employee over the Christmas rush),
I had to pass an exam in arithmetic, both written and oral. Commercial
arithmetic in those days was complicated by the fact that money and also
weights and measures were not metricated.

As to money, 12 pennies made a shilling and 20 shilling~ made a pound.
A large part of the primary school arithmetic course was made up of learn­
ing to· do addition, subtra<;tion, multiplication and division in this rather
complicated system. In the course of this education· I and my classmates
learned that 1/3d (i.e. one shilling and three pennie~) was h of a pound,
while 1/4d was -h. M~ny other such items were memorised, so that we
could do "sums" like "How much should you pay for 17 items @ 1/3d
each?" Answer: £1/1/3 (one pound, one shilling and three pennies). It
was widely expected that ordinary shop assistants could do such arithmetic
(and indeed much harder things) -in their heads.

Then there were the measures. Twelve inches made a foot and three feet
made a yard; 22 yards made 'one chain (the exact length of a cricket pitch)
and ten chains made a furlong. Horse racing was conducted over distances
of so many furlongs; a furlong is almost exactly 200 metres. Eight furlongs
made a mile.

Now suppose that someone cameinto vVoolworths' and wanted 5! yards
of cloth @ 9/11d per yard. Suppose further they tendered £2/10/- (2 pounds

IThis article is inspired by Paul Grossman's article in this issue of Function.
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and 10 shillings). What change should be given? The answer is 5/5~d, and
the assistant was expected to know this. How? Well, if. the cloth had cost
10/- (ten shillings) per yard, the cost would have been exactly 55 shillings,
i.e. £2/5/-, and the change 5/-. The actual cost per yard was 1 penny less
than this and this accounts for the extra 5! pennies.

The trick was to break larger, more complicated, calculations down into
smaller, simpler ones. This can also be done with "straight" arithmetic
computations - just involving ordinary numbers. The key to success is to
size up the situation and then to seek featlJres of the problem that arelikely
to assist the c?,lculation (~uch as in the example above).

S,uppose you want to multiply 47x 52. 'You might first notice that
48 x 52 is

(50 - 2) x (50 +2)= 502
- 22 = 2500 - 4 = 2496.

The number we want is 52 less than this, namely 2444.

A ,number of people got very good at this sort of thing; one of my pri­
mary schoolmates, son of a prominent country ~bookmaker" was le'gendary.
Yet others do even better.

India in particular has a tradition of what might be termed "folk math­
ematicians''", amateurs with a' great knowledge of and love for numbers.
Ramanujan (who appearedbriefiy in my previous column) was the great­
est ever to emerge f~om this tradition, so much so that he completely
transcended it. (Every so often, claims are made that another of the tra­
dition has reached the same heights, but these are not, capable of being
sustained.· The name most usually mentioned is that of D R Kaprekar;
Kaprekar once contributed to F'lknction (Vo19, Part 1), but the alert reader
will notice that 'that contribution, .like all of Kaprekar's work, is essentially
"recreational mathematics" of no very great significance. Ramanuj~, by
contras~, spent most of his time on topics that lie well beyond the scope of
Function.)

When I was an undergraduate, an Indian woman (whose name.! forget)
visited Melbourne aIl;d gave stage performa.nces involving mental arith­
metic. Like many stage magicians, she claimed to have "mystic powers"
and some people took this stuff, seriously. This led to "some controversy
when the student newspaper carried an article showing how some of the
"tricks" were done.
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For example, it is not particularly difficult to take the fifth root of any
number under 10 000 000 000 (ten billion) provided it works out exactly!
.Here's ho~ the thing is done.

Suppose the number is 2 073 071 593. This is less than 10 000 000 000
and so its fifth root comprises two digits. The second digit is easy; it is
the final digit of the given number. To find the first is a little harder and
requires some memory. But 705 = 1 680 700 000 and 805 = 3276 8000000,
so any number in the 2 billion range must have a. fifth root with initial
digit 7. Thus the required answer is 73. For numbers somewhat smaller
than this, up to about 750 million (750 000 000) the method is even easier.
Try 601 692 057. To.find the initial digit, count the number of digits in the
given number and subtract 4. This gives 5 in our case. The second digit
is again the final digit of the -given number, namely 7. The answer is 57.
There ar~ similar but more complicated ways to do cube roots.

Another good trick uses the ~'magic number" 142 857 143. We can
multiply this by any nine-digit number· the audience may provide, writing
down the numbers from left to right! Here's how this is·done.

Suppose ~he number ·provided·is 123 -456 789. Now think of the number
123 456 789 123 456 789" and divide this by 7, working from left to right
of course. This gives0 17 636 684 160 493 827. I leave you .to check that

142 857 143 x 123 456 789 = 17636 684 160493 827

and to see how the trick works.

These' tricks, of course, do require considerable practice and also good
facility at mental arithmetic. But it is not difficult to teach yourself to do
them if you really want to learn. Other people, however, go beyond this
stage °and become genuinely good at mental calculation in quite practical
contexts. The basis is still practice and memorisation, but there .do seem
to be people with quite amazing gifts also.

At the relatively simple level,anyone can learn to multiply two-digit
numbers mentally. Often there are available special tricks like the 47 x 52
calculation illustrated above, and the more algebra one knows and the more
one practises the more these come into play. However, if all else fails, one
proceeds like this:

7 x 50=
2 x 40=
7x2=

40 x 50 = 0 2000
350, running tota~ 2350
80, running total 2430
14, grand total 2444.
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Now suppose that one knew the multiplication table up to 99 x 99.
Then numbers up to 9999 would all be, in effect, 2-digit numbers in base
a hundred and so all four digit numbers could be so multiplied. When
Gordon Preston, the founder and first editor of Function, took his first job
as a code-breaker as part of the British war effort in the 1940s, his first task
was to learn the multiplication table in base a hundred. D R Kaprekar,
mentioned above, always worked in base a hundred, and I remember seeing
many of his audience puzzled by this during one demonstration he gave.
It is widely believed that G P Bidder, an English calculating prodigy who
lived early last century, worked in base a thousand.

The Nobel laureate Richard Feynman .had and used very considerable
abilities in mental calculation. For some of this material, see his witty auto­
biography Surely you're joking, Mr Feynman. However, wheIl.they worked
together, he was not regarded as being as good as John von' Neumann,
a mathematician credited, among other things, with the invention of the
computer.

There is a famous problem in which two locomotives, 30 km apart and
each travelling at 30 km/hr,.are approaching one another on parallel tracks.
A bird flying at 60 km/hr flits backward and forward between them. How
far has the bird flown by the time the locomotives pass one another? The
answer (30 km) may be given instantaneously if you see the right approach,
but may also be found by summing a series. Have a go at this.yourself.

The story goes that someone tried this problem on vqn· Neumann, who
gave the right answer instantly. "Oh!" they said, "you know the trick and
didn't sum the series." "No," replied von Neumann, puzzled. "1 summed
the series; how else would you do it?"

I don't really believe this story, mainly because I think that ·von Neu­
mann would see the simple way, but such stories are told of people who are
already famous for the skill they illustrate. .

Other great and famous mathematicians have ~een similarly gifted.
C F Gauss (1777-1855) was one of the greatest mathematicians of all time
a.nd also a calculating prodigy of skill and note. He seems to have evidenced
this as a very young boy. Although it seems hard to believe, it has been
authoritatively stated that Gauss could calculate before he could talk. At
the age of 3, he corrected a mistake in his father's account-book. When he
first went to school (at the age of 8), the teacher, apparently .tokeep the
class busy, had them add up all the numbers from 1 to 100. The young
Gauss simply wrote down 5050 and showed this to the teacher.
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What he had realised was that 1+100 = 101; 2+99 = 101; etc. As there
were 50 such pairs, the answer was obvious. He had, in effect, rediscovered
the formula

n(n + 1)
1+2+3+ ... +n= 2 .

Gauss seeJIlS to have remained extremely adept at such calculations
throughout his life, but of course this aspect of his skill pales into insignif­
icance beside his mathematical output. He contributed to mathematics in
both breadth and depth to an extent rarely if ever matched. Algebra, n":lm­
ber theory, calculus, geometry, astronomy, geodesy and physics all benefited
enormously from the insights he brought and the research he conducted. He
was one of the founders of non-Euclidean geometry, he showed how to com­
pute the date of Easter (see Function, Vol 17, Part 4), a number-theoretic
result he derived (the "quadratic reciprocity law") has been de~cribed as

the most beautiful theorem in all of mathematics, and there is much else
besides. His collected works occupy some 20 large volw:nes.

Calculational skills <;>f the sort here under discussion have now almost
, completely died out. The computer and its little brother the calculator
have killed them. Indeed, as we lean on these aids, we lose former skills.
In 1958, I had sufficient such ability as to be employed one summer in this
area. The job was to check all the field calculations that had been made
during the course of an anta~ctic geological survey. Each page contained
some eighty relatively simple calculations, including some twenty standard­
isations involving multiplication by factors'like 37.8. At the bottom of the
page a me~n was taken' of the twenty numbers so produced. After a ~eek

or so of this work, I could check a page, correcting any mistakes, and do so
in just under 2 minutes. Even using my'trusty calculator, I could not do
anything like as well today.

The last of the really great calculators was 'a New Zealand mathemati­
cian, Alexander Craig Aitken. Aitken was born in 1895, so this is his
centenary year. He grew up in Dunedin and his immense powers of mem­
ory were evident at an early age. It has been claimed of him that he was
the very greatest of all the calculating prodigies, although such judgements
are hard to make.

Aitken made his career in mathematics and was a worthy contributor.
Following the intrusion of World War I (he fought ,as an Anzac, and was
subsequently wounded on the Somme) he completed his degree, doing bet­
ter in languages than in mathematics (he excelled in both and later became
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a Fellow of the Royal Society of Literature as well as of the Royal Society,
. the scientific body). However, after some difficulties he obtained a post at
the University of Otago a.s an assistant in the department of mathematics.

His career 'in mathematics really began, hpwever, when he relocated
to Edinburgh, where h~ worked for the years 1925 onward. He became
professor there in 1948. He lived, despite increasingly severe illness, till
late 1967. r

His area of speciality was what we now call numerical analysis, the study
of computational efficiency, and this fitted in well with his superb personal
computational gifts. However, he was very broadly capable, having.taught
actuarial mathematics before being appointed· to his chair in .pure mathe­
matics. His textbook Determinants and Matrices was in use in the 1950s
and was a prescribed text on this topic when I first met it.

There are many stories of Aitken's amazing facility at mental arithmetic.
Here is how to compute 7772:

a2 = [(a + b) x (a - b)] + b2

7772 = [(777 + 23) x (777 - 23)J+ 232 = [800 X 754] + 529

= 603200 + 529 = 603 729.

Everyone of these step~ would have been automatic, of course. The
answerwollid have been given instantal:leously.

1 1 . 1 0.1
59 = 60 - 1 and 60 = 6·

The computation now proceeds in terms of a modified division algorithm
for this last quantity. 6 into .10 goes .01 times, with a remainder of 4 (now
ignoring decimal points) and we now take this 4 and the 1 just produced
and make 41. 6 into 41 goes 6 times, with a remainder of 5. Enter the 6 as
the next term of the answer and also after the 5 to make 0.016 and also 56.
0.016 is the answer so far, and 56 is the new number to be divided by 6. 6
into 56 goes 9 times, with a remainder of 2. Enter the 9 as the next digit of
the answer and also following .the 2as the next number to be divided by 6.
29 is the new number to be diyided by 6. The answer is 4 with remainder
5. The 4 goes as the next numb~r into the answer, and so on. The answer
is 0.016 949 152 ......

A m..ore involved computation was the method for deducing th~ decimal
expansion o~ 1/59. I won't explain it in full; explore it for yourselves. The
basic idea is that
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All this was done mentally and almost immediately. What the alert
reader will notice is that mathematical insights are being pressed into ser­
vice here as aids to efficient computation. There is also the phenomenal
Inemory, of course.· Aitken was not above "cheating" by using this. It is a
bit of a trick question to ask for the decimal value of 1/97. This runs to
96 digits24 before it repeats; Aitken sir:p.ply memorised them.

When he memorised these .vast accumulations' of data, Aitken made
no use of memory aids ("mnemonics"; this reminds me of this and that
reminds me of that, etc.). "Mnemonics I have never used," he said, "and
deeply distrust. They merely perturb with alien and irrelevant association
a faculty that should be pure .and limpid."

Aitken lived long enough to see the dawn of computational machinery
and some of the stories of the last years of his life are impressive, if also
a little sad. The Scottish mathematician Thomas O'Beirne recalled ac­
companying Aitken to.a demonstration of some then top-of-the-range 4esk
calculators. "The salesman-type demonstrator," he subsequently wrote,
"said something like 'We'll now Ip.ultiply 23586 by 71 283.' Aitken said
right off 'And get ... ' (whatever it was). The salesman waS too intent on
selling even to notice, but his man.ager, who was watching, did. When he
saw Aitken was right, he nearly threw a fit (and so did I)."

But like myo:wn much, much lesser skills, Aitken"s began to deteriorate
as he used calculators. "Aitken confessed ... that his own abilities began
to deteriorate as soon as he acquired his first desk machine and saw how
gratuitous his skill had become. 'Mental calculators' [he said], 'may be
doomed to extinction. Therefore, ... [some of those whom I've met] may
be able to say in the "ear AD 2000, "Yes, I knew one such." , " 'One
demurs a little, however. Try some of the calc~lations in this article in
BASIC or on your favourite calculator!

I conclude with a very famous Aitken story, but one which puzzled me
for a.long while. Aitken was asked by his children to multiply 123 456 789
by 987 654 321. Here is his account of the event.

"1 saw in a flash that 987 654321 by 81 equals 80 000 000 001; and so
I multiplied 123 456 789 by this, a simple matter, and divided the answer
by 81. Answer: 121 932 631 112 635 269. The whole thing could hardly
h~ve taken more than half a minute."

2It is a theorem that the decimal representation of lip (where p is a prime) repeats after
p - 1 digits, or else some divisor of p - 1. See Function, Vol 9, Pf1,rt 1, pp. 8-12.
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This all gels,. but it took me a while to see how he could "see in a flash"
that 987 654 321 by 81 gives 80 000 000 001. This is how I think he would
have done so:

We look at the number patterns involved. We can readily see that
(~

81 = 9 x 9
801 = 89 x 9

8001 = 889 x 9

and these facts and their underlying principle would surely have been
known to Aitken.

Now move on to a second interesting pattern. Divide 9 into a string of
8's:

9 888888888888888 ...

The first division 9~ gives a quotient of 9 with remainder 7. This carries
and so the next step is 9 em, which gives 8 with remainder 6. This carries
and so the next division is 9 16.8., which gives 7 with remainder 5. This
carries and so the next step is 9lQ.a, etc. We finally reach a zero remainder
when there are nine 8's, i.e.

888 888 888 = 9 x 98 765 432 (1)

and thus if there is an extra 9 on the left of the equation·(1), there will be
a final 1 on the quotient.

Further Reading

The main sources'for this article are the columns by Martin Gardner in'
Scientific American in April and May of.1967. The "Aitken confessed ... "
quotation towards the end comes from the first of these. Gardner was a
journalist and amateur mathematician who for many years ran a column,
Mathematical Games, in that journal. He was al~o (and this is relevant
to parts of the present article) an accomplished magician. His arti<Jes
were anthologised into many popular books, and it may well be that y01)r
school library has some of these. The other source I drew upon is a recently
published short biography of ,Aitken in the Australian Mathematical Society
Gazette (March 1995).

* * * * *
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COMPUTERS AND COMPUTING

Calculating without Calculators

p'aul U A· Grossman

We often read about the computer revolution and its impact. Associated
with the development of computers was the spread of the electronic pocket
calculator and this caused. a particularly rapid change in the attitudes and
practices of most people. I am of the age of the grandparents of today's
stu9.ents, but even their parents and many of their teachers remember the
days before the common use of calculators. It may be of interest to readers
to look at fairly recent history and the way people went about obtaining
arithmetic results., Recollections from my youth may differ somewhat from
the Australian experience since I grew up in central Europe..

Mental arithmetic

Additions, .subtractions and multiplications involving moderate num­
bers of d~gitswere often performed in the head and skill in men~al arith­
metic was fostered in schools. Many people proudly displayed the ability
to perform calculations with nUIP-bers of many digits. or with a sequence of
numbers and would show off at parties or at fairs. Nobel laureate Richard
Feynman relates in his autobiography how he bafHed fellow-scientists in
the 1940s by rapidly working out in his head powers of e, surds or other
evaluations of functions.

Calculations with pen and paper

More commonly in everyday life, people ·would write down the numbers
and work out the results on~ paper. Much time was devoted in schools to
achieve accuracy.and speed. With processes such as long division students
soon learned to rouJid off, determining the number of digits required for
their purpose and saving themselves unnecessary work..Today's. user of
the calculator is often tempted to record as. many decimal places as the
calculator lists, coming up with answers that are not only clumsy but often
meaningless and misleading.

I remember learning in school not only the four basic operations but
also procedures to determine square and cube roots on paper.

As a teenager I once helped the accountant of a small factory to deter­
mine the firm's illcome and expenditure for the annual financial statement.



124 Function 4/95

Small firms could not then afford calculating machines. There were pages
of columns of figures to be added· and the sums cross-checked. Fortunately
the amounts were given in decimal currency and I did not have to cope
with the complication of converting every 12 pence toa shilling and every
20 shillings to a pound, as people had to in Australia and other countries
using pounds, shillings and pence.

Tables

. The procedures mentioned earlier to obtain square or cube roots were
not used in practice. Many such results could be looked up in tables.
Generally, for operations involving powers, for divisions and even sometimes
for multiplications we would use logarithmic tables. Books of tables listed
logarithms to base 10 (known as Briggs' logarithms after Henry Briggs,
1561-1630).

Since
log(ab) = log a +10gb, '

log(a/b) = log a -log b, and

logan = nloga,

knowledge of logarithms and their inverses can replace the operations of
multiplication and division by respectively additions and subtractions, while
powers, including fractional powers (roots), c<:Ln be solved using multipli­
cation and division.

The advantage of using logarithms to base 10 is that only numbers be­
tween 1 and 10, with the corresponding logarithms between 0 and 1, need
to be listed. Any other number may be expressed as the product a x 10~,

where 1 < a < 10 and n is an integer; the corresponding logarithm is
n + log a and is readily found whe~ log a is known. Commonly the tables
listed numbers in steps of 10-3, with the logarithms given to five deci­
mal places. If more precision was needed, one would interpolate linearly,
accepting small errors.

Thigonometric, exponential and other functions were also found i~ books
of tables. Often the logarithms of the trigonometric functions were given
directly to enable the user to manipulate these functions without further
recourSe to tables.

Working with tables was slow but COllld be speeded up with practice..
I used my personal VOltlmes of log-tables into the .early 19708, although I
had access to a big computer. For minor calculations it was not worth the
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effort of punchillg a program onto cards for the computer, and in earlier
years even waiting a day for the results to be returned..

The slide rule

The logarithmic slide rule was very widely used in technical and com­
mercial applications. The slide rule was a precision instrument consisting
of three adjacent strips. The outer strips were firmlyatt.ached to each other
and the centre one slid in grooves. Positioning marks on the centre strip
with respect to marks on the outer ones is a way of geometrically adding
distances; since the adjacent edges had logarithmic scales engraved, addi­
tion of distances was read as multiplication, subtraction as division. The
scales on the lower strip and the adjacent edge of the ·centre strip ranged
from 1 to 10, those on the upper strip and adjacent edge from 1 to 100 over
the same length. This meant that the numbers on the upper scale were
the squares of t~ose on the lower one and these numbers could be lined
up with the help of a slide known as a cursor, which had a line engraved.
Slide rules usually had other scales. engraved on the back and on the edges
to suit particular groups of users.

The slide rule did not directly indicate the decimal power of the results,
but this is readily determined. Its precision was limited by its length (the
most common length was about 300 mm), its quality and condition, and
the care taken by the operator. However, slide rules were adequate for
many practical purposes and provided quick .results.

Calculating machines

The abacus has had a long history as an aid to calculation, 'but has
been regarded more as a curiosity in Western countries in recent centuries.
In Russia, China, Japan and other Asian countries this simple frame ,vith
,~ires and counters ,vas widely used before the spread of electronic calcu­
lators. Using the abacus requires dexterity and concentration, but experts
are said to achieve great speed and accuracy in the four basic· operations;
even squar.e and cube roots can be performed, I understand.

Mechanical calculating device~ date back to the 17th century in many
forms and designs but were mass-produced and came into wider use, I be­
lieve, in the 1920s. I did not get to use one until some forty years ago,
a Bmall device based on concentric cylinders.· Dig~ts were set by levers,
.a lateral shift placed the decimal point and a handle was turned clock­
wise for addition, counter-clockwise for subtraction. For multiplication ·one
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turned the hq,ndle the appropriate number of times after shifting the mul­
tiplicand laterally to allow for the power of ten. Division could be obtained
by repeated subtraction until. a bell indicated the machine had gone into
negative numbers.

This calc~latingmachine was. state of the art in the early 196.05. It has

three registers to perform a calculation of the type.a *b = c, ~here *
could be either +, -, x, or /. For addition ·and multiplication, a and
bwere placed in the lower and top right register respectively, and tbe
answer appeared in. the top left. Inverse. operations had the answer

.appear in the bottom register by reversing the process. Decimal points
were inserted with the manual. tabs visible on all registers. (T.he
number 6 decided to pose for this photo upside down!)

Electrical calculating machines still worked on the principle of mechan­
ical trallsfer bllt were powered by a motor alld automated to some extent.
NUlnbers were entered by sets of buttons instead of levers. These machines
became essential for anyone required to process large amounts of data.
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However, they still were limited to basic operations, they were slow com­
pared with electronic calculators, they were bulky and noisy and required
regular servicing. Furthermore, they were expensive; on today's values one
electrical calculating machine would cost thousands of dollars. Electric cal­
culating machines were phased out in the early 70s when the capabilities
of electronic calculators were rapidly improving and their cost de~reased.

Conclusions

It is obvious that the electronic calculator has revolutionised everyday
calculations over the past two decades, removing drudgery while increasing
speed and reliability. However, there are' also drawbacks in total reliance
on these instruments. Users should not -lose the facility to cope .without
them. They should realise the limitations of calculator,s and possible errors.
They should keep in mind that not all decimal places given are necessarily
appropriate for their purposes and should t+nderstand the full meaning ·.of
the op'erations initiated by buttons ~uch as those for statistical results. Let
us, with caution, take advantage offurther developments in calculators.

* * * * *

Dodgy S~atistics

"Children in residentia1 care have more than a 50 per cent chance
of being below average academically and in their personal skills, a
new Victorian study has found."

The Age, 29 May 1995

It sounds dramatic to say' that more than 50 per cent of these
children are below average. But is it really saying very much?
What percentage of all children would you expect to be below
average?

* * * * *
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SOLUTIONS

PROBLEM CORNER

Function 4/95

PROBLEM 19.2.1 (from School Science and Mathematics; submitted by
M Deakin)

Show that aa
l/e 2:: IIe for a > O.

SOLUTION (based on the solution in School Science and Mathematics)

.Let f (x) = XX for x' > o. (This function was the subject of the cover
story in Function Vol 6, Part 2.) Then f'ex) = xX(1 +lnx); this result can
be derived by using the technique known as logarithmic differentiation, or
alternatively by first writing XX as ex1nx and then differentiatiJ?-g. The only
critical value occurs where f'ex) = 0, for which x= lie. Since f'ex) < 0 for
x < lie, and f'ex) > 0 for x > lie', f has an absolute minimum atx = lie.
Therefore f(ai/e.) ~ f(lle) for all a > o. Hence (ai/e)a

1
/

e
~ (IIe)i/e, so

(aa1/e)1/e ~ (l/e)l/e and therefore aa
1

/
e
~ lie, for all a > o. Equality holds

for aIle = l/e,i.e. for a. = e-e.

Other solutions were found by M Deakin, N Cameron and K Anker, all
of the Department of Mathematics, Monash University.

PROBLEM 19.2.2 (from Parabola, Vol 30, Part 3, 1994, University of NSW)

Four weary explorers have to cross a bridge over a river one night. Owing
to their various degrees of exhaustion, they would individually take 5, 10,
20 and 25 minutes (respectively) to cross the bridge. However, the old and
rickety bridge will take only one or two people at a time. Furthermore, it is
too dangerous to cross the bridge in the dark, and the expedition has only
one torch. How can all four explorers cross the bridge in the least possible
total -time?

SOLUTION

It is clear that ~h€ solution must consist of three forward crossings with
two explorers each, and two return crossings by one explorer to bring back
the torch. There are two "fast" explorers (taking 5 and 10 minutes to cross)
and two "slow" explorers (taking 20 and 25 minutes). The total time taken
will be dominated by the time taken by the slow explorers, so it seems
reasonable to try to minimise the time they take. This can be done by
ensuring that they cross the bridge together (and neither of them crosses
back). The following steps will achieve this:
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1. The two fast explorers cross the bridge together (10 minutes)~

2. One of them (it doesn't matter which, but let's say the faster of the
two) returns with the torch (5 minutes).

3. The two slow explorers cross the bridge together (25 minutes).

4. The other fast explorer returns with the torch (10 minutes).

5. The two fast explorers croSs together (10 minutes).

The. total time using this procedu~e is 60 minutes. Any other procedure
would require at least two "slow" crossings with a ·time of 45 minutes
altogether. The other three crossings must take at lea$t 5 minutes each, so

. the total time could not be less than 60 minutes.

PROBLEM 19.2.3

A 6 x 6 array of squares is completely covered with 18 dominoes, in such
away that each domino covers two adjacent squares. Prove that there must
be at least one line, either horizontal or vertical, that divides the array into
two parts without passing through any of the dominoes.

SOLUTION

Suppose there is no such line. Consider anyone of the 10 lines (5 hori­
zontaland 5 vertical) that divide the array into two parts without passing
through ;;tny ·of the-squares. Thenumberofsquares·:onone·side of the
line is a multiple of 6 and hence is even, so those squares must be covered
bya number of complete dominoes and an even number of half dominoes.
Therefore the line must pass through an even number of dominoes. Since by
assumption the line passes through at least one domino, it must therefore
pass through at le~t tW9 dominoes. But this argument applies to all 10
lines, giving a total of at least 20 dominoes through which a line must p~s..
This exceeds the total number of dominoes~ so we have a contradiction.

PROBLEM 19.2.4 (from ~X Mathematics Olympiad uThales", in Epsilon, 26,
1993, P 107)

The brothers Al Caparroni are trying to· open a safe in the Peseta Bank.
The combination is composed of an increasing sequence of three non-zero
digits & In the pocket of the cashier they have fOtlnd the following informa­
tion:
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• The sum of the digits is 17.

e The product of any two digits added to the third digit is a perfect
square.

What is the correct combination?

SOLUTION

Let the digits be a, band c. Then a < b < c, a + b + c = 17, and the
expressions ab + c, ac + band bc + a are all perfect squares. The answer
can be found' by checking each combination of' three digits in increasing
order that total 17. Note that a must be less than 5, since 5 + 6 + 7 > 17.
Similarly, c must be greater than 6, since 4 +5+ 6 < 17. This gives just 12
combinations of a and c to check: The answer is a = 1, b = 7 and c = 9.

Solution to an earlier problem

We continue our series of solutions to problems fr.om earlier issues for
which a soh~tion has not previously been published. The problem below
appeared in the October 1992.issue of Function.

PROBLEM 16.5.2. (Republic of Slovenia - 36th mathematics competition for
secondary' school students, fi rst class, Question 2)

For natural numbers ao, aI, ... ,a1992,

holds. Prove that ao = al = a2 = .. "= a1992.

(The problem contained aminor misprint when it originally appeared.
It is shown correctly here.)

SOLUTION

If anyone of the numbers ai (0 ~ i ~ 1992). equals 1, then clearly they
must all equal 1. We will therefore assume that ai > 1 for all i. We first

. establish two lemmas.

Lemma 1. If ai < ai+l then ai+l > ai+2. (The subscripts are modulo 1993,
so that 1992 + 1 = 1991 + 2 = 0 and 1992 + 2 = 1.)

Proof. aiai+1 = ai+lai+2
, so ai+llog ai = ai+2 log ai+l, where the logarithms

are to any fixed base. Since ai < ai+l, it follows that log ai < tog ai+l, so
ai+l > ai+2 as required.
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Lemma 2. If ai > ai+l then ai+l < ai+2.

Proof· As for Lemma 1, but with the inequalities reversed.

Now, if ao < al then we have successively al > a2{by Lemma 1), a2 < a3
(by Lemma 2), a3>' °a4, . .. ,a1992 < ao, and finally. ao > aI, contrary to
assumption. A similar contradiction arises if we begin by assuming that
ao > al· Therefore ao = al· By a similar argument, al = a2, a2 = 0,3, etc.,
and the result is proved.

PROBLEMS

PROBLEM 19.4.1 (K R.S Sastry, Dodballapur, India)

In the convex quadrilateral ABeD,. the diagonalAC is the bisector
of angle DAB and a trisector of angle BCD, and the diagonal BD is a
trisector of angle CDA and a quadrisector of angle ABC, as indicated
in Figure 1. Also, 0'.,(3",8 are natural numbers of degree measures of
the angles indicated. Find the possible degree measures of the angles of
ABeD.

A

B 38

Figure 1

PROBLEM 19.4.2 (Juan-Bosco Romero Marquez, Departamento de Algebra,
Geometrfa y Topologfa, Universidad de Valladolid, Valladolid, Spain)

Find all solutions in positive integers of the Diophantine equation
4xy = 9(x + y).
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Problems 19.4.3 and 19.4.4 are taken from the South African 1993 Old
Mutual Mathematics Olympiad, and are reproduced from Mathematical
Digest, January 1994 (University of Cape Town).

PROBLEM 19.4.3

For which values of n is the number Sn = I! + 2! + ... + n! the square
of an integer?

PROBLEM 19.4.4

For every pair of natural numbers p and q a circle is drawn above the
x:-axis; it has diameter ~ and it touches the x-axis at the point (~, 0). Prove

that no t~o circles intersect, and determine the condition for tangency.

PROBLEM 19.4.5 (from Trigg C W Mathematical Quickies, 1967, McGraw­
Hill)

During a period of days, it was observed that when it rained in the
.afternoon, it had been clear in the morning, and when it rained i~ the
morning, it was clear in the afternoon. It rained on 9 days, and was clear
on 7 afternoons and 7 mornings. How long was this period?

PROBLEM 19.4.6 (from Trigg C W Mathematical Quickies, 1967, McGraw­
Hill)

Albert and Bertha Jones have five children: Christine, Daniel, Eliz­
abeth, Frederick, and Grace. The father decided that he would like to
determine a cycle of seating arrangements at their circular diuner ta~le so
that each person would sit by every other person exactly once dl1ring the
cycling of meals. How did he do it?

* * * * *

Function 'editor on the Queen's Birthday honours list

Ken Evans, a Fun·ction editor since its foundation in 1977, has
been awarded a Medal of the Order of Australia for services to math­
ematics education and the community. OUf congratulations' We
also take this opportunity to express our thanks to Mr Evans for his­
invaluable contribution to Function over its 18 years of existence.

* * * * *
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