
unction
A· School MatherhaticsMagazine

Volume 18 Part 3

y

June 1994

x

Ma~hematics Department - Monash University



FUNCTION is a mathematics magazine produced by the Department

of Mathematics at Monash University. The magazine was founded in 1977

by Prof. G.B. Preston. FUNCTION is addressed principally to students

in the tipper years of secondary schools, and more generally to anyone who

is interested in mathematics.

FUNCTION deals with mathematics in all its aspects: pure mathe­

matics, statistics, mathematics in computing, applications of mathematics

. to the natural and social sciences, history of mathematics, mathematical

games, careers in mathematics, and mathematics in society. The items that

appear in each issue of FUNCTION include articles on a broad range of

mathematical topics, news items on recent mathematical advances, book

reviews, problems, letters, anecdotes ~nd cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other

material for publication are invited. Address them to:

The Editors
FUNCTION
Department of Mathematics

Monash University

Clayton, Victoria, 3168

Fax: (03) 905 4403

e-mail: function@maths.monash.edu.au

Alternatively correspondence may be addressed individually to any of

the editors' at the mathematics departments of the institutions listed on

the inside back cover.

FUNCTION is published five times a year, appearing in February, April,

June, August, and October. Price for five issues (including' postage):

$17.00*; single issues $4.00. Payments should be sent to th~ Business Man­

ager at the above address: cheques and money orders should be made

payable to Monash University. Enquiries about advertising should be di­

rected to the Business Manager.

*$8.50 for bona fide secondary or tertiary students.



65

EDITORIAL

Welcome to this new issue of. Function which" we hope you'll find inter­
esting! .

This time we include two feature.articles. In' the first one, "Beyond Rea­
sonable Doubt", Paul Lochert looks at how probabilistic arguments· were
used in the courtroom, first to convict the accused and later to overturn
the decision. In the second feature article, "The" Fifty and the Twenty",
Michael Deakin presents different shapes of coins and analyses their geom­
etry.

Our front cover depicts the .streamlines· for the flow of a fluid with two
whirlpools. In the corresponding .article, Ian Collings presents a mathe­
matical discussion on how to produce these circles.

This issue also includes a book review: Robyn Arianrhod gives an inter­
. esting introduction to the recently published book~.Newton for Beginners.

In the History of Mathematics section, Michael Deakin introduces the
quaternions, an interesting ext.ension of the algebra of complex numbers,
and discusses their relation. to the dot and cross products of three­
dimensional vectors.

In our regular Computers and Computing column, you will find algo­
rithms for performing arithmetic with integers as large as you like, far
beyond anything your calculator could handle, without any loss of accu­
racy.

As usual, there are solutions to some of the problems we have published,
and of course a few new problems to challenge your mind.

Happy reading!

* * * * *
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THE FRONT COVER

Circles and Vortices

Ian Collings, Deakin University

Function 3/94

We all know that a circle can be described as the path traced out by a

point- which moves in a plane so that it is a constant distance from a fixed

point.

Suppose we have a fixed point F(a, 0) on the x-axis, and a point P(x, y)

moves so that it is always a distance d from F, as in Figure 1.

y P(x,y)

F(a,O) x

Figure 1

Using the formula for the distance between two points in the Cartesian

'plane, we obtain:

What result do we obtain.if a point" P moves so that its distanc~ from

each of two fixed points is the same? Let the two p~ints be P(a, 0) and

G(-a,O) as in Figure 2. Then PF = PG, so the distance formula gives:

(x _.a)2 + y2 = (x + a)2 + y2.

This equation reduces to 4ax = 0, and so x == 0, which is of course the

equation of the y-axis. The point P moves along the y-axis as expected.
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G(-a,O) F(a,O)

Figure 2
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(1)

However, what result do we obtain if PF = k . PC, where k is a non­
negative constant? We already know a~out the case k = 1, but what if
o~ k < 1 or if k > 1? If PF = k .PG, then applying the distance formula,
we obtain:

(x - a)2 + y2 = k2[(x + a)2 + y2].

If we expand both sides and collect terms, we obtain

2a(1 + k2
)

(1 - k2)[x2
- 1 _ k2 X +a2

] + (1- k2
)y2 =0, k i: l.

Completing the square on the terms in the square brackets we obtain, after
a little algebra,

(2)

which represents a circle with centre ( (t~~2}, 0) and with radius r = Il~:21'
As k varies, we obtain a set of circles; the. centres all lie on the x-axis but
talre up different positions together with different radii for different values
of k. If k ~ 0, then we obtain (x.- a)2 + y2 =0; i.e. a "circle" centred at
(a, 0) with zero radius.

As k increases from 0 to 1, the centre moves along the x-axis to the right
of x = a and the radius increases in inagnitude. When k = 1 we obtain,
from Equation (1), the y-axis. This line may be thought of as a "circle"
with its centre at plus or minus infinity on -the x-axis and with a radius of
infinite magnitude.
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As k increases from 1 to infinity, the centre moves from left .to -right
along the negative x-axis and the radius decreases to zero when the centre
is (-a, 0).

The situat~on is depicted on the front cover. The arrows on the diagram
refer to a physical interpretation of the problem in fluid dynamics. In this
interpretation, the circles represent streamlines (lines following the flow),
with the arrows indicating the direction of flow. There are two vortices
(whirlpools): one at (a,O) and ,one at (-a,p).

If the streamline along the y-~xis is replaced with a solid wall, then the
pattern of flow is unchanged if we assume that the fluid slides smoothly
along the wall without being slowed down. In this case, the circles in the
region x > 0 represent the streamlines in a fluid with a'vortex located at
(a,O) and a wall at x = O. This situation is depicted in Figure 3.

x

Figure·3

* * * * *

Dr Ian Collings is a Senior Lecturer in Mathematics at Deakin University
with a special interest in applied. mathematics. He holds a Ph.D. frorn
Melbourne University and is currently undertaking research in continental

, shelf waves and mathematics in sport. His golf handic~p is 11.
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BEYOND REASONABLE DOUBT

Paul Lochert, Monash University

In the practice of criminal law in Australia and many other societies,
the accused is presumed innocent until· proven guilty beyond reasonable
doubt.. Increasingly, expert witnesses are being utili$ed to provide infor­
mation based on the findings of thei:r~ research, which will often involve
technical information that is likely to be foreign to most others in the
courtroom. In this search for greater precision or exactitude, is there a
place for the statistician? Can "beyond reasonable doubt" be defined as
some level of certainty or some other quantifiable measure?

The legal profession likes to rely on precedents-.Thus they often search
for. a prior case that can be identified with the current case and assert that
the previous finding will again hold. I will consider a case that could form
a precedent, where the conviction was based purely on the lik~lihood or
chance of an event occurring, thus app~aring to quantify "beyond reason­
able doubt". The case was subsequently appealed against and the finding
was overturned, again on probabilistic arguments.

The case in question is that of Malcolm and Janet Collins 'lJ. California
(1965).

The crime in question involved the aggravated robbery of an elderly
woman. No witnesses .to the crime other than the woman iI).volved were
located by the police. A number of witnesses saw a couple leave the scene of
the crime. From these witnesses the police built up a profile of the suspects
as fol~ows. A couple was seen driving a yellow car away from the SC€1)e of
the attack, the female was caucasian with blonde hair tied in a p·ony tail,
and the male was negroid with a beard and moustache.

The police, by checking owners of yellow (or at leaSt partially yellow)
. cars, located a couple, Malcolm and _J~et Collins, who fitted the profile
qeveloped. No witness,. including the elderly woman who was. attacked,
could positively identify .either of the accused.

The case fOf the prosecution took the following format.

A mathematician (expert witness) was called to explain the multiplica­
tion law of probability. That is, if two events A and B are independent then



70 Function 3/94

the probability of both occurring is given by the product of the individual
probabilities, namely:

P(A n B) = P(A) . P(B).

Next the attorney presented the following" estimates for the probability of
each characteristic and claimed (without documentation) that they were
conservative- estimates.

P (Negro male with beard) = 1/10
P (Male with moustache) = 1/4
P (Interracial couple in car) = 1/1000
P (Female with blonde hair) = 1/3
P (Female with pony tail) = 1/10
P (Yellow car) = 1/10

The attorney then applied the multiplication law provided by the expert
witness ~nd found that the probability "of.a couple meeting the profile, even
using conservative estimates, ,vas 1 in-12 million. The police had clearly
carried out their duties well to succeed in locating such a rare event and
clearly it was most unlikely that the accused couple were not in fact the
culprits.

The jury was impressed and convicted the couple.

From this precedent it appears that "beyond r~asonable doubt" has
been quantified to be any event less likely than 1 in i2 million.

But wait! There was an appeal in the Supreme Court, Los Angeles
County (1968). It was successful. It was again based s9lely on probabilistic
arguments.

At the appeal the proceedings were questioned on th~ following grounds.

First,the prosecution did not supply evidence to support any of the
individual probabilities or that they- were approximately accurate. Any
change in even one individual probability would change the final chance in
a way that may not make the event appear so unlikely that a jury would
accept that no other such couples exi~t.

Second, only the special case for computing joint probabilities was given
and no evidence was provided to show that the events were independent.
The multiplication law says in general that the probability of event A and
event B occurring is given by the probability of event A occurring given that"
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event B has occurred, multiplied by the probability of event B occurring,
l.e.

peA n B) = P(AIB)· PCB).
There are various sociological studies that would imply that at least some of
these events are dependent. For example: in studies of interracial marriages
between a negro male and a caucasi~n female there is a disproportionate
number of blonde-haired blue-eyed females. Thus although it may be the
case that

P (Female with blonde hair) = 1/3,

it could nevertheless be true that

P (Female with blonde hair I interracial nlarriage) = 2/3.

The introdllction of these dependencies will change the probability of such
a profile.

Although these two arguments put in question the 1 in 12 million, they
were not the ones that reversed the decision.

The appeal judge reversed the decision by seeking the answer to the
question:

"What is the probability that there is more than one such
<;ouple, given that one exists?"

Clearly at least one such couple exists, since they were found and pros­
ecuted. Accepting the prosecution's estimate of 1 in 12 million, the judge
concluded that taking a population size of 12 million there is a 41% chance
of there being more than one such couple. This chance was so high that
the judge could not accept "beyond reasonable doubt" that Malcolm and
~anet Collins were. the guilty party.

The judge in his findings stated:

No mathematical equation can prove beyond reasonable doubt

(1) that the guilty couple in fact possessed the characteristics described
by the ~itnesses,·or even

(2) that only one couple possessing those distinctive ·characteristics
could be found in the entire Los Angeles area.

The following argument shows one approach which gives the result obtained
by the judge.
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Define:
X

Function 3/94

to be the number of couples fitting- the profile in n couples

p = P (couple fitting the profile)
= 1/12,000,000

Then it can be assumed that X follows a binomial distribution:

P(X = x) = ( ~ ) p"'(l - pt-'" x = 0,1,2,3, ... , n.

If n is large and p is small, it can be shown that the binomial distribution
can be approximated by the formula

AXe-A
P(X = x) =-- x == 0,1,2,3, ...

x!
where ,A == np and e is the base of natural logarithms. (This result is known
as the Poisson approximation to the binomial distribution.) This gives

P(X == 0) = e-A

P(X = 1) = Ae-A

P(X > 0) 1 - P(X = 0)
= 1- e-A

P(X > 1) = 1 - [P(X = 0) +P(X = 1)]
_ 1 - (e- A + Ae-A) .

= 1 - e-A(l + A)
We require the conditional probability of more than one couple given at

least one exists, i.e.

P (more than 1 couple I at least 1 couple) = P(X > 11X > 0)
= P[(X > 1) n (X > O)]/P(X> 0)

Since (X > 1) is a subset of (X > 0), P[(X> 1) n (X > 0)] ==
P(X> 1). So

P(X > 11X > 0) == P(X> l)/P(X > 0)
1 - e-A(l + ,A)

== 1- e-A

eA
- (1 + A)

== eA -1
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Now, taking n = 12,000,000 (not an unreasonable number for California
in 1968) gives A~ 1.

Hence

P(X> llX > 0) =
e-2
e-1

= 0.418

This result is consistent with the result obtained by the judge, but it
is not ciear that it is the answer to the question that should have been
posed, and it has moved the argument away from the issue of quantifying
"be.yond reasonable doubt". This solution answers the question before the
police commence searching, with the existence of at least one couple being
a consequence of the 'Y"itness reports. Has the· apprehension of one couple
changed the required conditioning? The real question to 1?e answered is
"What is the probability that the first couple apprehended is in fact the
guilty couple?" These issues have been discussed in articles by Watterson
(1982), Clark and MacNeil (1977), and Eggleston (1980).
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THE FIFTY AND THE TWENTY

Michael A.B. Deakin, Monash University

In this country most coins are circular and this is the case in other
countries also. But other shapes have been used or are still in use. Very
early in the history of New South Wales, the Holey Dollar was current.
This was an annular coin, i.e. the coin was circular and had a circular hole
at its centre. In Papua New Guinea, early this century, the standard coin
was circular, but had a squar~ hole at, its centre. Other countries go in for
square coins (but with rounded corners) or for scallop~d edges on oth~rwise

circular coins.

But even more l.illusual shapes have been used. In my boyhood I col­
lected coins and one <?f the treasures of my collection was from 18th-Century
France. I had had this coin for quite some time before I realised that it
was not in fact quite circular but was a 22-gon (though rather worn). More
recently, Britain has had a dodecagonal (12~sided) threepence, and our 50c
piece is also so shaped. . ,

Figure,l

Britain today has two coins (Figure 1) that ,surely qualify as having one
of the most unusual shapes ever used. These are the 20-pence and 50-pence
pieces. Both have the same shape and clearly that shape is not circular.
Close inspection sh'ows that it is rnade up of seven curved sides.
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Figure 2 shows. the· outline of the 50-pence piece, with one vertex (A)
singled out, as therefore is also its opposite side BG. Draw a circle with
centre A and radius AB. Note that Be is an arc of th·is circle.

A

B

c

Figure 2

Any regular n-gon can be modified in this way, so that· straight sides
are replaced by circular arcs, as long as n is odd.. The very simplest case
is that for which n = 3. See Figure 3.

A

c

Figure 3

8

. Here ABC is an equilateral triangle but side BO has been replaced
with a circular arc drawn with centre A and radius AB (= AC). Similarly
for sides AB and ·CA.
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Figure 4 illustrates, and a littl~ thought makes it clear, that this m9di­
fied triangle -can be made to turn between a pair of "parallel lines. One line
will touch a vertex about which the curve will pivot, while" the other line
will be tangent to a side which rolls upon it. So we could make a roller in
this shape and allow the top line to move relative to the bottom by having
rollers so shaped rota:te between the two.

Figure 4

The breadth of a curve in a given direction is defined to be the distance
between two parallel lines which are perpendicular to th"e given direction
and wh~ch touch the curve on opposite sides. In the present case, the
breadth of the curve ABC does not depend on the direction and for this
reason ABC is referred to as a cu.rve of constant breadth.

A

c

Figure 5

B
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We cannot, however, make a practical wheel from the curve ABC. See
Figure 5. 0 is the centre of ABC and the outer of the curved arcs Be is
an arc of a circle with centre 0 and radius OB (= OC= OA). The inner
arc Be· thus does not preserve a constant distance from O. If we pivoted
the curve at 0 and rolled such a wheel along a flat road, 0 would ride
up and down. -

Thus a curve of constant breadth may make a pe~fectly good roller, but
is no good at all"as a-wheel.

The British coins are thus curves of constant breadth. It is desirable
that coins have this property: it aids their use in slot machines, for example.

However, the question arises as to why this rather peculiar shape was
chosen, and not the circle, which of course is al~o a curve of constant
breadth.

The usual reason for choosing an unusual shape is to distinguish two
otherwise similar coins. Aust~alian 50c and 20c coins differ in shape to
avoid the confusion that might otherwise occur - as it does with the 10c
and $1 coins. This reason, however, does not apply to the British coins.
So presumably they are shaped as they are for purely aesthetic reasons.

There is a slight saving in metal in that if we inscribe the shape in a
circle, the circle· has a slightly larger area; however, the difference is very
small. (As an exercise you could work out what it is.)

And· whyseuensides?AllI·canthink of here· is that the corners on.a·
, three- or five-sided coin were' deemed to be too sharp (as .another exercise,
can you work out the angle at which the circular arcs intersect?) and that
nine-, eleven-, ~ ..-sided coins were too nearly circular.

In fact, our 50c ·piece gives no trouble in slot machines (as a third
e'xercise, determine the maximum extent of deviati9n from circularity in
the case of a dodecagon) and I failed for a time to r~alise that my 22-gonal
coin was not strictly circular.

There are other curves of constant breadth beyond those described here
and there is much more to .b~ said of them. There is a short passage (pp.
62-63) on'the topic in E.P. Northrop's Riddles in Mathematics and a very
nice article by Martin Gardner in Scientific American (Feb. 1963). The
fullest account of which I ,know is that of H. Rademacher and O. Toeplitz
in Chapter 25 of their book The Enjoyment of Mathematics.

* * * * *
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BOOK REVIEW

Newton for Beginners

by William Rankin
.(Allen and Unwin, $16.95, pb, 176 pp.)

Reyiewed by Robyn Arianrhod, Monash University

The story of the birth of modern (ma~hematical) science is absolutely
fascinating; it culminates in the work of the amazing Sir Isaac Newton, and
I can think of no more lively and accessible introduction to the story than
the recently published book Newton for Beginners. This is the latest in the
popular series of Beginners books; its format consists ofa narrative con­
taining historical sketches and outlines of relevant ideas, and an abundance
of illustrations: drawings, cartoons and occasional photos. (A sample page
appears in Figure 1.)

Newton for Beginners is a great r~ad, with much colour and drama as
well as a surprising amount of information on the history of mathematics.
Even J;Ilost of the jokes contain bits of useful·information, often as a tiny
label under a drawing, or in the reappearance of a character from an earlier
p~riod in history in order to show how ideas have developed.

Newton was a genius, who discovered the nature of the rainb?w and
developed the first comprehensive theory of light itself, who invented the
basic mathematical techniques we refer to as calculus, and who discovered
the law of universal gravitation which we use today to launch ~atellites

and rockets into space, and to explain the ocean's tides. Even geniuses
draw on the ideas of other people, however. Indeed, two of th~ most fas­
cinating things about Newton are his synthesi~ of the best ideas of his
predecessors, as described in the sample page in Figure 1, and the conse­
quent fights he got into with people who accused him of plagiarism. The
most bitter feuds were with Robert Hooke 'and the famous Gottfried Leib­
niz, wh~ also invented the calculus. In fact, Newton for Beginne'rs gives
some wonderful insights into, the "humanness" of this great intellectual.
For example, in order to verify his ideas experimentally, Newton went
to extraordinary lengths which were almost childlike in their ,directness,
and enthusiasm, lengths which included sticking a blunt needle in his eye
to explore the true nature of colour (as seen when the optic nerves are
stimulated). Furthermore, whilst employed by the Royal Mint, Newton
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The Best Bits

79

Copernicus. Keep
heliocentricity. Throw out
circular orbits and epicyCles.

Kepler. Keep the Three Laws,
lides, Gravitation.. Throwaway
his idea of the Sun sweeping
the planets round like a broom.

Figure 1
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threw himself with customary fervour into the business of catching coun­
terfeiters ina manner that would rival that of Sherlock Holmes.

As I've said., the context in which a genius flourishes is vital, and at least
half the book is devoted ~o the history of mathematics before Newton.
It actually took me some time to get into Newton for Beginners - the
format takes a while to decipher: which bits are real history, which bits
are just comics? (I decided that most of the "bits" are about real history.)
The narrative contains some grammatical and typographic~lmistakes, .and
it took a while for these to be overshadowed by the drama of the story,
partly because the ancient history presented is sketchy and not particularly
well written, and doesn't immediate!y appear to have a lot to do with the
main subject. By the time I got to the part about Galileo, however, I
found that the author and artist, William Rankin, had .really found his
stride. He paints a humorous portrait of a rather cantankerous Galileo,
and he obviously admires the often-maligned Newton. Indeed, in the -last
page of the book, he discusses reasons for what he believes are common
misjlldgements of Newton's character.

There is a great deal of information in this little .book; even the in­
fluences of Newton's work on succeeding generations, including those of
th~- Enlightenment, the French and American Revolutions, and above a:ll
on Einstein, ·are considered. Galileo's and Kepler's brushes with the In­
quisition _are discussed, as are Newton's secret rejection of the idea of the
Christian Trinity and his run-ins with the" Church of England. In this
stor'y there are magic and jealousy, revolutions and executions, but above
all, there is the incredible power of mathematics as the l~nguage for de­
scribing nature. There is not much actual mathematics in the book- (it
is aimed at a popular market), and it is interesting to note topics- where
a mathematical equation (such as Newton's Law of universal gravitation)
would. have provided a much simpler description than the words used ­
which, .of course, is why we have mathematics! Nevertheless, it is vital, I
believe, that students of mathematics know some of its history, and there­
fore I recommend this book highly to readers of Function as wel~ as to the
general public.

* * * * *
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HISTORY OF MATHEMATICS

The Fourfold Wayl

Michael A'.B. Deakin

I seem to have got stuck on this problem, sir.
You have forgotten it again! How many times do I
have to say it?" You can't add a scalar to a vector!

A common enough conversation, one would have thought. Let's see
what lies behind it. Matters are not as simple as the teacher would have
us believe.

Each point in two-dimensional space may be represented by means of a
number pair (a, b). We learn later that such number pairs may be thought

, of as complex numbers a + bi, where a is called the real part and b is called
the imaginary part of the number.

To add or ,subtract two complex numbers we simply perform the· oper­
ations on their corresponding real and imaginary parts, namely

(a + bi) ± (c + di) = (a± c) + (b ± d)i

The multiplication of complex numbers uses the fact that i 2 = -1 when
we expand in the usual way using the distributive law:

(a + bi) . (e + di) "= ae + adi + bci + bdi2

= (ae - bd) + (ad + be)i .

These two operations, together with their properties, provide the complex
numbers with an algebraic structure. We will refer. to the complex numbers
with the algebraic structure described above as complex algebra.

Now, our world of experience is three-dimensional, so that an extension
of the complex number~ is needed if we are to have an algebra applicable to
it. The obvious thing to do is to try to form an algebra of number triples
[a, b,e] or a + bi + cj.

We would like the triples [a, b, 0] to obey complex algebra, so we choose
i 2 = -1. Now investigate ij - set it equal to a + bi + cj. Then

i(ij) = i(a + bi + ej)

1 Parts of this article appeared in ~f?unction, Vol. 5, Part 3 under a different title. This
material is.here reprinted during Dr D~akin's current absence overseas.
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and "assuming that i(ij) == (ii)j and that ia == ai, etc., we find

-j == ai ~ b+ cij.

Replacing ij in the right-hand side by its corresponding'expression, we have

- j == ai - b+ cij

== ai - b + c(a + bi + cj)

== (-b+ca)+(a+cb)i+c2j

so that, equating co~fficients of j, we find c2 == -1, which is no help, as we
are looking for real a, b, and c.

Thus we reach an impasse. In fact, it may be shown that. if x, y, z
represent triples of numbers such as [a, b, c], no algebra of such tr.iples can
ex:ist if we make the two natu~al requireme~ts (where 0 stands for [0,0,0]):

(i) xy == 0 implies x == 0 or y == 0;
(ii) x(yz) == (xy )z. "

Indeed, we might expect that any usable algebra would obey these require­
ments.

This was the situation that confronted the mathematician Sir William
·Rowan Hamilton (1805-1865) when he crossed Brougham Bridge, Dublin,
one evening in 1843, while walking with his wife.

Various accounts by Hamilton survive, describing what happened. This
one is quoted from Crewe's A History of Vector Analysis:

"[Quaternions] started into life, or light, full grgwn .... That
is to say, I then and there felt the galvanic circuit of thought close,
and the sparks that fell from it were the fundamental equations
between i, j, k; exactly such as I have used them ever since. I pulled
out, on the spot, a pocketbook, which still exists, and made an
entry, on which, at that very moment, I felt that it might be worth
my while to expend the labour of· at least ten (or it might be
fifteen) years to come. But then it is fair to ~ay that this was
because I felt a problem to have been at that moment solved, an
intellectual want relieved, which had haunted me for at least fifteen
years before."
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A different version was given by Bamford Gordon [Pr~f. G.B. Preston]
in Function, Vol. ~, Part 3. This quotes from a letter from Hamilton to
his son.

"In October 1843, having recently returned from a meeting of
the British Association in Cork, the desire to discover the laws of
the multiplication of triplets regained with me a. certain strength
and earnestness, which had for years been dormant, but was then
on the point of being gratified,and was occasionally talked of
with you. Every morning. in the early. part of the above cited
month, on my coming. down to breakfast, your brother William
Edwin and yourself used to ask me, 'Well, Papa, can you multiply
triplets?' Whereto I was always obliged to reply, with a sad shake
of the·head, 'No, I can only add and subtract them.' But on the
16th day of the same month - which happened to be a Monday
and a Council day of the Royal Irish -Academy - I was walking
in to attend and preside, and your mother was walking with me,
along the Royal Canal, to which she had perhaps been driven; and
although she talked with me now and then, yet an under-current
of thought was going on in my mind, which gave at last a result
whereof it is not too ID,:!ch to say that I felt at once the importance.
An electric circuit seemed to close; and a spark flashed forth, the
herald (as I foresaw immediately) C!f many long years to come of
definitely directed thought and work, by myself if spared, and at
all events on the part 'of others, if I should ever be allowed to live­
long enough distinctly to communicate the discovery. I pulled out
on the spot a pocket-book, which still exists, and made an entry
there and then. Nor could I resist the impulse - unphilosophical
as it may have been - to cut with a-knife ona stone of Brougham
Bridge" as we passed it, the fundamental formula with the symbols,
i,j,k;

·2 ·2 k2 . 'k 1
~ = J = = ~J = - ,

which contains the solution of the Problem, but of course, as an
inscription, has long since mouldered away. A more durable notice
remains, however, on the Council Books of the Academy·for that
day (October 16th, 1843), which records the fact that I then asked
for and obtained leave to read a paper on -Quaternions, at the
First General Meeting of the Session: which reading took plac~
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accordingly on Monday the 13th of November following."2

The original vandalism ("long since mouldered away") has been replaced
by a plaque on what is now 'called "Quaternion Bridge" in the Dublin
suburb of Broombridge. The plaque gives the table as written above.

Essentially Hamilton solved t~e problem by admitting four dimensions,
r~ther than restricting consideration to the impossible three. There are
three square roots of -1, .called i, j, k, so that

·2 ·2 k2 1'l=J= ='- ..

Furthermore,
ij = k, jk ~ i, ki = j,

which formulae are neatly summarisable as ijk = -1, the result given on
the plaque.

The algebra has one peculiar feature: if the order of the terms in a
product is reversed, the value may' alter. E.g. ij = -ji. This is readily
proved:.

- ji = (ii)ji = i(ij)i = iki = i(ki) = ij.

You may care to explore matters further yourself.

Hamilton would have been aware of algebras that do not allow auto­
matic reversal of products (so-called non-commutative algebras3), so· that
his insight was essentially the admission of the extra dimension.

Hamilton, and later another mathematician, Tait, devoted much energy
to the development of quaternions. The endeavour, indeed, occupied much
of the rest of Hamilton's life. For Tait, the four-dimensionality of the result
became. the key to an intellectu~l development in which abstract results
came to be seen as more important than the practical needs on which they
were based.

The general quaternion,' a +bi +cj + dk, was seen as composed of two
parts (cf. the real and imaginary parts of a complex number): the real or
scalar part a, and the vector part bi + cj + dk. This latter, being three..
dimensional, was of most interest for applications.

2This quotation was taken from R.P. Graves' biography of Hamilton.
3 An example known to you is the multiplication of matrices.
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From this point of view, a vector is a quaternion of the special type
[0, b, c, d) or bi + ci + dk. If two such quaternions are niultiplied together,

. there results:

(b1i + cli + dlk) . (b2i + c2i + d2k)

= -b1b2 + bIC2k ·- b1d2j - clb2k - CIC2

+ c1d2i+ dlb2j - d1C2i - dld2

= (-blb2 - CIC2'- dld2) + (c1d2 - C2dl)i

+ (dlb2 - bld2)j + (b1C2 -- clb2)k (1) .

which is a full quaternion, so that multiplication of pure vectors does not
result in a pure vector. (In much the same way, multiplication of pure
imaginary nnmbe,rs yields a real number.)

Two physicists, Gibbs and Heaviside, cut this Gordian knot by defining
two products of the vectors (bl , CI, d l )' and (b2, C2, d2). There was the scalar
product (also known as 'dot' p~oduct)

(bl , Cl, d1) · (b2 , C2, d2) = blb2+ CIC2+ d1d2

which, omitting the sign, co~responds to the first component in (1), and
the vector product (also known as 'cross' product)

(bl,Cl,d1) x (b2,~C2,d2) = (c1d2 - C2dl,dl"b2 - d2b1,b1C2 - b2Cl)

~orrespondingto the last three components in (1).

A roaring controversy ensued. Hamilton and Tait felt that an esse~tial

algebraic insight was being lost, that mathematical rigour was flying out
the window, and that mere amateurs were'attempting to take over the reins
of advanced m<.tthematics. Gibbs ~nd Heaviside, for th~ir part, saw their
opponents as deliberate obscurantists. For them, vectors and scalars were
quite distinct species, and even though you might. inathe~atically justify
their being added together, it showed lack of 'physical sense to do so. The
eminent physicist Maxwell weighed in on their side with the grumble that
he didn't see why he should yoke an ass to an ox to plough the furrow of
Physics.

The participants indulged in marvellous invective, which makes splendid
reading even today. Thus Heaviside:

" 'Quaternion' was, I think, defined by an American school­
girl to be an 'ancient religious ceremony'. This was, however,a
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complete mistake. The ancients - unlike Professor Tait - knew
not, and did not worship Quaternions .... A quaternion is neither
a scalar, nor a vector, but a sort of combination of both. It has
no physical representatives, but is a highly abstract mathematical
concept."

Nowaday~, vectors are quite mathematically respectable, and it takes
some work to understand what all the fuss was about. The dispute was
very largely over questions of notation, but other more metaphysical mat­
ters did keep intervening. The whole matter seems somehow so passe, so
Victorian, that we tend to forget how recent it is. One of the lesser and later
participants, C.E. Weatherburn, a professor at the University of Western
Australia, died as rec~ntly as 1974.

The completeness of the victory won by Gibbs .and Heaviside may be
judged from the conversation at the start of this article and its dogmatic
conclusion: You can't add a scalar to a vector!

For Hamilton and Tait, you not only could, but you had to.

* * * * *

LETTERS TO THE EDITOR·

Inside the front cover of each issue of Function is an invitation to readers
to send us letters, articles or problems for solution, and we are pleased
when people respond.. Recently, we received a contribution from one of our
regular readers, Garnet J. Greenbury of Brisbane, in response to our front
cover article in Vol. 18, Part 1 on Lockwood's Goldfish and negative pedals.
He lists a number of examples of the negative pedals of various curves, and
provides graphs showing how to construct them. Negative pedals of simple
curves include some exotic species such as "Tschirnhausen's cubic" and
the "cissoid of Diocles" , as well as the more familiar ,ellipses, parabolas and
hyperbolas. He also suggests a method for producing negative pedals by
paper folding.

If you have comments to make on any of the articles that have appeared
in Function, or just want to let us know what you think of the magazine,
drop us a line!
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COMPUTERS AND COMPUTING

Exact Arithmetic

Cristina Varsavsky

Performing ba.si~ arithmetic is a part of our everyday life for which
we usually rely on calculators and computers. Useful as they are, they
are lim.it~d in the size of the numbers they can handle. For exanlple, if I
multiply the numbers 123456789 and 9876 in my Canon F-800, it returns
the approximate answer

1.219259248 X 1012

_where t~e last three digits have been lost. Furthermore, I cannot enter
integers longer than ten digits; I have to sacrifice precision when I operate
with large integers.

The size of the integers that can be handled by calculators and com­
puters is- deter~ined by their hardware. When we are dealing with larger
integers, we need to use software rather than the in-built operations if we
want to perform the calculations in exact form. As was mentioned in an
earlier article (Function, Vol. 17, Part 4), computer algebra systems such
as DERIVE, MATHEMATICA, THEORIST, MAPLE and others, have
the capability of performing exact calculations; they are written in highly
sophisticated programming la.nguages to achieve this.

This article is about designing' simple procedures to perform the four
basic operations with integers: addition, subtraction, multiplication and
division. We will apply algorithms we are familiar with, the same ones
we lIse .when we have to perform the calculations by hand, and we will
implement them in the very simple programmi~glang:uage QuickBasic.

f'irst, the digits of the numbers involved will be st<?red in arrays, which
in OllI programs will be set to have dilnension 20, but you can change this to
any size or even modify the program to use $DYNAMIC dimension. Since
'\.\~e always start with the unit digits when ,we add, subtract or multiply, the
digits V\rill be stored in reverse order, meaning that tIle first value in the
array repres'ents the units, the second the tens, and so on. For example,
the nU.lnber 12345 would be stored in the array named a as follows:

a(1)==5, a(2)==4, a(3)==3, a(4):=2, a(5)==1, a(6):=a(7)= ...==a(20)=O
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To simplify our notation we' will write this as

(5, 4, 3, 2, 1, 0, 0, ... , 0)

Function 3/94

Let us work through the algorithm for the addition of two numbers
which are stored in the arrays a and b, where

a = (a(l), a(2), a(3), , a(20))
b = (b(l), b(2), b(3), , b(20))

We start by adding the units, that is a(l) and b(l), carrying a 1 if the
sum is greater than 10. Then we add the tens and the car~y, carrying a'l if
necessary. We proceed in this fashion till we reach the last non-zero entry
in the array representing the larger number.

The following QuickBasic program reads the two numbers, adds them,
and displays the result on the screen:

REM Initialise the array to store 20 digits
size = 20
DIM a(size), 'b(size), x(size) AS INTEGER
a$ = "first": GOSUB reading: lengtha = length
FOR· i = 1 TO size: a(i) = xCi) : NEXT i
a$ = "second" : GOSUB reading: lengthb = length
FOR i = 1 TO size: b(i) = xCi) : NEXT i

GOSUB addition
GOSUB display
END

display:
REM This is to display ~he answer
PRINT: FOR i = length T'O 1 STEP -1: PRINT xCi);
NEXT
RETURN

reading:
FOR j = 1 TO size: x(j) = 0: NEXT
PRINT "Enter the number of digits for the"; a$; " number: ";
INPUT length
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PRINT: PRINT "Enter the"; a$; H number by
inputting a digit for each question m.ark."
FOR j = 1 TO length: INPUT x(length - j + 1):
NEXT
'R-ETURN

addition:
IF leng~ha >= lengthb THEN length = lengtha .

. ELSE length = lengthb
carry = 0
FOR i = 1 TO length

sum = a(i) + b(i) + carry
carry'= INT(sum/ 10)
,x(i) = sum MOD 10

NEXT
IF carry = 1 THEN

x(length + 1) = carry: length = length + 1
ENDIF
RETURN

89

Note that the array x is used as an auxiliary.array and also to store
the addition. The purpose of the display procedure is to-output the result
with the digits in the right order.

In the case of subtraction we do not carry a 1, but we may need to
"borrow" a 1 which must be "paid back" in the following step. The i~ple­

mentation of this algorithm is left to the reader. Later, a modified version
of it will be used as part of the division algorithm.

For multiplication you will have to recall the technique of long multi-.
plication, which is illustrated in the following example where we multiply
623 by 97:

623
x97

4361
5607
60431

TIle procedure could be described as follows. We start with the units of
the second number, 7 in our case, and we multiply it by each digit in the
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first number. Now, the 3 contributes to the units of the product, the 2 to
the tens, and the 6 to the hundreds. When we continue with the tens digit,
9, in the second number, the 3 will contribute to the tens of the product,
the. 2 to the hun.dreds, and the 6 to the thousands. In general, when we
·multiplya(i) and b(j), this product contributes to the position i + j - 1 in
the product x. Since we store only one-digit numbers in each position, we
may Il:eed to carry to the next position, i + j.

The algorithm described above is implemented in the following subrou~

tine called product, which you can insert and call in the previous pro­
gram. Note that now it is important to initialise the ·array x where the
product is going to be placed. Observe also that the upper limits in the
FOR ... TO .... loops are one more than the length of each number.' Can
you see why?

product:

FOR i = 1 TO lengtha + lengthb: xCi) = 0: NEXT
FOR i = 1 TO lengtha + 1

carry = 0
FOR j = 1 TO lengthb + 1

auxl = a(i) * b(j) + carry
aux2 = xCi. + j - 1) + aux1 MOD 10
xCi + j - 1) = aux2 MOD 10

xCi + j) = xCi + j) + INT(aux2 / 10)
carry = INT(auxl / 10)

NEXT j
NEXT i
IF x(lengtha + lengthb) = 0 THEN

length = lengtha + lengthb - 1

ELSE
length = lengtha + lengthb

RETURN

Now the program with this subroutine can give us an exact answer for
the product of 123456789 and 9876: it is 1219259248164.

Finally, we arrive at division, which we will perform using the long
division algorithm. Do you still r~member it? Here is an example:
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Divide 9562 by 23

415
2319562

92

36
23

132
115

17

91

So, what is the procedure we followed to arrive at the quotient 415 and
the remainder 17? We start by taking as many digits of the dividend, 9562,
as the number of digits in the divisor 23. Then we work out the number of
times 23 goes into 95. This gives us 4, the first digit of the quotient, and a
remainder of 3. To obtain the second digit of the quotient we multiply this
remainder by ten and add the next unused digit of the dividend, namely 6.
We repeat the procedure with this new number 36 and the divisor 23 till
all the _digits of the dividend have been used.

The algorithm is implemented in the following subroutine which you
can append to the original program, making the appropriate- adjustments.
The dividend is placed in ~he array a and the divisor in the array b. The
quotiel;lt and remainder are stored in the arraysnamedq and r respectively.
Initially, the remainder contains the first digits of the dividend, as many as
the length of the divisor. The inner WHILE ... WEND. structure counts,
through the variable counter, the number of times we need to subtract
the divisor b from r to get a negative number; then b is added back to r.
This is followed by a shift of one place up in the array -r and the addition of
one more digit from a. These steps are repeated {ill all digits fr.om a have
been used. The outer WHILE- ... WEND structure controls this through
the variable number.

division:

FOR i = 0 TO lengthb - 1
r(lengthb - i) = a(lengtha - i)

NEXT

number = lengthb
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WHILE number < lengtha + 1
counter = 0: borrow = 0

. REM Subtra'ct the d~visor repeatedly
WHILE borrow = 0

counter = counter +1: borrow = 0
FOR i = 1 TO lengthb + 1

auxl = rei) - b(i) + borrow
borrow = 0
IF auxl < 0 THEN

borrow = -1 .
auxl = auxl + 10

END IF
rei) = auxl MOD 10

NEXT

WE·NO

q(lengtha - number + 1) = counter - 1

REM Add the divisor back to the remainder
aux2 = 0
FOR i = ITO lengthb + 1

auxl = rei) + b(i) + aux2
aux2 = INT(auxl / 10)
r(i) = auxl - aux2 * 10

NEXT
REM Shift values in the remainder one place 'up
FOR i = 0 TO lengthb.- 1

r(lengthb - i'+ 1) = r(lengthb - i)
N~XT

REM and ta~e one more d'igit from the divide·nd
r(l) = a(lengtha - number)
nurn'ber =. ·number + 1

WEND

PRINT : PRINT. U The quotient is = ";

.Function 3/94
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FOR i = lengtha - lengthb + 1 TO 1 STEP -1
PRINTq(i);

NEXT'
PRINT: PRINT U The remainder is = ";
FOR i = lengthb + 1 TO 2 STEP -1:

PRINT r(i);
NEXT

RETURN
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As has already been pointed out, the algorithms presented here are the
. ones we use when performing calculations by hand. Although good and

fast enough for our use, these are not the most efficient algorithms for per­
forming'integer arithmetic. The efficiency is measure9- by the relationship
between ~he input size, that is, the length of the numbers involved, and
the number of operations and memory .~sed to perform the desired cal­
culation. One efficient way' of handling big. integers was described in the
article "Modular Arithmetic Keeps the Numbers Small" , Function, Vol. 17,
Part 1, where modular or "clock" arithmetic plays a crucial role.

* * * * *

MATHEMATICAL LIMERICK

Integral vee squared dee vee
From one to the cube root of three,
Times the cosine
Of three pi on nine
Is the log.of the cube root of e..

Or, in symbols:

(
(ij3' ) 31rh v2 db cos g = In ~.

* * * * *
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SOLUTIONS

PROBLEM CORNER
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PROBLEM 18.1.1 by K.R.S. Sastry, Addis Ababa, Ethiopia

Through a fixed point K a variable line is drawn to cut the parabola
y = x 2 in the points P and Q. Let R be the midpoint of the chord PQ of
the parabola. Find the locus of R.

SOLUTION by K.R.S. Sastry (modified by the editors)

Let the co-ordinates of K be (m, n). Let the equation of the line through
K, P and Q be y = bx + c. Then n = bm + c, so the equation of the
line can be written y = bx + n - bm. '.Let the co-ordinates of P and Q
be (Xl, xi) and (X2' x~) respectively. Then Xl andx2 are the two (real)
roots of the quadratic equation x 2 - bx + (bm - n) .= O. Upon writing
x 2 - bx + (bm - n) = (x - Xl)(X - X2), expanding the factors, and equating
the coefficients of x, we obtain:

Xl + X2 = b.

Let R be the midpoint of PQ, with co-ordinates (x, y). Then:

Xl.+ X2 b
x = =-

2 2

y =
x~ + x~

2
1

= 2(bxl + n - bm + bX2 + n - bm)

1
= 2b(x1 + X2) ~ bm + n

1 2
= -b -bm+n

2

Eliminating b to obtain an equation connecting x and y, we obtain the
equation of the locus:

y = 2x2
- 2mx + n (1)

Equation (1) suggests that the locus is a parabola, but we need to be
more careful. If K is inside the parabola y = x2, then the locus is the
complete parabola described by Equation (1). If [{ is outside the para~ola
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y = x 2
, however, the locus is just the part of the parabola in Equation (1)

that falls inside the parabola y = x2. In order to ensure that the condition
y > x 2 is satisfied in this case, we must impose the restriction:

x<m-v'm2 -n or x>m+vm2 -n

Geometrically, the locus has two branches, and R jumps from 0I:te branch
to the other as the line passes· through the vertical. ~ach branch starts p,t
a point of contact of a tangent from K to the original parabola y = x 2, and
extends to infinity.,. as shown in the diagram.

-1

It is interesting to note that K is a point on the parabola described by
Equation (1).

PROBLEM 18.1.2. The polynomial factorisation shown below was written
down so hastily that most of the digits are illegible.

x2 + *x - *1 == (x + **) (x - *)

(Each asterisk denotes an illegible digit.) How should it read?

SOLUTION

Write
x2 + *x - *1 = (x + a)(x - b) .

where the integers a and b are such that:
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(i) a has two digits, b has one;

(ii) the difference. (a - b) is a single-digit number;

(iii) the product ab is a two-digit ~umber ending in 1.·

Function 3/94

The case b =·1 is easily ruled out, since (ii) could not be satisfied. It
is now a simple matter to list the non-trivial factorisations ab of each two­
digit number ending in 1. Of these, only 91 = 13 x 7 satisfies (i) and (ii),
so the answer must be a = 13, b = 7, giving

. x2 +6x-91=(x+13)(x-7).

PROBLEMS

Just for starters, here's a quick and easy problem to test your ability to
visualise in 3-D. See if you can. answer it without resorting to experiment!

PROBLEM 18.3.1 A man's shirt is 'normally buttoned up with the left side
overlapping the right side. If a man puts his shirt on inside-out and buttons
it up, which side will be outermost?

And now for one more mathematical probl~m ...

PROBLEM 18.3.2 Find the unique 5-digit number which, when mllitiplied
by 4, yields the number formed by writing the digits of the original number
in the reverse order.

*****

Correction

We aim to make each issue of !!,unction as free of errors as is humanly
possible. Nevertheless, despite our best efforts, mistakes and misprints still
occur. In 'the previous issue of Function, the name of the Polish mathe­
matician Sierpinski was wrongly spelt in three places, leaving readers in
doubt as to the correct spelling. So, in case anyone is still wondering, the
spelling shown above is the correct one.

* * * * *
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