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fUNCTION is a mathematics magazine addressed principally to students in the upper
fonns .of secondary schools.

It is a 'special interest', journal for those who are interested in mathematics.
Windsurfers, chess-pl~yers and gardeners ~ll have magazines that cater to their interests.
FUNCTION·· is a counterpart of these.

Coverage is wide -pure mathematics, statistics, .computer science and applications
of mathematics are all included. Recent issues have carried articles on advances in
mathematics, news items on mathematics and its applications, special interest matters,
such as computer chess, problems and solutions, discussions, cover diagrams, even
cartoons.

* * * * *

Articles, correspondence, problems (with or without solutions) and other material for
publication are invited. Address them to:

The Editors,
FuNctION,
Department.ofMathematics,
Mon~sh··University;
ClaytOtl, Victoria, 3168.

AlteITlatively ..• c.9rr~spo:r:tdeDce ..Jna.Yql:>e.;.aqg.r.~§~~9 . individually. tQ .aJlY of· the editors at
the mathematics departments· of !he institutions .·listed on the inside front cover.

FUNCTION is published five times a year, appearing in February, April, June, August,
October. Price for five issues (including postage): $17.00*; single issues $4.00.
Payments should be sent to the Business Manager at the above address: cheques and money
orders should be made payable. to Monash University. Enquiries about .advertising should be
directed to the business ·manager.

*$8.50 for bona fide secondary or tertiary students.

* * * * *
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Part 4

So much has been written about the Mobius strip; it has become so familiar one would
th:ink all its properties well-known and readily accessible. But we have a surprise for
you. The Mobius strip? - not so, there are two of them and they are distinct! The point
is not discussed in any accounts we have seen. John Stillwell makes good the omission in
his article on p. 141. .
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THE FRONT COVER

The front cover diagram for this issue. was sent in by Garnet J. Greenbury, one of our
regular contributors. It illustrates a result known as Pappus' Theorem. The earliest

known account of it is indeed that to be found in Pappus' book The Collection.t "Pappus
was a Greek geometer who lived in Alexandria in the fust half of the fourth century. The
part of The Collection (Book VTI) in which the theorem is found is believed to contain

material derived from a now lost book by Euclid: The Porisms.tt So it is quite possible
that Pappus' Theorem was known to Euclid who lived much earlier, and the result may have
been discovered even before that. -

The theorem is now seen as being fundamental to the branch of geometry -known as
projective geometry, much of which comes from a much later date. A, B and C are three
points lying on one straight line and A', B', C' are three points lying ,on another. Let
AB' and A'B meet in P, Be' and B'C meet in Q, CA' and C'A meet in R. Then
P, Q and R lie on a straight line. See Figure 1.

The proof is quite difficult and will not be given here - though we concur with Mr
Greenbury's remark that the result "is a most beautiful theorem which should be part of
everyone's experience".

Pappus' Theorem has close and deep relations with another theorem from projective
geometry: Desargues· Theorem. Desargues' Theorem was the subject of our cover story for
Vol. 10, Part 3. A simple proof of Desargues' Theorem is known.and was indicated there.
We can also prove Desargues' Theorem frpm Pappus' Theorem, but not vice versa. Desargues'
Theorem requires a further assumption to be made if we are to deduce Pappus' Theorem from
it.· ,

Pappus' Theorem has the more modern distinction' of being the first geometrical result
to 'be ptovedby means ora compu!er-algebra"package.The 'work -was- d6neat Bfown
University (U.S.A.) in 1968 using the computer language FORMAC on what was then a
medium-sized machine, but now would be considered small (in storage space - not in
size!).

The two re~archers -involved, Elsie Cerutti and Philip Davis, set up co-ordinates for
the various points A, B, C, A', B', C' and had the computer worlc out the co-ordinates of
P, Q, R. They then had it calculate the area of the "triangle" PQR, which area the
computer discovered to be zero. They also scanned the output and disc.overed from it
several new (previously unknown) theorems. These however are technical and will not be
given here. The story is told in the journal American Mathematical Monthly (Oct 1969).

The other point to note is that Pappus' Theorem is now recognised as a special case
of a much more general result. The curves known as conic sections are those resulting

t For more on this work, see the article by Winifred Frost in Function Vol. 16, Part 3
and the artic~e on p. 139 of this issue.

tt The English word Hporism" is now archaic, but it was once used to mean "corollary'" - a
relatively straightforward consequence of a more inlportant theorenl. The word derives
directly from the Greek, but the precise significance of the term for Euclid and other
mathematicians of antiquity has been disputed.
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fronl making a cut (or section) through a cone (a right circular cone formed by all the
lines connecting the points of a circle to a point directly above its centre). The conic
sections were discussed in the cover story for Function, Vol. 10, Part 2. Various curves
are conic. sections: the parabola, the. hyperbola, the ellipse (with the circle as a special
case), and also either a pair of straight lines or a single straight line.

Pappus' Theorem begins with the initial six points A, B, C, A', B', C' lying on a
pair of straight lines. In fact, they may-lie on any conic. Figure 2 shows one example 
the case in which the conic is a circle.

This fact was discovered by the French mathematician and philosopher, Blaise Pascal
(1623-1662). It was one of his very fIrst contributions to mathematics; he made the
discovery at the age of sixteen. Nowadays it is usually termed Pascal's Theorem in his
honour - although the older term "mystic hexagon theorem" is sometimes employed, as it can
be represented as revealing a property of the diagonals of certain special hexagons.

All in all, Pappus' Theorem has been very much in the mathematical news for probably
about 2000 years.

* * * * *

More on remembering Pi
Our regular contributor Gamet J. Gre~nbury in 1991 offered a $40 prize for the best

nmemonic for Pi. This was won .by Melissa· Freudenstein, a Year 12 student at the Henry
Lawson High School,. Grenfell, N.S.W. Here is her 205-~ord offering.

War! A loss I can't ·reimburse to people. Grace the males fighting memorable battles
n~cessary for to mar humanity. Help people to reveal wars mad men struggle for to release
oppressed lives! Inhumanity,~v~d~n~elllust, Ie1l1phas~e'.t()rture ..~ .. J?~rsond~sp~rate and
foolhardy. Animosity bas curious power I can'testfmate as·· necessity ·deffiands this
hostility. This, with death, treachery is war. Mundane pretence, a deadly mire. Guilty
or innocent battle on. Fighting maintains memorable scathing scenes in eternity. The
evil memories of greed and hate as intractable despair. -Bloody corpses displayed evidence
of a grim manifest. Suppress untold greed I say, as conflict is sin - greedy powers will
dwindle. Symbolize war insanity with hero homage. Grotesque empty idols! Adept strength
go to all a society· in peace and potential love. Poignant I am. Securely true partisan.
A destruction willing more death. . To maintain .wars, I am idiotic. A promotion for
grievous irony is regrettable. Sneer while human sacrifice suffer loss with relief. So
to symbolize evil, continue insolence. Major .hurt dispenses out. War memories - a
confusing parade with loss of rational thinking.

The Australian Mathematics Teacher (Vol. 48, No.1, 1992, p.35) notes a simpler and
much shorter mnemonic:

May 1 hav~ a large container of coffee?

For other such mnemonics, see Function, Vol. 16, Part 4, p. 128.
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THE GOLDEN SECTION

Mi~hael A.Bc Deakin, Monash University

Figure 1 below shows a regular pentagon PQRST tQgether with all its diagonals. The
sides are all equal and may be taken to have length 1. I.eo

PQ = QR =RS = ST= TP = 1

Similarly all the angles PQR, QRS, etc. are equal and their magnitude is ~ radians or
lOgO.

p

Q~-----......"lfr--_--~------1T

A s

Figure 1

The lengths of the diagonals QT, RP, SQ, TR, ·PS are also equal to one another. Let
the common length be ~.

Now th~ triangles QUT, SUR are similar (because; as may easily be shown, QT is
parallel to RS). Thus

QU _ QT _ 'to
VS - FS - T' (1)

But PQUT is a parallelogram with fQ = PT (that is to say, a rhombus). Thus
QU = PT = 1. Thus Equation (1) tells us tha~

1i=I =~, (2)

that is to say,
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i.e.

't-l=.!.
't'

This is a. quadratic equation with roots

't =~1 ± V5).

(3)

(4)

AB =CD ='t, BC =DA = 1

In our present context we choose the positive root

1: = k<v15 + 1) =1.618 033 988 7....

This value is called the golden ratio (or golden section)t and it arises in many
~ther contexts as well. Perhaps the very simplest is that shown in Figure 2.

TIle rectangle ABeD has
~ ~

in suitabl~ c~osen units.

The points E, F are so chosen that AE =FD = 1, and so AEFD is a square.

A r--__~__--~Er___----___aB

D F c

Figure 2

'We now have BE ='t - 1, and this, by Equation (3), is lit. Thus

Be/BE = l/('t-l) = 't, by Equation (2),

t The name "golden section" is the subject ofa lengthy entry in Volume 1 of the
supplement to the O~ord. English Dictionary. This states in part: "This celebrated
proportion has been known since the 4th century B.C. .... Of the several names it has
received, golden section (or its equivalent in other languages) is now the usual one, but

. it seems not to have been used before the 19th century." The earliest use they cite is an
1835 one in Gennan; the earliest English use a mention in the 1875 edition of the
Encyclopaedia Britannica. The value here denoted by 't is often represented instead
by <1>.
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and the rectangle BCFE is similar to the original ABeD. Such rectangles are called
golden rectangles.

Note another property also from Figure 2:

ABxBE=AE2 (5)

which may very readily be proved u~ing Equation (4). It is under this guise that the
golden ratio fITst appears in Euclid. (It is Proposition 11 of Book II; pp. 402-403 of
Heath's English edition.)

Given an interval AB, Euclid was con
cerned to construct the point E such that
Equation (5) held. (Such constructions were
to be carried out· using only compasses and un
nlarked straightedge rulers.)

Here is Euclid's construction.

DraVl AX perpendicular to AB and such
that AX =AB. Let Y be the mid-point of
AX. Jom BY. Draw YZ through A such
that YZ =BY. On AB, nlark off E such that
AE =AZ. I leave it to the reader to show
that ABIAE ='t.

z

A 'f B
~----......~--=;q,;o

y

Heath remarks that as this construction
is necessary to the construction of a regular X .
pentagon it must have been devised by Figure 3
the Pythagoreans - followers of Pythagoras (who
lived about 500 B.C.). They were closely associated with the regular pentagon.

Go back now to Figure 2. The line EF cuts (or "sections", as older usage would
have it) the rectangleABCD - into- two parts ~ a square (AEFD) and a smaller replica of
itself (BCFE). This follows directly from Equation (3) .which therefore tells us

A golden rectangle conlprises a square and a smaller golden rectangle.

This process may be repeated; see Figure 4. From the new golden rectangle BCFE, cut
(or section} off the square BHGE to fonn the new golden rectangle CFGH. Similarly form
t~e smaller golden rectangles FOIl, GKLI, and so on.

A...-- --,E...- -----. B

o F J

Figure 4

H

c
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The process clearly may be carried on ad infinitum and this observation may have been
very important. in the history of mathematics. To see why, begin by considering a
rectangle whose sides are in the ratio n/m where n and. m are integers and n > In.
We can now .divide the rectangle into a square -of side m and a rectangle of sides 11 - In,
m. Now if n-.m > m, we may cut off a further square of side m and perhaps even several
such. Otherwise, take a square of side n - m, etc. Eventually the process will terrrlinate
and the smallest square will have a side equal to the greatest common divisor of n + nz.

See for an illustration Figure 5, which depicts the case n =20, m = 12. Remove
frrst a square of side 12, to leave a 12 x 8 rectangle. Next remove a square of side 8
to leave an 8' x 4 rectangle. This comprises. two squares of side 4, and

4 = g.c.d. (20, 12).

1 /1
+--8~

12

j
20 --------:))~

Figure 5

(The construction just given is in fact a geometric version of Euclid's algorithm for
fmding the .gre(itest common. divisor;se~ Function~ Vol. 8, Part 5..)

But if we begin with a golden rectangle, each removal of a square produces a new
golden rectangle. Thus the process can never tenninate, but must, go on forever as we have
seen. It follows that the sides are not in integral ratio to one another. In other words

tt is irrational.

The discovery of irrational numbers is generally traced back to the Pythagoreans but.
we have very few details of it. Geqerally it is assumed that the number they found to be
irrational was v'Z, but ·there is little direct evidence for this. In 1945, a
mathematician named von' FJjtz suggested that the fIrst number. to be seen to be irrational
may in fact have been ~. The pentagram (the star made up of the diagonals in Figure' 1)
was very much associated with the Pythagoreans, and von Fritz produced a version of' the .
above argument using pentagrams. (The simpler, rectangular, version given here is due to
my colleague Chris Ash.)

The golden section arises in other contexts as well.' The connection with the
Fibonacci sequence and the phenomena of "phyllotaxis" (or leaf arrangement) were noted by
Robyn Arianrhod in Function, Volume 16, Part 4 and in the cover story of that issue.

In particular, Robyn showed that the ratio of two successive Fibonacci numbers'
approximated 't and indeed approached arbitrarily close to 't as the numbers got larger.
There is more to this. It can be proved that 't is represented by the infinite continued
fraction
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(6)

(For ardcles on continued fractions, see Function, Vol. 4, Part 4 and Vol. 11, Part 2;
the proof of Equation (6) was Problem 4.2.1) If· we truncate the infmite expression (6)
we get precisely the ratio of two successive Fibonacci numbers. Successive truncations

give 1, 2, ~, ~,etc. These are the so-called "convergents" of 't~ each being an
23·

improvement on its predecessors and on all other such fractions with denominators less
than the one given. Thus the· Fibonacci ratios are the best possible rational
approximations to 'to

Equation (6) gives the very simplest possible infmite continued fraction and as an .
infinite continued fraction represents an irrational number, we can see that, in a sense~

"c is the very simplest irrational number. It would thus be fitting if von Fritz were
right and it ,vas indeed the first to be proved irrational, but historical conclusions
cannot be arrived at by' such arguments!

Figure 6 reproduces Figure 4 but with a superimposed spiral. This curve homes in on
the point at which AC and BF intersect. Any line through this point will cut the
f,'Piral at a fixed angle whose value is ,approximately 760 43'. It is thus referred to as

an equ.iangular spiral.t

A

D

Figure 6

E

F J

B

H

c

This too arises in nature, again in phyllotaxis ~ the spirals in sunflower he~ds

approximate equiangular spirals - but perhaps most clearly in nautilus shells (see
Figure 7).

A close approximation to the equiangular spiral may be produced by taking circular
quadrants DE, EH, HI, etc., and some people mistakenly believe this to be exact.
However, close attention to Figure 5 shows that the spiral actually goes outside the
rectangle before re-entering it at E.

t It is also sometimes known as the logarithmic spiral.
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Figure ,t

From time to time there have been' claims that the golden rectangle and the
equiangular spiral have P8!ticular aesthetic appeal. An artificial "nautilus" may be
seen outside the National Gallery of Victoria (at the north end of the moat). The
Time-Life book Mathenzatics claims to fmd golden rectangles in the work of several famous
painters, notably the Dutch abstractionist Mondrian. The Age (17/12/1990) made a similar
claim in respect. of the Australian painter Jeffrey Smart.

The systematic study of the golden ratio in art goes back to the American author Jay
Ha.mridge, who .claimed evidence for its use in ancient -Greek pottery. Hamridge analysed
the shapes of many Greek vases _by drawing cross-sections of them a!ld superposing
rectangles on these. Some of the rectangles were in th~ proportion -Iii : 1
(n = 1, 2, ..., 6) and others in the ratio 't: 1 (the golden rectangle, which Hamridge
referred to as the "Rectangle of the Whirling Squares" - because of the properties
illustrated in Figures 4 and 6).

The trouble with this sort of analysis is that with combinations of 7 standard
rectangles and an allowance for error (which Hamridge attributed to shrinkage during
fmng) many, many shapes can be generated.

Similarly with the pictures. The illustrations in· Mathelnatics superpose .golden
rectangles on various pictures and I have done this -too with the Smart picture
illustrating the Age article. There are golden and non-golden rectangles to b~· found in
all these pictures - however, it is a little hard to assign much significance to .all this.

My reading is that Smart does make conscious use of the golden rectangle; similar
claims have been made in respect of the American artist George Bellows and ·of the
Renaissance Florentine Piero della Francesca. The golden rectangles in ~10ndrian's work,
however, are thought by the· authors of Mathematics to be unconscious. It would be
interesting to see if viewers were conscious of whether or not particular pictures
contained golden rectangles and whether or not it mattered.

t Our thanks to Dr. T.E. Hall for the loan of his nautilus shell.
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An example of the non-rectangular use of the golden section in art is provided by the
famous painting The Birth ofVenus. A 1914 account, quoted in the OED supplement referred
to earlier, goes: ~'In Sandro Botticelli's Venus .u the line containing the figure from
the top of the head to the. soles of the feet is divided, at the .navel, into the exact
proportion given by .... the 'Golden Section'."

I checked this claim by measurement of the reproduction in the book, Complete
Paintings of Botticelli. The top of. the head is not very ''lell defmed and the feet are
somew~at. apart, with the soles not visible. However, a straight .line may be found between
the ball of the left foot, the navel and a reasonahly prominent tress of hair. Measuring
to the nearest millimetre, I found

Tress to ball of foot: 206 1~; Navel to ball of foot: 127 nun.

. Then
206-TT7 = 1·62 ... ~ 1: = 1·61.8....

This is really very impressive agreement - the more so as I decided 'what to nieasure
before doing any calculations.' However, the questions remain. Did Botticelli hltend it?
Is this the only such ratio in his work? Is our enjoyment of the painting enhanced by
this numerical fact?

Further Reading

1'here is a great deal of material available on the golden section, the equiangular
spiral and the Fibonacci sequence. Very acce,ssible is the Time-Life book lviathernatics (by
David Bergamini and others). A bit more mathematical, but very likely available in many
school and municipal libraries, is B.P. Northrop's Riddles in ,Mathematics (now available
in a Penguin reprint). See especially pp. 53-60 and the notes on p. 228 of this edition.
1vlore technical, but very informative. are the accounts·in II.M. Cundy and A.P. Rolletfs
Mathelnatical Models (O.D.P.), pp. 62-64, H.S.M. Coxeter~s Introduction to Geon1etry
(Wiley), pp. 160-172, and E.H.Lock:WQ9d'~A IJ.gok pi QUl~V~.s'(C.YJ·).), pp. 98-109. These
references contain a lot of interesting additional material left out of this article on
grounds of space.

* ** * *

PAPPUS' GENERALISATIONt OF PYTHAGORAS' THEOREM

Garnet J. Greenbury, Upp.er Mt. Grava~t, Queensland
Given a triangle ABC, draw on the sides AC and Be two parallelograms MDCA and

ENBC; extend the sides MD and NE .as shown (see the diagram overleaf), to meet at a
point P. Join PC and extend it fust to Q where it meets AB and then beyond. to R,
making QR equal in length to PC.

t Euclid's Elelnents was a collection of geometric results, some of whIch he derived from
earlier mathematicians. Pythagoras' Theorem was known long before. Euclid. Euclid is,
however, credited with a generalisation in which the squares on the sides of a right
angled triangle are replaced by any similar rectangles (and thus by any similar figures).
This is Proposition. 31 of Book VI of the Ele171ents. Pappus' further generalisation is
Proposition 1 of Book IV of his Collection - the work desclibed by Winifred Frost in
Function, Vol. 16, Part 3.
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p

M

N

x R y

Then draw a parallelogram on the side AB of the triangle, making the sides AX and
BY parallel to QR, and equal to QR in length.

Pappus' generalisation. of Pythagoras' theorem is:

Area ABXY =area MDCA + area ENBC.

Proof: Extend XA to W, and YB to Z as shown. Then

Area MDCA = area WPCA [both based <?nAC and between the parallels AC, MP]

= area AQRX [QR:: PC; WX II PRJ

Area ENBC = area BZPC =area BQRY [similarly].

By addition

Area ABYX' =·area AQRX + area BQRY.

Pythagoras' theorem can be recovered by making angle C a right angle, and making the
parallelograms squares. The. proof that PC =AB (necessary for this) is very easy.

* * * * *
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THE TWO MOBIUS BANDS

John Stillwell, Monash University

The Mobius band is a surface made from a rectangle. (of paper, say) by giving one end
a half twist -

____----""""X~_I
and then joining it to the other end -

Notice that if the twist is made in the opposite direction the resulting M~bius band is
the mirror image of the fust -

The half twist in the Mobius ~and makes it very different from an untwisted band, and
more entertaining. For example, it has only one edge, and only one side. A less obvious
fact is that the Mobius band is different from its mirror image. If you make two mirror
image Mobius bands out of paper you will fmd that, n~ matter how you twist and tum them,
they. never look the same. It seems they are different, but how can this be proved?

The ideal approach to this problem comes from knot theory,which studies the knotting
and linking of closed curves in space. Of course, the Mobius band is a surface, not a
curve, but we shall 'see shortly that we can keep track of its position in space by looking
at two curves on it. So let us begin by seeing what knot theory tells us about curves.

The curves we shall study are intended· to model closed loops of string, and for this
purpose it suffices to consider polygons in space. A polygon consists of finitely many
line segments ("sides") Al ~, ~.A:3' ..., An_l An', 1\Al with no intersections except the

Ai where Ai_1Ai meets Ai'Ai+1 (and the Al where AnAl meets Al~). The following

figure shows the so-called trefoil knot and a polygonal version of it.
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A more realistic version of the knot is of cou~se obtainable by increasing the number of
sides in the polygon, but the hexagon already captures the knott~g of the trefoil
perfectly. Moreover, we do not need an actual hexagon in space, but only a planar diagram
like the one above. Such a diagram, in which there are flhitely many "crossings" where a
side of the polygon. passes over or under one other side, is called a knot projection.

The possible deformations of the knot can be modelled by simple modifications of the
knot projection called Reidemeister moves. They are represented by the following three
diagrams, each showing just' the part of the projection which is modified.

II

)<=~

ill

-\-1-;: V
/\ -A-

The :class of projections obtainable from a given projection by Reidemeister moves
represents all possible deformations of a given knot. The main problem of knot theory is
to decide whether two given knots are the same (up to deformati~n), i.e. to decide whether
the projection of one can· be transfonned into the projection of the other by Reidemeister
moves.

When the two knots K~ K' are in fact the same it is only a question of patience to
actuallyfmd a sequence of Reidemeister moves which shows K =K'. However, when K :;c K'
an indirect approach is necessary. One has to fmd a property p(K) of a knot projection
K <which is unaltered by Reidemeister moves, and hericea property of all defonnations of
K; then if p(K) ¢ p(K') one can conclude that K * K'. Such· properties are quite hard
to fmd for knots (Le. single polygons), but there is an easy one for links (systems of
two or more polygons) called the linking number.

To compute the linking number for a pair of polygons K, Lone fust assigns a
direction to each of K and L. For example '
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It can then be seen that each possible crossing of K with L looks like one of the
following four types

XK

~L

+1

X
K

/L

-1

X
. L

~K

+1

X/
L

/ K

;-1

to which we assign a value +1 or .-1 as shown. J11e linking number I(K, L) is simply
the sum of these va.lues over all crossings of K with L. Roughly speaking, I(K, L)
measures "how much K winds around L". In our example we have

hence I(K, L) = +1 +.1 =+2.

Notice now that l(K, L) is unaltered by Reidemeister moves because:

G Reidemeister I does not involve a crossing of .K with L,

• Reidemeister II involves only crossings whose values cancel, if it involves a
crossing of K with L at all, e.g.
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K

CP Reidemeister III only shifts the crossings, without changing their values.

It follows in particular that our example with two crossings is not the same as the
following "trivial link"

K t

for which l(K', L'') =O. Notice also that if we direct any of the polygons differently
'He still get [(K', L') =0, and l(K, L) =±2. Thus the two-crossing. link is not trivial
- its polygons K, L cannot be unlinked by Reidemeister moves.

Now we can return to the problem of the two 1vlobius bands. The key to its solution is
the linking number of the edge E of the Mobius band M with its centreline· C. A
defonnatioilofM merelydefonns the link·ofEwithC~ and hence does nor alter the
linking number l(E, C) obtained from chosen directions· of .E and C. Also, defonnation
of M preserves the equality, or otherwise, of the directions of E and C around the
band. For example, in the figure below they have the same direction around the band, and
they cannot end up in opposite directions· through deformation of the band.

M

This prompts us to compute I(E, C) when E and C have the same direction, and to
compare it with I(E',C'), where E' and C' are the. edge and centreline of the mirror
image Mobius band M'. To minimise the number of crossings we draw the two Mobius bands
as follows -
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and then defonn their centrelines slightly to eliminate the triple crossings:

It is now clear that

/(8, C) = +1 + 1 = +2 and I(E', C') =-1 - 1 = -2.

Moreover, if we reverse the direction of E and C (to get the other case where E, C
have the. same direction) then the values of the crossings are unaltered. This follows
from the defmition of the values of crossings. Thus l(E, C) "# I(E', C') whenever the
directions. of E and C are the same, and hence the link of E and C cannot be
deformed into the link of E' and C' by defonnation of M. In particular, there is no
deformation of M into its mirror image M'.

Remarks

,I. A similar argument can be used to show that the figure on the cover of Function
Vol. 15, No.3 cannot be defonned into its mirror image.

2. The most famous result of this type is that the trefoil knot cannot be defonned
into its mirror image. .This was first proved by the Gennan mathematician Max Dehn in
1914. The title of his paper, Die heiden Kleeblattschlingen (the two trefoil knots)~

suggested the title of this one. .
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In 1984 the .New Zealand mathematician Vaughn Jones found a new way to show the
difference between the two trefoil knots, using what is now called the Jones polynomial.
His approach was simplified by Lou Kauffman of the University of Illinois so ·that the

· Jones polynomial can now be seen quite easily to be unaltered by Reidemeister moves. It
is, however, considerably harder to compute than the linking number.

* * * * *

. LETTER TO THE EDITOR

Updating Two Stories via "the Net
n

Some items have appeared on the electronic news network (uthe net") in· the past few
months which have a bearing on two articles published in recent issues of Function.

In "Rooks and .Multi-dimensional Chess Boards" (Function, Vol. 14, Part 5, October
1990), Mark Kisin investigated the problem of placing the smallest possible number of
rooks on a d-dimensional chessboard of size n, in such a way that every cell is either
occupied or threatened· by at least one rook. (A normal chessboard corresponds to the case
d =2 and n =8.) The solution for . d =2 is straightforward, and the solution for
d = 3 was presented in that article. An unpublished part of Mark Kisin's article
contained some partial results for higher dimensions.

Around last April, Jim Propp from the Massachusetts Institute of Technology posed the
rook problem on the net. Several people responded with partial answers. Dan Hoey t from
the Naval Research Laboratory in Washington D.C., gave a partial solution to the case
d

u
=3t~4clai:~e.d~~athis. ~~~qd.c~uI4~>gener~i~d ~()Yi.~~4~(t:at!tercoII1pli~at¢)

lower bOund fot" the iUlmber ·of rooks -in higher -dimensions. Geoff -Bailey {who· gave his
organisation ~s the "Venusian Glee Oub", but his e-mail address suggests that he is
actually from the University of Sydney), gave the exact answer for d =3, and· stated that
he had solved this a while ago in a competition.

Some further .information on Fennat's Last Theorem, which was discussed in. the History
of Mathematics section of Volume 16, Part 4· of Function (August 1992), appeared in a
regular item on the net which provides answers to frequently· asked questions. (A lot of
people must keep asking about the status of Fermat's Last Theorem!) According to the net,
it has been proved, using a combination of theory and checking exceptional cases by
computer, that xD + yn = zn has nO .positive integer solutions for any integer n in. the
range 3 S n S 2 000 000. It i~ also inter~sting (and frustrating!) to note that there
are many unproved conjectures· with a· large body of evidence to support them, anyone of
which would imply Fermat's Last Theorem ... if only we could prove just one of them..

Peter Grossman
Monash University

* * * * *
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COMPUTERS AND COMPUTING

. The idea for this issue's cqlumn was provided by Locus, a counterPart to Function,
published in the African state of Malawi. Item 13 in their combined issue 7 ·and 8 (1992)
was supplied by D. Mundy of Chancellor College, Zomba, Malawi, under the title "Real
Mathematics on a Computer or Computers cantt add up!". This column reproduces the thrust
of Dr. Mundy's article.

Let

1 J 1 1
S =2"+2'+--+"'+2"

n 1 2 32 n

Then So = 1, S2 = 1.25, S3 = 1.3611..., S4 = 1.423611 ..., etc.

It can be proved that

. 1t
2

LIm Sn =0" ~ 1.6449341... •
n~ ,

Thus if we compute Sn for larger and larger values. of n, th~n we should approach this

limit ever more closely as n gets larger.

Let us see what happens.

The following BASIC program will compute Sn'

READ n
Sn-=O
FOR I =1 TO n .

LET Tn = 11\ - 2
LET So = Sn + Tn

NEXT I
PRINT n; Sn
DATA < value of n >
END.

This readily gives the following table. (Details may differ according to the machine
and ·the software package employed. What follows is from Microsoft Quick Basic on a
MacPlus.)

Table 1

n

100
1000
10 000
100 000

S
n

1.634 984
1.643 935
1.644 725
1.644 725
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Now, something has' gone horribly wrong. The machine took about two minutes to
calculate $10 000 and nearly 20 ~utes to get the same answer for SI00 000 • The extra.

time was entirely wasted. What the computer was doing all this time we'll see in a
minute.

But note that· because the computer has give~ the same value for S10 000 and

5
100

000 it will give the same answer for any 5
n

for n ~ 10 000.. The computer's

estimate of rr?-/6 is pennanently out by 0.000209.... Not a very impressive record at
all!

Now Qurprogram.computed 5
n

by starting at SI = 1, S2 = 51 + 1/22
, etc. Let us

now add the terms in reverse order. This, slightly modified, form of the program will do
this for us.

READ n
So = 0
FOR I = 1 to n

LETJ=n+l-I
LET Tn = J/\ - 2
LET So = Sn + Tn

NEXT I
PRINT'n; So
DATA < value of n >
END

We now fmd:

Table 2

n

100
1000
10 000
100. 000

5
n

1.634 984
'1.643 934
1.644 834
1.644 924

Now, comparing this result with the known limit rC/6, we are clearly much better off
with Program No. 2 than with Program N~. 1. Indeed, it can be proved that, for large n,

1t
2 1

Sn ~ '0 - n'
and on this ~pproximation, Program No.2 has done very well.

But why the discrepancy? Surely the two programs merely add the same numbers, but in
reverse order. Program No.1 computes

--.! + --.! + ... + ...!
12 22 n 2

while Program No. 2 computes
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..l+_1_+ ... +.J..
n2 (n_l)2 12

To explain where the difference comes from, we quote from Dr. Mundy's article.

"The discrepancy is causec;1 by the representation for real numbers inside a
computer. The computer representation of real numbers is. based on the
notation known as floating point. This representa~ion uses a fixed amount
of spac~ to represent a real number. For each real nUlnber, six digits are
set aside to' represent the fractional part (it is always non-zero except
when the number is zero) and two digits to represent the exponent. E.g.

314.156 could be represented by .314156 x 103
, whilst 0.000314156 would

be represented by .314156 X 10-3• So the largest and smallest
non-negative numbers we can have are

.999999 x 1099 and .100000 x 10-99

respectively.

"Now consider what happens when a very small number is added to a very big
number. For example, in evaluating

.123455 X 1024 + .678901 X 10.1

the expected result would be

1234560OOOOOOOOOOOOOOO.0678901,

which would require 31 digits to represent the fractional part. But since
the computer uses floating '. point, it will only take the. first six
significant digits for the fractional part. Thus the answer will only
appear·as

.123456 X 1024
•

"Returning to our calculation we notice that when we do the first
calculation, we are bound to run into. a problem we have just desc~bed. We
shall be adding a very small fraction at some point and· the computer will
lose that number for it takes only the first six significant figures for
its floating point representation. In contrast, in our backward
calculation .at no point in, the calculation will the sum be larger with
respect to the new term being added.

"In conclusion, .the discrepancy observed in the calculation was due to the
representation of real numbers in the computer using the floating point
notation which limits the number of digits in the fractional part.
However, by changing the order in which terms are added a more accurate
result is obtained. So, although the computer can't add up, it can add
down!"

So, for most of the- long time the computer took to calculate 8
100

000 using the

first program, it might as well have been adding zeroes to Sn'

* * * * *
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HISTORY' OF MATHEMATICS

EDITOR: MoA.B. DEAKIN

More on Napoleon's Theorem

In this column (Vol. 16, Part 2), I drew attention to a result known as Napoleon's
Theorem and gave what I could of its history. Rather more has since come to light and I
would like to pass this on to readers as \Yell.

First to recapitulate. Let ABC be any triangle and on each of its sides erect
equilateral triangles (either all facing outward or all facing inward). Let these be
ABR,. BeS and CAQ as shown in Figure 1 which depicts the "facing outward" case. If 0

. 1

is the 'centre of the equilateral triangle BCS, 02 that of CAQ and 03 that of ABR~

then the theorem states that the triangle 0
1
0

2
0

3
is equilateral.

\
\

\
\ ,
\ ,
\°1 "\ '

\ /, ,
v

p

Figure 1

The theorem is discuss~d in Coxeter & Greitzer's book Geolnetry Revisited and two
paragraphs of their discussion were reproduced in the earlier article (due· to a
regrettable oversight, without quotation marks).

Since publication of that article, two further discussions have come to my· attention.
Emeritus Professor Bernhard Neumann of A.N.U. has sent a copy of a 1982 a...rticle he v/rote,
entitled "Plane Polygons Revisited". It is in fact a transcript of a lecture Professor
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Neumann delivered on a number of occasions in various countriest usually under the title
"Napoleon, my father and I". ..

Neumann's father, Richard Neumann, was an electrical engineer, who, in the course of
research into the theory of transfonners and 3-phase current, came upon electrical
applications of the theorem. It was this that interested his son in the problem and led
Bernhard _ to produce .generalisations (different from those mentioned in the earlier
article). Independently and Inore or less at the same time, similar generalisations were
produced by the American mathematician Jesse Do~gias" . .

Professor Neumann's paper gives some more references to l'~apoleon~s Theorem itself and
we will return to these. But rust let me introduce .the oLlter source that reached me.
The magazine Alpha is a Gennan counterpart or"Function and there is an exchange agreement
operating between the two. The latest issue of Alpha to reach us was the April 1992 issue
and this contains an article on Napoleon's Theorem.

Here, in 'translation,t is what Dr.: Wolfgang Dorband, au~or of the Alpha article,
has to say.

What is the connection between Napoleon's Theorem and
Napoleon I (Bonaparte, 1769-1821), _the French emperor? In
the 18th edition of his Geometry text Elementi di geonzetria
(Venice, 1912), the Italian author Faifofer claimed that
Napoleon left Lagrange to prove this theorem. However, in
the current stat~ of History of Mathematics, there are no
sources for this claim. The theorem itself was first
mentioned (as far as has been ascertained to date) by Turner
in his Elelnenti di geometria (Palermo, 1843) but without
mention of Napoleon. (See Joachim Fischer's Napoleon und
die Naturwissenschaften - Franz Steiner Verlag Wiesbaden
GmbH; Stuttgart, 1988.)

When mathematical concepts or theorems bear the names of
historical figures, one should not automatically identify
the name w:ith the originator. This even applies to such
well-known names as (e.g.) Pythagoras or Thales. The.
spectrum of such dedication is very broad, containing many
gradations; to name but a few: "guaranteed priority", "frrst
to publish", "intellectual partnership", "absolutely uncon
nected", "suspected of plagiarism". In Mathematics such
names act as· technical terms. Their historical relevance
often cannot be conclusively determined, as documented
SOurces have -been lost or were never available. On the

. other' hand, new sources may turn up by a _stroke of good
fortune. As far as Napoleon· is concelned, we may note' that
contemporary. w:j!nesses and ,documents are known attesting to
his talent for arid interest in Mathematics.

I rather imagine that, fail~g some new .source turning up Uby a stroke of good
,fortuneH

, this is the best we ate likely to do. Reading between the lines, I take it that
Dorband got his information from Fischer's book whose title translates .as "'Napoleon and
the Natural Sciences". Presumably it was Fischer who found the references to Faifofer and
to Turner. I am unable to find any details of Faifofer, but if his "Elements of Geometry'~

.1-

t Our thanks to Anne-Marie Vandenberg.
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ran 'to 18 editions, clearly it was a very popular text.' Turner, despite his English
sounding name, was an Italian: Guglielmo Turner (1809-1852). He was born, lived and died
in Palenno, the capital of Sicily. He was a mathematics teacher and a member of the
Jesuit order; his text on ,Geometry was his only published work.

The textbooks by Turner and Faifofer, seem, to be the earliest known mentions of the'
theorem itself and of its. attribution to Napoleon, respectively. Dorband's account of
what Faifofer says is not quite clear. What I take it to mean is that Napoleon suggested
the theorem and that, acting on this suggestion, Lagrange proved it.

Such a story is quite plausible. Napoleon .most probably did know Lagrange and if he
came up \vith such a result, it is the sort of thing he would mention to the mathematician,
who would be able quite easily to supply a proof.,

Bernhard Neumann's paper tells us that the triangle 010203 of the picture (the so

c'aIled "outer Napoleon trianglen
) and the other (undrawn) triangle that could be

copstruc-ted with Q on the other side of CA, etc. (the so-called' "inner :t-.Japoleon
~;triangle") have the same centroid and this point is also the centroid of the original
triangle ABC. Furthermore, the area of the triangle ABC is equal to the difference in
areas between its two Napoleon triangles. Neumann and others were able to generalise
these results to arbitrary plane polygons.

As to the theorem itself, he notes an attribution to Napoleon recorded in a 1938
paper and he remarks that according to the French author Laisant, the re~ult was
well-known by 1877.

Dorband devotes some time to a special," case in which A, B, C are collinear:, the
triangle has collapsed into a line segment. Readers may care to investigate this case for
themselves.

* * * * *

PROBLEMS AND SOLUTIONS

EDITOR: H. LAUSCH

Function wishes to thank all readers'who have Contributed problenzs and solutions in
the course of this year. The problems editor looks forward to probleJns and solutions
readers will send in 1993.

SOLUTIONS

Problem 15..4.2 (K.R.~. Sastry, Addis A~aba, Ethiopia) A parallelogram ABCD (with
diag~nals AC and BD) is called self-diagonal if' the sides are proportional to the
diagonals, i.e. AB: AC =BC : BD. Prove that the parallelogram ABeD is self-diagonal

if and only if AC + BD = h(AB+BC)'.'
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Dieter Bennewitz (Koblenz, Germany), whose proof follows below, showed that the
definiti()n of "selj-diagonaf' requires the following modification, as the statement above
is incorrect as it stands:

A parallelogram ABeD (with diagonals AC and BD) is called self-diagonal if the
sides are proportional to the diagonals, Le. AB : AC = Be : BD·or AB : AC = BD : BC.

Solution (by Dieter Bennewitz, Koblenz, Germany).

D~ ---:::R C

A a

e

B

Claim: I == ~ or ~ =~'if and only if f + e =h(a+b)'.

Proof. 1. "Only if': We use the "parallogram property", viz. e 2 + /2 =2a 2 + 2h 2
•

We have either I = ~ or ~ =~. By symmetry, we may assume without loss of generality

a b b [b ] 2 2 2 2.. 2 [ b
2

]that J=e· Then e=(if.Hence al +1 =2a +2b,lmplymgthatl a2.+1 =

2a2 + 2b2 and further 1 = -{'l a; similarly, e= V2 b, so that e + I::: Ii(;;;b).

2. "If': Now

e + f =h(a+b)'

is given. Squaring both sides of this· equation, we obtain

e2 + f 2 + 2ef = 2a2 + 2bZ + 4ab.

This, together with the parallelogram property, yields 2ef = 4ab, thus

(1)

ef= 2ab. (2)

B.y (1), e = /2(a+b) - f, and, by (2), (h(a+b) - 1)f = 2ab. Hence

f2 - h(a+b)f+ 2ab = 0

f =q(a + b) ± / ~(a+b)2-2ab
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f =~a + b) ± ~l(a_b)2'

f= q[(a + b) ± (a - b»). (3)

We distinguish three cases:

1) a > b:

If, in (3), the sign + is taken, then ·f = v'Z a, e = ,fl b, which implies ea = jb.

If the sign - is taken, then f = V'1 b, e = l/2 a, which implies fa = eb.

2. a < b: similarly, if the' sign + is taken in (3), then ea =jb follows; if the
sign - is taken, fa = eb .follows.

3. a = b: in this case, e =f =V1 a, which implies ea =jb.

Problem 16.~t3 (P.A. Grossman, Caulfield) Prove that every triangle is "approximately
isosceles", which is to say that in every triangle there are two sides whose lengths are
in a ratio that is less than (1 + v'5) : 2.

(*)'t
2

- 't - 1 = o.

Solution (by Becsi Janos, H6dmezovasarhelykutasipuszta near .H6dmezQvasarhely, Hungary).

Let a, b and c be the sides. We may assume that a ~ b ~ c. Put 1; =-¥ and note

that·

Suppose that a: b ~ 't and b: C 2 'to Then a ~}yt and b ~ C't, which implies

a ~ et2
• Since the largest -side in· a triangle is shorter than its other 'two sides put

together, we have a < b +c. Hence 't
2a <'t

2b + t 2c ~ 'tQ + a, implying that

,&2 _ 't - 1 < 0, (**)

which contradicts (*). Therefore there are two sides whose lengths are in a ratio that is
less than (1 + v'5) : 2, q.e.d.

This, however, does not exhaust the matter, comments the Chief Editor, M.A.B. Deakin,
who writes:

. "Problem 16.4..3 in~rigued me - the more so as I had been working on the golden ratio
and not· known of this occurrence of it. We may as well assume that a + b + c = 1 and

a b
set r

1
= ]j , r

2
=c. Put

a. == .!. -£ b = 'A,(.!. + £) c = (1 - 'A)(.!.. + e)
2' '2' 2'

Weare seeking max(min(rl' r) over the allowable region of (A, €)-space.
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1/6 -----------------------

0.0 0.5 1.0

"The allowable region is a subset of the square }::;; ~ S;" 1, O:s; e ~ }. But as

a > b, we also have ~ - e > A(~ + e), i.e. e <: HM]. This region further decomposes

into R , R where r > r, r > r respectively (see diagram). hi" R,
1 2 1 2 2 1 1

1[ I-Iv-A
2] d h . B" . ·th "'1 h' .€ < - --- an ere we reqUITe max r. utas r mcreases WI/\" t IS maxImum

2 1-",+A? " R 2 2
1

occurs at e. = 0, A= 1/,;; Le. we get .r = 'to We now investigate max· r. But r
2 R 1 1

2

decreases as £ and A increase. Thus. r1 is maximised on the common boundary of

R , R where r = r. But we have already seen that this maximum occurs at (0, ~).
1 2 1 2. I"

"If the degenerate case is allowed, the maximum is achieved and of course·

a b
"5 =c ='t,

c

as it should be".

A

Peter Grossman, who proposed the problem, further com~ents:
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y

Let the sides be a S b S c. Let XY be the side with length ,b. Assume the
shortest side is incident to X, and the longest side is incident to Y. Then the third
vertex Z of the triangle lies in the shaded region bounded by the circles with radius b
centred at X and Y. Now draw the, (dashed) circles, one central at y. with radius

In = [ ¥), and one centred at X with radius ¥. Then:

Z E R
1
~ £< 1:

Ze R =>!!.<'t and ~<"t'
2 ,a u

PROBLEMS

The 33rd International Mathematical Olympiad

The 1992 International Mathematical Olympiad (IMO) took place in July at Moscow, the
capital of the Russian Federation. Official teams C!f up to six students froln 56 countries
sat the contest~ It consisted of tlvO fout-and-a-half-hour examinations held on subsequent
days. Altogetf!,er 26 gold, 55.silver and 74 bronze medals were awarded. Each student who
lnissed out on a medal but ob,ained a perfect score for the solution to at least one
problem received an honourable lnention. Six students headed the list 'with perfect scores
(42 lnarks - 7 Inarks for each of their solutions to the six problems), three' of )1.lhOl1Z were
from the People's Republic of China. In the' unofficial ranking of countries, thf! People's
Republic o/China came first (240 out of 252 possible points), second were the United
States ofAlnerica (181), and Romania ended up third (177). The teanl/rom the C017zmonwealth
of Independent States took 'fourth position (176). The list continues with: 5. United
Kingdoln (167), 6. Russian Federation (158), 7. Gernzany (149),8. Hungary and Japan (142
each), 10. France and Vietnanl (139 each). Scoring only nine points. less than the strong
team from Bulgaria, where lnathematical olYlnpiads have had a very long tradition, the
Australian team did very well in achieving 19th place (118). Function congratulates
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gold lnedal winner: Benjamin Burton (39 points), year 12, John Paul College,
Queensland,

silver lnedal winner: Anthony Henderson (25 points), year 11, Sydney Grammar
School, NSW,

bronze nzedal winners: Frank Calegari (15 points), year 11, Melbourne Church of
England Grammar School, Victoria,

Rupert McCallum (15 points), year 11, North Sydney Boys'
High School,

winner of an honourable lnention:

Adrian Banner (13 points), year 12, Sydney Grammar
School, NSW.

Here are the problems 0/ the 1992 IMO:

FIRST DAY

1. Find .all integers a, b, c with 1 < a < b < c such that (a-l)(b-l)(c-l) is a
divisor of abc - 1.

2. Let lR denote the set of all real'numbers. Find all functions f: lR ~ lR such that

.f(x2 + fly» = y + (j(x»2 for all x, y in IR.

3. Consider nine points in space, no four of which are coplanar. Each pair is joined by
an edge (that is, a line segment) and each edge is either coloured blue or red or left
uncoloured. Find the smallest value of n such that whenever exactly n edges are
coloured, the set of coloured edges necessarily contains' a triangle all of whose edges
have the same colour.

SECOND' DAY

4. In the plane let C be a circle, L a line tangent to the circle C, and M a point
on L. Find the locus of all points P with the following property: there exist two
points Q, R on L such that M is the midpoint of. QR and C is the inscribed circle
of tri~gle PQR.

S. Let S be a finite set of points in three-dimensional .space. Let S, S , S be
x y z

the sets consisting of the orthogonal projections of the points of S onto the yz-plane,
zx-plane, xy-plane respectively. Prove that

ISI 2
~ IS I . IS I . IS I

x y z

where IA I denotes the number of elements in the finite set A.
(Note: the orthogonal projection of a point onto a plane is the foot of the perpendicular
from that point to the plane.)

'6. For each -positive integer n, S(n) is defined. to be the greatest integer such that,

for every positive integer k ~ S(n), n2 can be written as the sum of ·k positive square
integers.
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a) Prove that S(n) S; n2
- 14 for each n ~ 4.

b) Find an integer n such that S(n) =n2
- 14.

c) Prove that there areinfmitely many integers n such that S(n) = n2
- 14.

During the IMO members of the Australian delegation were presented with problenls from
numerous national mathematics contests of 1991/92. Here is a sample for Function readers.
Please send in your solutions:

16.5.1 (Swedish Mathematical Competition 1991 - fmal round, Question 1. Determine all
positive integers m and n such that

1 1 1 2·
m+n-mn=5·

16.5.2 (Republic of Slovenia - 36th mathematics competition for .secondary school
students, fITst class, Question 2.) For natural numbers a

o
' aI' ... , a

1992
,

a a1 =a a2 ~ a a3 = ... = a il1992 = a aoo 2 2 1991 1992

holds. Prove that ao =a
1
=a

2
= ... =a

1992
•

16.5.3 (1st Mathematical Olympiad of the Republic of China [Taiwan], Question 3.)
If Xl' X

2
' ..., X

n
are n no~-negative numbers, n ~ 3, and Xl + x

2
+ ... + x

n
= 1,

2 2 2 4prove that x
t
x

2
+ x

2
x

3
+ H. + x

n
x

1
~ '17 .

16.5.4 (28th Spanish Mathematical Olympiad - First Round, Question 8.) Let ABC be any
triangle. Two squares BAEP and ACDR are constructed, externally to ABC. Let M and
N be" the midpoints of Be" "and ED, respectively. Show 'that" AM "and ED are
perpendicular and AN and Be are perpendicular.

16.5.5 (43rd Mathematical Olympiad in Poland, Final Round, Question 5.) The regular
2n-gon A

1
A

2
... A2n is the base of a regular pyramid with vertex S. A sphere passing

through S cuts the lateral edges SA
i

' in the respective points B i (i = 1, 2, ..., 2n).

Show that
n n
I SB = ,I SB

21
. •

2i-l
i= 1 1= 1

The TELECOM Mathematics Contests of 1992

On 14 August these two lnathematics cOlnpetitions were held in Australian schools.
Here are the problems. Time allowed for either contest paper was four hours.
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Junior Contest

(For students in Year 10 or less)

1. Mark and Paul played a game of Bulls and Cows, using the digits 1, 2, 3, 4, 5 and 6
to make a four-digit number. Mark made such a number and Paul proceeded to guess it by
writing down a four-digit guess. Mark awarded his guess with a bull for each digit
guessed in .its correct position and a cow for each digit guessed not in its correct
position. For example, if Mark's secret number was 3352 and Paul guessed 3124 thenhe
would score one bull and one cow (note that the 3 only scores a bull - not a bull and a
cow; each guess.ed digit can score at most once).

In a particular game, Paul made five guesses in tum, as follows:

·1
3
5
3
5·

2
2
1
3
1

3
4
4
6
4

4
1
2
1
1

Two bulls
Two cows
One bull, one cow
One bull, one cow
One bull, one cow.

What was Mark's secret number?

2. 0 is a point in a triangle ABC. OP, OQ and OR are the perpendiculars from 0
to BC, CA and AB respectively. Squares are drawn on PC, QA and RB. If BP = 5,
CQ = 6' and AR ='7, find the sum of the areas of the three squares.

3. Let the area ofAXYZ be denoted by IXYZ /. ABeD is. a parallelogram. P, Q, R and
S are points on the sides AB, Be and DA respectively, with PR parallel to AD and
SQ parallel toAB. Prove that IQPAI + IQfRI = IQPDI.

4. Show that, for 11 a positive integer, S2n - 600n --'1 is divisible by 576.

5. Determine all 20-digit perfect squares whose leftmost 9 digits (in ordinary
base-ten representation) are nines.

Senior Contest

(For stu~ents in Year 11)

1. Identical with Problem 5 of Junior Contest.

2. Prove that there exists a positive integer n such that the sum of all integers that
are greater than 1992 and less than 1992 + n is a perf~ct square.

3. Let ABC bean isosceles triangle with base Be and L.BAC = 100°. The bisector of
LABC intersects AC in P. Prove that Be = AP + PB.

4. Let S be a set consisting of n elements. If (A, B) is an ordered pair of
subsets of S, let f{A, B) be the number of elements that A and B have in common.
Determine the sum of the nunlbers f{A, B) where (A~ B) ranges over all ordered pairs of
subsets of S including pairs (A, A). [Note: by definitio.n of ordered pairs, (A, B)
and (8.. A) are counted as different pairs if A '* B.]

~ Prove that from every convex pentagon one can select three diagonals that have
lengths 'which occur as side lengths in some triangle.
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