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FUNCfION is a mathematics magazine addressed principally to students in the upper
forms of secondary schools.

It is a 'special interest' jo~a1 for those who are .interested in mathematics.
Windsurfers, chess-players and .gar4eners 'all have magazines that cater to their' interests.
FUNCIJON is a counterpart of tbese.

Coverage is wide - PllTe math~Illatics, statisti9s, computer science and ~~pplications

of mathematics ..are .all included... .... 'R.ecent .is.sues have .. carried articles on advances' in
mathematics, .news items oD:matJteIIlaticsand .. its applica.tions, Special interest. matters,
such as computer .'ches~,problems and solutions, discussi()ns, cover diagrams, even,
cartoons.

* * * * *

Articles, correspondence,. problems (with or without solutions) and other material for
publication are invited. Address'ihemto:

TheE4itpIs,
F1JNet!ON
I).ep:#PneIlt~f Ma.thematics,
lVf?Jlas~-tJnive,rsity ;.
'Clayton,- 'Victoria, 3168.

Alternativelycorrespol1deilcem.aybe addressed individually 'to any of the editors at
the mathemalicsdepartments ofthe~~tituti9ns listed on the iriside back cover.

FUNCTION is .publishedJive~iDles~y~~,a.ppearing.in FeQrpary,. April, .}une,A"9gust,
October. Price. for five .... ,isSlles(incl,u4it)gpostage):. $17.00*; .siJ1&I~ issues '$4.00.
Payments shoqldbe

d

sent totheBus,~~s~M3Ila~~rat tlieaboveaddress:cheques and m()ney
orders should be ma4e payable to Monash University. Enquiries about 'advertising ·should be
directed to' the business manager.

*$8.00 for bona fide secondary'or tertiary students.

* * * * *
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THE FRONT COVER

If we sit drinking a cup of tea or coffee out
in the bright sunshine we may sometimes see a
pattern of bright curves' on the surface of our
drink. Figure 1 at right shows. the sort of thing
we're likely to' observe.

Such bright patterns are referred to as
optical caustics and, once we start looking for
them, we see them in all sorts of places: in
windows, in reflections, in swimming pools, baths,
all over. They take many shapes and the one shown ~

here is set up by the circular outline of the cup.

Figure . 2, which is also our front cover
picture, shows the light rays from the caustic as
they are reflected from the inside surface of the
cup.

Using the law of reflection illusttated in
Figure 3, it is possible to analyse the shape of
the caustic. The details are not given here - in
fact the detailed analysis is rather tedious and
complicated.

However, the result is a part (theoretically
half, but usually not all is visible) of a .curve
known as the nephroid.

This· .is illustrated in ·Figure 4. [The· word
"nephroid" means &&kidney-shaped· curve" and it has,
I SQppose, very roughly the ·right shape.]

The nephroid has many other properties. See,
for example~ the account in A Book of Curves by
E.H. Lockwood. Lockwood suggests placing "a dark..
coloured cylindrical saucepan on the ground so that
the rays from the sun or fromapawerful electric
lamp fall on it at an angle of about 60° to the
horizontal".

You may care to plot a nephroid. This may be
done from the equations

x = 3 cos 9 - cos 39

y = 3 sinH - sin 39

* * * * *

Flgur. 2

Figure 3

y

Figure 4
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HERON QUADRATICS

K.R.S. Sastry, Addis Ababa, Ethiopia

Heronian triangles: Heron's fonnula for the area of a triangle in tenns of the
side lengths a, b, c and the semi-perimeter s

a = /s(s-a)(s-b)(s-c) (*)

is well known. If the sides a, b, c of a triangle and its area D. are all positive
integers, the triangle will be said to be Heronian. Examples:

a =3, b =4, c =5, 6 =6

a =3, b ::: 25, c =26, 6 =36.

One way to build a Hel'onian triangle is to use Pythagorean triangles. A Pythagorean
triangle is an integer-sided right triangle. If the right angle is at C then we have

a2 + b2 = c2
• It is known that Pythagorean triangles are given byt

(a, b, c) = (2mn, m2
_ n1., m'1. + n2)k (**)

where m and n are positive· integers, not both odd, gcd(m, n) =1 and k = 1, 2, ....

Now the area of a Pythagorean triangle is !ab = k2mn(m2
- n'1.) is a natural number.

'1. . .

So by defmition it is a Heronian triangle too. Here is a construction, suggested by the
Hindu-mathematician Brahmagupta (born 598 A.D.), of a Heronian triangle.

We frrst obtain two Pythagorean triangles from (**). To this end we fIrst let
k = 1, m =2, ~ =1 and obtain (a

1
, b

1
, c

1
) =(4",3, 5). Next we let k =1, m =3,

n =2 and obtain (a
2

, b
2

, c
2

) =(12, 5, 13). These are illustrated in Figure 1.

12

iJ4
3 5

Figure 1.

t For a hint on how to derive (**) see Editor's note on page 116, FUNCTION, Vol. 14~
Part 4 (August 1990).
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. We now produce .two triangles similar to the ones in Figure 1 so that they have a
common altitude, In this panicular example, enlarging the flIst triangle by a factor of
3 is all that is required. This is illustrated in Figure 2.

15

Figure 2.

Finally,. we place the two Pythagorean triangles of Figure 2 along the common altitude to
obtain a Heronian triangle. This can be done in two ways as Figure 3 shows.

14

12· (ii)

(1)

Figure 3.

In Figure 3(i) we have the Heronian triangle a = 14, b = 13, c = 15, ~ =84. In
Figure 3(ii) we have the Heronian .triangle a', = 4,b' = 13, c' = 15, /1' =24. So much
for the Heron part of the title, Heron Quadratics.

Curious Quadratics: Now look at ,the following quadratics:

x
2

+ 12Qx '+ 3600 =(x + (0)2 }

x
2 + 169,t + 3600 := (x + 2S)(x + 144)

x
2 + 218x + 3600 = (x + 18)(x + 200)

120

182

(0

All these three factorize over the integers, the middle' coefficients have a. constant
difference: 169 ~ 120 = 218 - 169. That much is obvious. What is notimmediately obvious
is that the factorizing quadratic triplets such as (1) generate Heronian triangles in
which an altitude and the two sides all 'having a common vertex will be in arithmetic
progression. In this example (1) these are respectively given by 120, 169, 218 - the
middle coefficients themselves. The two Heronian triangles thus generated are exhibited
in Figure 4.

301 182

Figure 4.
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So, the Heronian triangles associated with the quadratic triple (1) are
(a~ b, c) =(301, 218, 169) and (63,. 218, 169). This leads us. to define Heron
quadratics as the triplet of quadratics

Ax2 + Bx + c, Ar2 + (B + D)x + c, Ar2 -+ (B + 2D)x + C. (2)

in which:

(i) the parameters A, B, C, D are natural numbers, .
(ii) all. the three factorise over the integers,
(iii) the fIrst of these has one zero.

Determination of Heron quadratics: It is quite a simple matter to detennine the Heron
quadratics (2) as an application of the fonnula for Pythagorean triples (**). Here we go.

Now Ar2 + Bx + C has one zero and, the other expressions of (2) factor over the
integers if and only if there are natural numbers u

1
and Uz such that

B2
_ 4AC =0, (B + D)2 - 4AC =u2 and (B + '2D)2 -4AC =u2 (3)

1 2

From (3) we deduce that

2BD· + D
2 =u~ and 4BD + 4D2 =u~ = 4u'~, say.

These yield

The second of the above equations (4) may be written as

D2 + u2 =2u,2
1 2

Put D2 =. (d - e)2, u1 = d +.~ in (5) and obtain

Lo and behold! (6) is the' Pythagorean relation (**). lts solution is

d =2kmn, e =k(m
2

- n
2
),. u; =. k(m

2 + n
2
).

This in tum gives

(4)

(5)

(6)

u =d + e = k(m2 + 2mn _ n2
)

1

U
2
=2u~ =2k(m

2
+ n

2
).

D2 =(d - e)z = k2(m2
- 2mn - n2

)2 and choose D to be the positive square root of
this

Furthennore, from (4), BD = u2
- U,2 =(u .j- u')(u - u'). So

1 2 1 2 1 2
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J 2 2 .

B =4 k ~n(m -n2) ,where I ... I refers to the positive square root (above) and this
1m -2mn-n·" '

has to be a natural number.', For simplicity we choose k = 1m2 - 2mn - n21. This yields
the parameters

(7)

Here is a numerical construction of the Heron quadratics (2). Put m = 2, n = 1 in (7).
This gives

B =24, D =1, 4AC =576, Le. AC =144.

The natural numbers A and C are to be chosen so that AC = 144. This can be done in
several ways. If A = 2, C =72 then we obtain the Heron quadratics

2t2 + 24x + 72 =2(x + 6)2

2x2 +25x + 72 = (x + 8)(2t + 9)

2x2 + 26x + 72 =2(x + '4)(x + 9).

We then have the associated Heronian triangles with the altitude and the sides, all having
a common vertex, given by 24, 25, 26 respectively. rThese are s~own in Figure 5.

17

24

Figure 5.

a = 17, b =26, c = 25, ~ =204; a' =3, h' =26, c' =25, tJ.' = 36.

Further Questions: Quadratics and Pythagorean triples can provide a. number of
opportunities for discovery. Such is the case with the study of Heronian triangles. Here
are some examples to get started.



1.

2.

3.
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Look at the factorizations x2 + 4x + 3 = (x + l)(x + 3) and x2
+ 4x + 4 =(x + 2)2.

These suggest the problem, of determining the coefficients .B and C so that

x2 + Bx + C and x? + Bx + C + 1 both factor over the integers. The corresponding
harder variety is to determine the coefficients A, B, C, D so that both quadratics

Ax2 + Bx + C and Ax2 + Bx + C + D factor over the integers. Even harder is this:
Determine the polynomials of degree n, n' > 2, so that the polynomials P(x) and
P(x) + D, D an integer, both factor over the integers~ My consideration of this

problem is the subject of a forthcoming article in ,Mathema~ical 'Spectrumt.

Look at the factorizations X2 + 5x + 6 = (x + 2)(x + 3) and
x2 + 5x - 6 = (x - l)(x + 6). These suggest the problem of determining the non-zero

coefficients A, B, C so that both Ax2 + Bx + C and Ax2 + Bx - C 'factor over the
integers.

The side lengths of a Heronian triangle are in arithmetic progression with a common ,
difference of 13. There is an infinity of. suc~ Heronian triangles. Determine such a
Heronian triangle having minimum area.

4. Look at the Heronian triangle sequence (3, 4, 5); (13, 14, 15). Determine the next
member triangle.

5. Suppose a, . b, c, d are the side lengths of a cyclic quadrilateral with
semi-perimeter s.

(i) Derive Brahmagupta's formula ~s-a)(s-b)(s-c)(s.-d) f~r its area.

(ii) Brahmagupta also gave fannulae for the diagonals of a cyclic quadrilateral in
terms of' its side lengths. Rediscover these formulae.

* * * * *

One Complex Function in Several Variables

"Quality of Teaching of mathematics is a function of several
variables viz. T = T(S, B,C, M, R, E, ...), where S is suitability
of syllabus, B is books selected for reading t C is competence of
teachers, M is method of Teaching, R is receptivity of students, E
is examination system and so on. To bring about all round improvement
in T, all the elements on which T depends should be suitably
improved."

A.C. Banerjee

t A U.K. counterpart of Function.
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HANGING CHAINS, SAMURAI SWORDS
AND SQUARE -WHEELS

Michael A.B. Deakin, Monash University

If you .have a scientific calculator, you will have no difficulty generating values of

the power function eX, where e (= 2.7182818284 ...) is ~ important mathematical

constant. e-x (= l/ex
) may' .also be similarly generated and so it is not difficult to

calculate values of

(1)

This expression has another name. It is tenned the hyperbolic cosine of x (for
reasons I won't go into b~re) and is abbreviated to cosh x. Thus we have

(2)

My CASIO fx-570 allows direct evaluation of the function cosh x. You enter a value
and then press in order buttons marked hyp and ,cos.

Figure 1 shows the graph of y =cosh x. It· is called a catenary, a word whi'ch
derives· from the Latin catena meaning "chain". The name derives from the fact that a
heavy chain" suspended by its ends, adopts. the shape of an arc, or part, of a catenary.

y

----------'---~~-----... x

Figure 1
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At fust glance, the catenary looks rather like a parabola, and it is true that for
small values of x,

(3)

However, for large values of x, this approximation breaks down very badly.

Look again at Figure 1. The vertex A .is the point (0, 1). Let P be a typical
point on the curve. The arc-length. s (Le. the distance AP measured along the
curve, taken negative for pOints P to the left of A) is readily available on your
scientific calculator also. It can be shown that

The right-hand side of this equation is tenned the hyperbolic sine of x, abbreviated. to

sinh x and pronounced "shine x". Sot

s = sinh x. (5)

Now draw a tangent to the curve at the point P. Let this intersect the x-axis at
B and make an angle \11 .with that axis. The slope of th~ line BP is also sinh x.
(Prove this, if you know enough calculus, as an exercise.) But this slope is, of course,
tan'll. Thus

s =tan 'V. (6)

This is a very important property of the catenary. Indeed, it is referred to as the
intrinsic equation of the catenary.

The equation given for the catenary so far has been

y = cosh x, (7)

to rewrite Equation (2). For what follows we need a very minor generalisation. Suppose
both x, y to be scaled by the same factor c. Then in the new units

~ = COSh[ ~ ]

or

y = C cosh [ ~J

In these units,Equation (6) becomes

s = C tan 'V.

(8)

(9)

(Can you see why this should be so?) Weare now in a position to show that a hanging
chain takes up the shape of a catenary.
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Figure 2 (belo~) shows the arc AP of the chain and. the forces acting on it. There
.are. three of these:

[1] The weight of the chain in AP; this acts vertically downwards and has magnitude
w~, where w is the weight per unit length;

[2] The tension in the chain supporting it at the point P; this acts along the
chain (Le. at an angle 'V ~o the horizontal) and will be denoted by T; .

(3] The tension at the special point A; here the chain is horizontal and thus the
force is horizontal; it will be denoted by To.

ws

Figure 2

The vertical component of the· support force [2] is T sin 'II and this must exactly
balance the weight [1]. Thus

ws = T sin 'II.

But similarly, the horizontal forces must balance, so

To = T cos 'V.

It now follows by dividing (10) by (11) that

s =(Tclw)taIl 'II,

(10)

(11)

(12)

which is' Equation (9), if we set TIw =c. So the curve adopted by. the chain is indeed a

catenary.

There are two practical consequences of this deduction. Firs~ surveyors, until
recently when optical devices became the nonn, used chains or tapes for measurement of
distance. If these were "unsupported" they hung in. catenaries and so recorded arclength

(the s of Equation (5), instead of the required measuremen~ x, in that equation); thus
a correction based on Equation (5) had to be applied. Secondly, overhead· power-lines or
telegraph cables are supported only ·at the posts that are provided to that end. So they
hand in catenaries and this fact must be taken into account when we calculate the amount
of cable required.
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The history of the catenary may be worth a brief digression. It w~ Galileo who
flIst speculated on what shape a, hanging chain might assume. He hypothesised that it
would be parabolic, but this answer was disproved by the German scientist Jungius in 1669.
The. mathematician James Bemoulli .in 1690 issued a challenge to his fellow mathematicians
to fmd the correct answer and tliis' was forthcoming from three sources: John Bernoulli
(his brother)" the Dutch 'physicist Huyghens, and Leibniz (one of the founders of
calculus). The name "catenary" is due to Huyghens.

Twice in my professional life as a mathematician, I have needed to look at the
properties of catenaries. The' fU'St of these was some four years, ago and it was all very
uhush-hush" at the time.. The need for secrecy is, however, long past and I have no qualms
in telling the story today.

There appeared on the doorstep of our department an official of the Victorian
Treasury.. He was charged with the preparation of Victoria's bid for what is now tenned
the "Multi-Function Polis" (but just for the record, visions and terminology have altered;
at the time when the subject was a hotly debated pOlitical issue, the "leaks" were
correct; it was initially seen as a Japanese enclave and was referred to 'as a
"Technopolis").

Anyhow, the fellow who turned up wanted to design a city whose streets were all arcs
of catenaries. The .Japanese .would, he thought, fall about in rapture over this because
(he said) the catenary was the traditional shape of the samurai sword.

Where he got this alleged infonnation, 1 don't know. I 'was deputed to check it and
so read a very authoritative book on the .samurai sword in the course of my duties - it
nowhere even so much as mentioned the catenary. What is true, of course, is that any
relatively short curved object.:can be approximated reasonably well by a suitably chosen
"piecetf of a catenary described by Equation (8), with suitable choice of the value of c.

(I also checked books on Japanese gardening looking for references to .the catenary,
but all in vain!)

Anyhow, .we· set out to· .design his city for 'him'and here .was .how we went about it. In
Figure 3 we have a square city centre and the, fU'String of catenaries (only two are
shown). From the vertex of each of these sprout catenaries of the second ring (only one
is shown), etc. Now we want the catenaries to make 600

~g1es as shown and we also want
the big catenaries to be scaled-up versions of the small ones. These requirements give
Figure 4, wh~re 2a is the width of the square. From this we can work out (I omit the
details) .that

c =O.49~2a.

____...............-........IIioo-. .... X

Figures 3, 4

(13)



44

The height h may now be calculated to be

a
h = c cosh c ~ c = 1.412a. (14)

Now I.mentioned beforehand that catenaries may at times be approximated by parabolas.
This is what we did here. Taking a = 1 and moving the' axes gives 'Figure 5. The

y

Figure 5

catenary has the equation in these coordinates

Figure 6
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Figure 8

y =0..4932 cosh(2.oi75x) - 0.4932

but it may well be approximated by the parabola

y = 1.412x2
•

The discrepancy is everywhere less than about 2~%.
2

(15)

(16)

So we made lovely computer pictures of streets that were actually parabolas and
coloured them in. The treasury official forgot all about - samurai swords and said they
looked like chrysanthemums (they didn't really) and t!te Japanese were sure to love them.
They didn't, as history has shown. The four consultants were each paid a pittance but the
department of Mathematics got a new colour plotter. .
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" More recently, one" of our lab managers at Monash came to me with a problem. His
brother, a sculptor, had been asked to design an exhibition in which a vehicle with square
wheels was able to roll evenly on a specially constructed road. Figure 6 opposite shows
the problem.· The centre of the square wheel (shown
in more detail in Figure 7) must not ride up or
down at all. The key to the analysis is Figure 8
(opposite). .

Choose the angle 'V as shown and note that
(because the wheel rolls without slipping on the
humped roadway) the distance ~ along the curve is
the distance measured along the· wheeL The angle
'V also turns up (prove this as an exercise) at the
centre of the wheel. Thus

s=atan\V (17) aJ2
which (with a slight difference of notation) is
Equation (9) again.

It is a routine exercise to express Equation
(17) .in standard coordinates. The result is

y = a(V! - cosh ~ (18) ........---.-.2a ----t~.

and x varies between ±O.8814a. We make replicas
of this curve and line them up as indicated in
Figure 6, and so make our roadway. Figure 7

I mentioned this problem to a friend, a research chemist with CSIRO, and was
surprised to· fmd that he knew the answer! When he was a schoolboy in 'Auckland, he'd been

/ placed ·in ····a . class of extra Mathematics ·rorgifted students - and this was one of the
problems they'd studied.

* * * * *

Those Picking Foreigners!

UThe mathematical talent is a very rare gift. It is very rarely
identifiable, and it ought to be spotted in infancy. The language of
mathematics is international, the only complete international language;
a foreign mathematician can pick out a talent in our children as easily
as in his own.tt

Charles Percy Snow
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LETTERS TO THE EDITOR

In reference to the article on Hypatia, in the last edition of Function't the author
refers to a letter from Synesius to Hypatia, requesting a hydroscope, or more probably a
hydrometer. The author was perplexed as to why he may have required such an
instrument.

May I sugg~st that the implied illness of Synesius may have affected the quantity
and/or quality -of his urine, a matter of grave concern of the physicians of that time (and-

- modern doctors as well). -For clinical purposes the measurement of the specific gravity
(or density) is made by a hydrometer (urinometer) which is calibrated to read 1.000 at

16°C in water. It is therefore a measure of the quantity of solids in solution. In
health, urea and sodium chloride are the main solutes contributing to the specific gravity
of urine, - which varies with the nature and quantity of food eaten as well as with the
amount of· water of other fluid taken. The nonnal range is 1.016 to 1.020. In diabetes,
on the other hand, the quantity of glucose in the urine· may far outweigh the total of all
the other solutes present and has a high specific gravity due to the presence of as much
as 10 per cent glucose.

The Papyrus Ebers which dates from approximately 1500 B.C. contains what is thought
to be the flIst reference to diabetes:

"A medicine to drive away the passing of too much urine":

Prescription:

Branches of Qadet plant -1/4
Grapes 1/8
Honey 1/4
Berries from tian tree 1/32
Sweet beer 1/6
Cook: filter and take for 2 days.

The hydrometer may also be useful in brewing the beer!

Olarles Hunter,
Department of Anatomy,

Monash University

* * * * *
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, WHICH IS MORE ACCURATE?

I recently heard from my erratic correspondent.. the eccentric Welsh recluse, Dr. Dai
Fwls ap Rhyll. Dr Fwls, you may remember, is a persistent and difficult critic of
established concepts in Mathematics arid Physics. His work has. never really had the
recognition it deserves; in part this is due to his retiring disposition and to his long
having worked in isolation. outside universities and established institutions. But it is
my belief that the embarrassing and "heretical" nature of his conclusions has a lot to do
with it.

Besides which, his paradoxes c~ all be put. in very simple tenns - he challenges
established mathematics not in esoteric language, but with easy homespun examples that
professionals .may think beneath them. This quality, however, makes them especially
suitable for me to transmit to Function.

.This· year he wrote to me about simultaneous equations. He asked me which was the
better approximation to the true solution of the equations:

x +Y = 1.99

lOOx + 101)' =200,

(1,1) or (2,0)?

This' seemed a simple enough. question, trivial indeed. So I substituted both answers
into the, equations he had given. The rIrst gave:

1 + 1 =2 = 1.99; 100 + 101 =201 ;i: 200.

The second yielded:

2 + 0 =2 =1.99; 200 + 0 = 200.

So it was pretty clear that the second answer was the better. But then I thought to
try another check, and so I solved the equations exactly, and got

x = 0.99; y =1.00

which is clearly much closer to (1,1) than to (2,0).

I can't fmd any mistake in my working, so I await Dr Fwls·s elucidation. Probably
in vain, I must fear. He raises these questions, but .he never seems to get round to
explaining the puzzles he poses.

Kim Dean
Union College

Windsor

* * * * *
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HISTORY OF MATHEMATICS SECTION

EDITOR: lVI.A.B. DEAKIN

This issue will be devoted not to a single topic but to a collection of updates and
miscellaneous items deriving from correspondence. My thanks in particular to K.R.S.
Sastry of Addis Ababa (Ethiopia). who has been untiring in supplying me with interesting
material.

We begin with two brief updates.

Maria Agnesi

The cover story for Volulne 10, Part 4 concerned Maria Agnesi (1718-1799), an early
woman math~matician. Recently a much better biography of Maria has appeared (i~ the
Archive for History of Exact Sciences) than was previously available. The earlier brief
biography' by Edna Kramer states that her father was a professor of Mathematics. This
information (which I repeated in my brief Function story)' is incorrect. Clifford
Truesdell, the author of the new biography, points out that although Maria was herself
appointed as a professor of Mathematics at the University of Bologna, the reason that she
taught no students and drew no pay was that she lived in Milan: the post was evidently an
honorary one.

The Missing Nobel Prize

In Volume 11, Part 2 was a story on the Nobel Prize and the Fields Medal. The story
go~s·'L~a~N9b~1d.i~ ~oteJ1<io~ ClPrizeIDM;at~emC!_ticsQe<:~~~H()f_his b()$tjIity to the
Swedish mathematician OBsta. Mi~tag-Leffler. This expl~ationwouldseem to. come from
Mittag-Leffler himself. We deduce it from a letter by the American R.C. Archibald who had
visited Mittag-Leffler. The letter was discovered by Sister Mary Thomas a Kempis in the
archives of Brown University and published (in part) by her in The Mathematics Teacher
(1966, pp. 667-668). Whether it's true or not is another matter. The information that
the two men. fell out over the affections of the mathematician Sonya Kovalevskaya would
seem to be fanciful embroidery. Archibald seems to imply that their rift was caused by
business rivalry. However, if Mittag-Leffler told the story to Archibald, he very likely
told it to his friend Fields also and thus' did help to set up the Fields Medal as a
substitute for the missing Nobel Prize.

The Kiss Precise

Following the cover article to Volume 15, Part 4, we have had a letter from K.R.S.
Sastry. The situation to be analysed is that of Figure .1.
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A

B

c

Figure 1

Four circles are each tangent to the other three. Suppose the radii to be'

r
1

, r2, r
3

, r
4

and write

E = l/r
1 ~

Then the four circles theorem (popularly known as the "kiss precise") states that

E? + e? + e? + £,2. =1£ + e + £, + e )2.
1 2 3 4 2' 1 2 3. 4

(1)

We outlined two proofs of this result, but avoided details because they are
complicated in the extreme. Indeed, the second of the two proofs outlined involved the
use of computer algebra to set up and factorise a 16th-degree polynomial.

Mr. Sastry uses the cosine role on MHC (Figure 1) and also on MHB. He then uses
the area rule on the same triangles. This then gives him expressions for cos a, cos ~,

sin a., sin {3. Use of the cosine rule on MBC then produces an expression for
cos(a. + ~). He then writes

cos(a + ~) =cos a cos ~ - sin ex sin ~

and inserts the various expressions previously found. Writing the resulting equation in
terms of £1' £2' £3' £4 and simplifying produces (after a lot of work!) a quartic

equation. Which is much simpler than one of degree 16.
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There is a lot of tedious algebra mvolved, but a proof may b~ constructed along
these lines. [Indeed, it is a minor variant of the original proof outlined by DeSC~""1es,

thy theorem's discoverer.) Mter much heavy algebra, we fmd

[(£2 + E? + E? + "£2) _ he + £ + e + e )2](£ + e )2 =0.
1 2 3 4 2' 1 2 3 4 1 4

The frrst factor gives Equation (1) which" has two solutions for £4 in tenns of

c
1
, c

2
, £3" This corresponds. to the "fact that ~the fourth circle may nestle between the

other three, as shown in Figure 1 or else may enclose them all. See the diagram in Volume
15, Part 4. But actually there are other solutions also.

For instance, the fourth circle might coincide with the first. In such a case, the
fourth (coincident) circle touches, the second and third circles, and also of course the
first circle (itself), so this is a possible, if "trick",r solution. Furthennore, we may
think of the frrst circle coinciding with· itself on the inside, or on the outside. This
is the interpr~tation of the other factor in Equation (2).

The point arises as to why we don't also have the possibilities (£ + £ )2 = 0,
2 1 2

(£1 + £3) = O. Actually we do. The Descartes-Sastry proof tre~ts the point A

differently from the points B, C. But we could equally well 'have used B or C as the
"special" vertex and these choices would have led respectively to the two cases mentioned
above.

Thus," counting up all the possibilities for the fourth ·circle, we fmd:

(a) the nestling circle
(b) the enclosing circle
(c) the frrst· circle, .twice
(d) thesecorid circle. twice
(e) tbethird circle, twice.

A total of eight.

Now this is as it "sh~uld be. If we take any three circles in the plane and seek to
draw a fourth circle' tangent to all three, there are (in general) eight solutions. This
is known as the PrOblem of Apollonius. For more detail, see Pedoe'sbook Circl~s (p. 23).
The fIrst of the proofs outlined in the earlier article is, incidentally, due to Pedoe and
is based on such considerations, though I did not go into. all this when I wrote
previously.

" Napoleon's Theorem "

Let ABC (Figure 2) be any triangle and let "ABR, BCP, CAQ be equilateral triangles
constructed on its sides as shown. Let 0

1
be the centre of M3CP, O

2
that of aCAQ

and 03 that of MBR. Then:
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A

Figure 2

The true history of this theorem seems not to be known. However, the book Geolnetry
Revisited by H.S.M. Coxeter and S.L. Greitzer, from which Figure 2 is adapted goes on to
give some interesting stories (without, of course, attesting to their historical
accuracy). .

It is known that Napoleon Bonaparte was a bit of a mathematician with a great
interest, in geometry.· In fact; there is a story that, before be made himself ~ler of·
France, he engaged in a discussion with the great mathematic~ans Lagrange and Laplace
until the latter told him, severely, "The last thing we want from you, general, is a
lesson in geometry" .. Laplace bec~ebis .chief military engineer.

The theorem stated above has been attributed to Napoleon, though the possibility of
his knowing .enough geometry for this feat is as _questionable as the possibility of his

.knowing enough English to compose the famous palindrome

ABLE WAS I ERE I SAW ELBA.

Coxeter and Greitzer refer to the triangleO
t
O;03 as the Napoleon Triangle of the

original triangle ABC - or more' precisely as the outer Napoleon triangle. For we could
put R· on the other side of AB, P on the other side of Be and Q on the other side
of AC and so form an inner Napoleon triangle. This triangle is also equilateral.

The history of these and related theorems is rather obscure. Mr. Sastry has written
to us on this subject also. Notice that the angles AC0

2
, CA0

2
, AB0

3
, etc., were we to

construct them, would all be equal and have the measure 30°.
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What Mr. Sastry looked at was the question of what happens when we begm with not
necessarily a triangle, but a. general polygon of· n sides. On each side construct
triangles with sides making equal angles a to the sides of the original polygon. Thus

. n.

Napoleon's theorem covers the case n =3 and tells us .that <X
3
=300

•

Next Mr. Sastry analysed the case' n =.4 and found that in order for the' second
quadrilateral (the .analogue of the Napoleon triangle) to be a square we must start with
not a ge~eral quadrilateral, but a parallelogram. In this case, (X4 = 45°. .

He then looked at the case n = 5 and found that one had to begin with a special
pentagon in which each diagonal was parallel to one of the side~. In this case <:ts =54°.

He then conjectured that in general

At this stage, ·Mr. Sastry wrote to Professor Coxeter who referred him toa paper by
Leon Gerber in whicli the general result is proved. This appeared in 1980, but Mr. Sastry
has since learned that it·· was proved earlier. by the Italian ntathematician Barlotti (in
1955). .

The earliest proof of Napoleon~s Theorem that "Gerber was able to fmd appeared in
1863 in an obscure Gennan publication~ no copy of which exists in Australia. The case
n =4 was proved by Victor Thebault in 1937 and is thus known as Thebault's Theorem. We
may state it thus:

Construct squares outwardly on the sides of any parallelogram. Their
centres fonn the vertices of a square.

The general case proved by Barlotti is also in an obscure journal of which there is
no copy .in AustrcMi~.

Gerber, however, points out that the original n-gon must in each case be "affmely
regular" - that is to say, a perspective view of a regular Ii-gon. E.g. a square drawn
from the right perspective appears as a parallelogram, etc. This is the basis for
Gerber's proof of the general result.

* * * * *

Napoleon did it, too

"Mathematicians are like Frenchmen; whatever you say to them they
translate into their own language, and forthwith it is something
entirely new."

Johann Wolfgang Goethe (1749-1832)
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PROBLEMS SECTION

EDITOR: H. LAUSCH

SOLUTIONS

The Steiner-Lehmus Theorem (Function, Problem 15.1.5) continu~d .

Readers have supplied Function with ,more proofs 0/ the theorem which states: If the
bisectors of two angles of a triangle are equal, the triangle is isosceles.

The first solution is due to R.E. NeIder, Toowoomba, Queensland. It consists of a
short trigonometric argument:

Solution. For the notation in this proof the r~ader is referred to the diagram below.

A

s....-------.....aac
d

Let the bisectors of the two angles 2a and 2~ be equal and assume that <X > ~, I.e.'

area of aBEC _ iJ'dsin <X _ ~in a > 1 .
AC > AB. Then area of DBDe - . - Siiil3". ' I.e.

~d SIn ~

area &BEe > areaWC.

area aBAE
Furthermore, area DCAD ~.

i'.AB.sin a
= 1 .

t/.AC.sin- P
AB sin a
XC . SiilT!
sin ~~ sin a
sm a.. SiilT!

(1)



=

2 sin ~ cos P sin P
2sm,acosasm~

~
cos a. .
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Since by assumption ~ < (l, we have cos' p > 1 and so..., cos a

area MAE > area /leAD.

Adding (1) and (2), we obtain:

,area MJEC + area MAE·> area IiBDC + area d CAD,

Le. area MEC > area MBC. This is not a known pt:0perty of triangl~s.

(2)

For a while the suspicion raised by JJ. Sylvester in Philosophical Magazine, Vol. 4,
1852, that a' direct proof of t!ze Steiner..Lehmus theorem was impossible had gained
currency. lA. Deakin, Shepparton, sent Function one proof by contradiction, which he had
found in his archives (source unknown).

Solution. The reader is referred to ·the diagram below for notations used in the proof; BE
and CF are the bisectors of B and C' of the triangle ABC, and ,BE =CF.
The proof is by contradiction. .

Assume that LC > LB. Since the angles are bisected and BE' =eF, we have BF > CEo
Draw the parallelogram CEGF and. join BG.

Since EG = CF =',BE,J1EGB isisosceles. Hence LEGB = LEBG. But LEGF = LECF.
Hence LEGF > LEBF and LFGB' < LEBO, so that FG > FB and hence EC > PB. But this
contradicts the assumption that BF > CE. The~efore' the original assumption is untrue, so
that LB =LC and MEC is isosceles.

G

s-------------c

There is more to come on th~ Steiner-Lehmus Theorem in subsequent issues of Function.
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Solutions to some other probtems

In Function~ Volume 15, Part 3, on page 93, a proof provided by John Barton, North
Carlton, 0/ Problem 15.1.6 was reproduced. Andy Liu, Edmonton, Alberta, Canada, sent nvo
comments' to Function. We first repeat the problem and the solution communicated by John
Barton and then present Andy Liu's remarks.

Problem 15.1.6. Let 0 and I be the circumcentre and incentre, respectively, of a
triangle with circumradius R and inradius r; letd be the distance 01. Show that

cf =R2
- 2rR.

Solution. Let P be the intersection of AI with the circumcircle of DABC. Then

= AI . IP (intersecting chord theorem)

=AI . PB by a theorem based on the fact that the triangle

of the ex-centres of MBC has MBC as its pedal triangle.

Let Z be the point on. AB such that AB and IZ are. perpendicular~ and Q be
the point on the circumcircle ~f MBC opposite to P. Then

A AAI =IZ cosec '!" = r cosec '!" ;

PB = PQ sin ~ = 2Rsin ~

Hence rf =R2
- 2rR.

p
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Andy Liu's _comments:

L To show that PB =PI, it is not necessary to quote theorems as above. We have
LBIP =LEAl + LABI =LeAl + LeBI =LeBP + LeBl =LIBP. Hence PB =Pl.

2. To show that AI.PB = 2Rr = PQ.lZ, it -is not necessary to use trigonometry. We have

LZAI =LBQP while LAZI =90° =LQBP. Hence triangles AZI and QBP are similar.

It follows that ~ =~ or AI.PB =PQ.lZ.

Problem 15.1.7 (a year-twelve problem from Great Britain). Show that if m is ann
_P'f . m+2n . '

approximation of Y~, then m+n IS a better one.

The.. first solution is a contribution by John Barton:

Solution. Let !!! - V1, =h. Then. n

m+2n _ V'Z = (V2+h)+2 _ V2
m+n (v'Z+h)+1

=.( l-Y!)h

l+v'2+h
(1)

In this problem we take m, n to be positive integers, noting that the quotient of two
rational numbers can be written as the quotient of two integers.

(i) Suppose h > 0, so h =·'hl. Then

I

m:2n - V'Z -I = (v'2-1) Jhl < (Y2-1)lhl < Ihl,
m n i!+l+h v'Z+1 .

which proves the proposition for this case.

(ii) Suppose h < O. Then -h = Ihl and Ihl < V2, since' W- > O. We now have

I m+2n - VZI = (V2-1) Ihl
m+n v'Z+l+h

< (V2-1) Ihi, since VZ - Ihi> 0,

< Ihl,
and this _proves the proposition for this case. Thus the proposition is generally true.

Note that (1) shows that !!! - VZ and m+2n -..;z have opposite signs, so that
n m+n

successive approximations are alternately greater or less than Y'Z.

Seung-Jin Bang, Seoul, Republic of Korea, wrote down a different solution:
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Solution. We prove the inequality I ::~n -V1 I< I~ -V1 ,. In fact, the inequality

is equivalent to (21Z - 1)n2 + 2(v'2 - l)mn - m
2 }(2n2

- m
2
) >0, and

2(1! - l)(n + (1 + .2.)m)(n - .1.m)(2n
2

- m
2
) =

v'! v'2

= 4(yI! - l)(n + (1 + .J.)m)(n - .J.m)2(n + .J.m) > O.
v'2 v'Z v'Z

This completes the proof.

PROBLEMS

P. de Gail, Windsor, has a problem the solution of Yt1hich, so he writes, .would
facilitate some design work he is doing on mandalas;

Problem 16.2.1. Given an arbitrary triangle ABC and three cevians APL, BPM, CPK (see
diagram below) such that PK =PL =PM. Find trigonometric equations expressing LLAC,
LMBA, LKCB in tenns of LBAC., LCBA,'LACB and/or in tenns of Be, CA, AB. Alternatively,
fmd expressions for ~e partition points K., L, M.

A,

B.....-----...----------~CL

Ed.: This problem admits the following variation:

Problem 16.2.2. Given a triangle ·ABC. Fmd a construction with compass and ruler only
of a point P which has the following property: if CP (extended), AP (extended),. BP
(extended) intersect AB in K, Be in L,.AC in M,respectively, then PK =PL =PM.

Problem 16.2.3 (submitted by David Shaw, Geelong). If p is a prime number, s the sum
of the digits when N is expressed as a base-p numeral and h is the highest powe~ of

p contained (as 'a factor) in N!.,prove that h =~ .
P-l
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Problem 16.2.4 (submitted by Juan Bosco Romero Marquez, Valladolid, ·Spain). Let T and
r. be two right-angled triangles. Let R, r and R', r' be circumradius and inradius

of. T and T respectively. Prove that' if ~ =7' then T and T are similar.

Does this theorem hold for a larger class of triangles?

And, before J forget t here is a problem for forgetful people:

Probl.em 16.2.5 (Mathematical Spectrum, Volume 24, Number 2). A bath takes 3 minutes to
fill and 4 minutes to empty. How long does it take to fill the bath with the plug out?

Mathematics Challenge for Young Australians

This is a new national progranune, designed and conducted by the Australian
Mathematical Olympiad Committee, 'which is a sub-committee. 0/ the Australian Academy.oj
Science, to help teachers develop the potential of top mathematics students in Years 8 to
10. It has two stages." 1. a two-week Matheniatics Challenge in March consisting of six
problems for the solution of which students are given two 'K'eeks; 2. an eight to
twelve-week Mathematics Challenge Enrichment Programme behveen April and June, with
c9mprehensive support Jor teachers on methodologies- and techniques. The whole project
integrates with the Australian 'Mathematical Olympiad Com/nit/ee's Three~Year

Problem-solving Programme and opens a world of opportunity f()r teachers and talented
students. in 1992 more than 8800 .students have registered for stage 1 of the Challenge.
Here are its problems:

Problem One to Four must be attempted individually.

Problem One

17560
44356
41892
25731
78697
22171
"90389
79500
53970
86075

Problem Two

Each of the ten numbers shown contains exactly one or" the digits of Ann's
telephone number in its correct position.. For example, from the fIrst
number on the list, Annts number could be 12345 or 17912, but NOT be
18537. What is· Annts telephone number?

Explain .why there is only one. possible answer.

A large flag in the shape of an equilateral triangle is suspended by two of its
comers from the tops of two vertical poles, one 4 m tall, the other 3 m tall. .The third
corner of the flag just touches the ground. What are the exact dimensions of the flag?
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Problem Three

Let m be a positive integer. Integers a, b are defmed as follows:

a consists of m digits, all equal to 1, and b =100 .•. 05 where there are (m-l)
zeros.

(a) Copy and complete the following table:

m a b ab+l lab+1

1

2

3

(b) Guess a fonnula for lab+1 for any positive mteger value of m.

(c) Show that for any positive integer value of In, (ab+l) is the square of an integer,
andfmd its square root.

Problem Four

I play chess with my partner. We often have a game and fmish in a draw with just
our kings remaining on the board. How many different such end-positions are there?

Explanatory Note: The tw~ kings, one black, one white, are only restricted from being in
·squares which share a side <?r a vertex, or from being in the same square.

Problems .Five and Six,may be discussed with a partner who has also entered the Challenge.
Separate solutions must be submitted. Write your partner's name clearly on your solutions
for these problems.

Problem Five

When pirates go ashore to dig up buried treasure, each pirate in the digging party
receives a different sized share of the plunder. The treasure is always completely shared
out with the captain getting the largest share, .the ruSt mate the next largest and so on
down to ·the cabin boy, if he is with the digging party.
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As pirates are not smart, the fractions they use for sharing ~e treasure always have

1 as the numerator. (Pirates using fractions such as i or ; are' punished .by being

made to walk the plank!) .

(a) Show that there is only one way to share out the treasure amongst a digging
party of three.

(b) Find the six different ways which may be used to share out the treasure amongst·
a digging. party of four.

(c) Show that there is at least one way to share out the treasure amongst a digging
party of any size greater than two.

Problem Six

Let m be a positive integer. An integer P . i:; the product of Positive integers
whose sum is m. For example, when m is 7, P could be 1 x 6 =6 or 2 x 2 x 3 = 12,
among many others. Let Q be. the largest value of P for a given m.

33(a) Explain why· Q =18 -when m = 8 and why Q = 3 when m =99.

(b) Fmd a general fonnula for Q for an arbitrary m, and justify that your answer
is correct.

Two Australian m·athematics comp~titions

The TELECOM Mathematics Contests of 1991

On 13 August 1991 these two mathematics competitions were held in Australian schools.
Here are the problems. Time allowed for either contest paper was four hours.

Junior Contest

(For studen~s in Year 10 or less)

1. A surveyor measures the distance to each of three comers of a rectangular paddock as .
shown in the following diagram.

7

. Detennine if it is necessary to measure the distance b to the fourth comer.
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2. Each of the numbers 1, 2, ..., n2 is placed in one of n2 squares of an n-by-n
grid paper in such a way that the numbers in each row, looked at from left to right,
and in each column, looked at from top to bottom, are in an arithmetic progression.
In how many ways can this be done?

lvote: an arithmetic progression is a sequence of numbers

aii'l - ai =a
i

.;.., a
i
_
i
, for i =2, ..., n-l.

such that

3. Let a, b and c be positive real numbers such that a ~ b ~ c and a + b + c ~ 1.

Prove that a2 + 3b2 + 5c2 ~ 1.

4. Two circle~ eland C2 intersect at A and B.; Let P be a point on C1 and Q
be a point .on C

2
,"and suppose that the sum of the angles APB and .AQB is 90°.

Prove: if 01 is .the centre of C
1

and 02 is the centre of C
2

, then the triangles

0lA02 and 0tB02 are right-angled.

5. Detennine all pairs (x, y) of positive integers x and y that satisfy:

-(i) x ::; y ;

(ii) Vi + v'Y =lim.

Senior Contest

(For students in Year 11)

1. Identical with Problem 4 of Junior Contest.

2. Identical with Problem 5 of Junior Contest.

3. Let a, b and c be positive odd integers. Prove that the equation
2 . P

ax + bx. + c = 0 has no solutions of the fonn q' .where p and q are integers.

4. Let kbe the circumcircle of triangle ABC and t its tangent at A. The points
D and E are chosen such that

. (i) D is on AB and E is on AC;
(ii) DE and t are parallel;
(iii) AD =6 em, AE =·S em, CE = 7 em.

What is the distance between B' and D?

5. Detennine the least positive integer n with the property: for every choice of n
integers there exist at least two whose sum or difference is divisible by 1991.

The Junior. Contest was entered by 153 studentst whereas 119 took part in the Senior
Contest. Certificates of Excellence were presented to 49 contestants.
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The TELECOM 1992 Australian M~thematical Olympiad

. The contest was held in Australian. schools on February 11 and ·12. On either day
students had to sit a paper consisting of four problems, .for which they were given four
~~ .

Paper 1

1. Let N be a regular nonagon~ i.e. a regular polygon with nine edges, having 0 as
the centre of its circumcircle, and let PQ and QR be. adjacent edges of N. The
midpoint of PQ. is A and the midpoint of the radius perpendicular to QR is B.
Determine the angle between AO· and AB. .

2. Let· ABCVE bea convex pentagon such that AB =Be and LBCD =LEAB = 90°. Let X
be a point inside the pentagon such thai AX js perpendicular to BE and ex is
perpendicular to BD. Show that BX is perpendicular to DE.

4. Let K and L ·be positive integers. Prove that there exists a positive integer }'1

such that, for all integers n > M. (K+ ir + (L + iriS not an integer.

Paper 2

5.· Extend a given line segment AB in a straightline to D, where the length BD ·may
be chosen arbitrarily (see diagram). Draw a semicircle with diameter AD, and let H
be its ~entre. Let Gbe a point on the semicircle such that the angle ABO is

acute. Draw EZ parallel to BG, where E is chosen .such that EH.ED =£Z2. Then
draw· ZH·as well· as .the point T on the semicircle such. that BT and ZH are
parallel.

Prove: Angle TBG is one third of angleABG.

A 8 E H o

6. Determine all functions f that

(i) take on real values;
(li) are dermed for all real numbers x;i: ~ ;



64

(ill) satisfy the equation

498x - it\:) =if 3;:2) for all values of x except ~.

7. tet PI) P2' ...., P1992 be distinct points in 3-dimensional space such that every

triangle P,P,P 0 f three different points has at least one side length less than
1 J k

1 em..

Prove that there are two spheres Sl' S2' both of radius 1 cm, such that each of the given

1992 points lies in the interior of either S1 or S2 or both. ,

8.. Let n be a positive integer. ·Show that

·1 1 1 1 ( n )Ii + n+r + ii+! + .... + 2ii=T ~ n v'Z-1 .

There were 104 entrants. Gol~. Certificates were received by:

Lawrence Ip (year 12), Melbourne. Church of England Grammar School, Victoria;
Anthony Henderson (11), Sydney Grammar School, NSW;
Adrian Banner (12), Sydney Grammar School, NSW;
Ben Burton (12), John Paul College, Queensland;
Martin Bush (12), Knox Grammar School, NSW;
Michael Bienstein (12), Melbourne High School, Victoria;
Geoffrey Brent (12), Canberra Grammar School, ACI';
Michael ..Russell (12), Collegiate School of St.Peter, South Australia;
Rupert McCallum (11), North Sydney Boys' High School, NSW;
Brett Pearce (12), St. Michael's Grammar, Victoria.

Congratulations to- all! Twenty itudents,inc!udingall Gold Certificate winners,
have been invited to represent Australia at the 1992 Asian Pacific Mathematics Olympiad.
Students from about a dozen .countries of the Asia-PacijicRe.gion are expected to take part
in the competition w~ich was started in 1989.

* * * * *

A Flying Mystery

46Philosophy, that lean'd on Heav'n before,
. Shrinks to her second cause, and is no· more.

Physic of Metaphysic begs defence,
And Metaphysic calls for aid on Sense !
See Mystery to Mathematics fly!"

From The Dunciad
by Alexander Pope (1688-1744)
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