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THE FRONT COVER
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Figure

..J\.s with the Mobius strip, it is _possible
to reach any point on the umbilic bracelet's
surface from any other without crossing the
edge. You may care to explore other
properties for yourself.

If (Figure 4) we make the ratio of the
circles 1 to 4, the point P travels along a
4-cusped hypocycloid, better known as the
astroid. For more on the astroid, see the
cover story for Function, Vol.2, Part 4. By
using a cylinder with an astroid as
cross-section we can generate, via one
quarter of a full turn, another anologue of
the Mobius strip. And so it goes.

The surface 4epicted on the front cover
is one 'of a family of g~~eralisations of the
familiar Mobius strip. (Figure 1). As is well
known, the Mobus strip is' fonned by taldng a
strip, rotating one end by half a full turn
and joining .up the ends.

Now look at Figure 2. A small circle
rolls ~side a large one, the ratio of therr
diameters being 1 to 2. As this' rolling
proceeds, the point P on the circumference
of the small circle moves backwards and
forwards along a diameter' of <the ,larger
circle. This diameter is taken as the
cross-section of the strip from which Mobius .
strip is formed.

Now go to Figure 3. The situation is
much the same except that· the ratio of· the
diameters is now 1 to 3. The point P now
moves around the inner, starlike curve, which
is called a 3-cusped hypocycloid ("cusp"
means "point", as in "bicuspid", a tooth with
two points). Now imagine a cylinder with a
3-cusped hypocycloid as its cross section arid
suppose one end of this to be rotated through
one third of a full turn. Now -imagine the
two _ends to be· joined~ This produces the
surface -shown on the cover. It is sometimes
referred to (for complicated reasons that
would take too long to expain) as the umbilic
bracelet.
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TANAKA'S "SHADOWS"

Michael ,A.B. Deakin, Monash University

Last year I travelled to Kyoto in Japan, where I attended the Intemation.al Congress
of Mathematicians. Almost· 4000 mathematicians, from all aro~nd the world, took part, and
the programme, running over nine days, was both busy and f~itful. After the manner of
these gatherings, it attracted a number of fringe events: book and computer' displays,
spin-off conferences, informal seminars and the like.

One such was the distribution, in very large numbers, of a panlphlet entitled "On the
Shadow of a Parabola and of the Other Curves" by Masakazu Tanaka, whom I take to be a
teacher at Kyoto High School.

There are SOme very nice ideas in this work, and I'll present a few of them here.' I
do so in my own way, however, because the very personal style and terminology of the
original, together with its' detailed presentation of alternative approaches, do not make
for easy reading.

Essentially, Mr Tanaka 'is concerned to display complex roots ,of algebraic equations
in a graphical way. He succeeds in doing this, by a variety of techniques, for the
complex zeros of both quadratic and cubic functions. -I will give the gist of his
argument, but in a somewhat simplified form.

Suppose that a quadratic
equation has no real roots - or, if
you like, that it has two complex
ropts. To simplify the discussion,

. 2
assume the coefficient of x to
be 1. In. this case, the graph
is a parabola like that shown in
Figure 1.

y

Figure 1

.Its equation, found by completing the square, may be written as:

i 2
Y = (x - a) + b ,

and the complex roots of the eq~~tion y = 0 are

x = a ± ib.

(1)

(2)
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Note that a, b can actually be read quite easily off the graph of the quadratic.

Thus, if we had the graph of y == x2
- 2x + 5, we could graph it and, by locating the

minimum point, discover a = 1, b'l = 4 and hence give the roots 1 ± 2i of the' equation

x2
- 2x + 5 = O.

What Mr Tanaka wanted, however, was a way to display a, b as points on the x-axis.
. This turns OU.t to be quite useful when it comes to visualisingthe complex roots of cubic

equations. .In the case of quadratic equations, the procedure is extremely simple.

Look at Figure 2. Through the minimum point of the parabol~ draw a horizontal line.

This will be a tangent to the parabola, and it~ equation is y =b2
• Now draw a second

parabola, which is actually a reflection of the frrst one in this horizontal line, and
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Figure 2

which therefore lies below the "mirror" y =b2
• The frrst parabola is described by

Equation (1). This second parabola may be written as: ,

or

y =2b2
_ y

1

for short. (It is this second parabola that Mr Tanaka refers to -as the "shadow".)

But ,we may rewrite Equation (3) as

y =_ [(x - a)2 _ b2],

which, of course, has the solutions

x =a ± b.

(3)

(4)

(5)

(6)

Thus the complex roots of Equation (1) correspond in a very natural way to the real roots
of the "shadow" equation (5).
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Let us no'w move on to the more interesting case of cubic equations. First recall
that every cubic _equation must have at least one real root. The o~er two may either be
both real or else they form a complex· pair. (It can of course happen that two, or even
three, roots are equal, but this is a detail you can easily sort out for yourself.) Here
we- will be concerned·with the case in which· the remaining two roots are complex.

We are nOw in a situation where the real and imaginary parts of ~ese complex roots
cannot readily be read off the cubic graph. The simple identifications of Figure 1 do not
carry over to this more complicated case. Indeed, we could hav~ a graph like any of those
shown in Figure 3. . -

y

y

x

x

Figure 3
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x

x
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It is this profusion of detail that gives point to Mr Tanaka's construction.

There is, in each case, a unique. point of intersection of the curve with the x-axis.
Let this point have the cOQrdinates (c,O). Call the equation of the curve

From the point (c,O) , we can draw line which is tangent to the curve at some point
other than (c,O). In all four cases, there will be exactly one such tangent. This m~y

be proved by means of calculus or by other means, but it is evident from the four cases of
Figure 3. " .

Call this tangent

y = Y(x) ,

and now introduce a second curve, Mr Tanaka's "shadow",

where we defme

(8)

(9)

(10)

Now the equation y1(x) =" 0 'has one real root and two complex roots. Thus its roots

may be written as x = a ± ib, c. The roots of Y2(x) =0 turnout to be x ~ a ± b; c:

three real numbers .from which the complex roots of the original equation may easily be
determined. -

Y

Y=Y (x)

\ a+b x
\
\
\
\ Y=Y2 (x)

Figure 4

Figure 4 shows what is going on. The line y =Y(x) acts, not exactly like, but
rather like, a mirror. The curve y = y2(X) lies as far below the line y = Y(x) as

Y =Y
1
(x) lies above it, or vice versa when x < c. (We can think of it as the "vertical

reflection" of Y = Y1(x), but perhaps it's best to stick to Mr Tanaka's word "shadow".)



71

Take a specific example. Suppose Y1(x) is the cubic x3
- 4x

2
- 2x' + 20. Then the

equation

x3
-4x

2 -2x+20=0

has the roots -2, 3 ± i. Through. the point _(-2,0) we can draw a tangent to the curve

Y =x3
_ 4x

2
- 2x + 20.

This tangent has the equation

y=x+2

and it touche& the curve at' (3,5). Thus, in this case, .Y(x) =x + 2, and so we have

3 2
Y2(X) = 2(x + 2) - (x( - 4x - 2x + 20),

by Equation (10). Simplify now to fmd

y
2
(x) = _x3 + 4x2 + 4x - 16.

If we now solve the equation

_x3 + 4x2 + 4x - 16 = 0,

we .find x = -2, 2, 4, that is to say, -2, 3 ~ 1.

To see how this works, suppose the ·roots of the equation y1(x) -= 0 to be

a ± ib, c. Then we may write Y1(x) as

Yl(X) = (x - a - ib)(x - a + ib)(x - c),

which is the same as

y (x) =x3
- (2a + c)x2 + (il + b2 + 2ac)x - c(ii + b2

). (11)
1

It is a relatively straightforward exercise in calculus (and again there are other
ways do to it) to fmd the tangent through, the point (e,O). This is the line . Y =Y(x)
and it may be written as

Y(x) = b
2
(x - c). (12)

Now use Equation (10) to find

y (x) = _x3 + (2a + c)x2
, - (a2

- b2 + 2ac)x + e(a2
- b2

). (13)
2

We may easily check that

Y2(X) = -(x - a - b)(x - a + -b)(x - c),

and so a, b may be exhibited explicitly.

(14)



72
For if we graph, y =Y2(x), we may read off the roots a + b, a-b. Then a is the

mean of these two, and b is the distance from that mean to either root. This justifies
Mr Tanaka's construction and the assertionjust above Figure 4.

Mr' Tanaka next posed the question of what happens with quartic graphs. Here he was
able to ,give only a partial answer. The case may however bearialysed, and I show how in
what follows. A quartic graph will have either four real roots, two real roots or no real
roots. (Again the case of equal roots is left to the reader.)

If there are four' real roots, no question arises, so next take the case of two real
roots. The original function will n0'Y be

Yl(X) = (x - a -' ib)(x - a + ib)(x - c)(x - d),

which multiplies out to give

Y (x) =x
4

- (2a + c + d)x3 + (a
2 + b2 + 2ac + 2ad + cd)x2

1

(15)

(16)

The construction given previously for Y(x) now no longer works, but we may proceed
backwards. What we are looking for is a quartic expression with -1 as the coefficient

of x4 and with the factors (x - a ± b), (x - c), (x - d). This expression is y (x)
. / 2

and, if we multiply the factors out, we fmd

4 . 3 2 2 2
y

2
(x) = -x + (2a + c + d)x - (a - b + 2ac + 2ad + cd)x

+ (a2c + a2d _ b2c _ b2d + 2acd)x _ cd(a2
_ b2

).

Now use Equation (10) to determine Y(x) in this case. We fmd

Y(x) = b2x2
- li2(c + d)x + b

2
cd.

This is the "mi.rior" and it may readily be shown that it passes through the points (c,O),
(d,O) , and also that it is tangent to the curve y =Y1(x) when x = a.

If, to give. now the final case, the original quartic has no real roots, there will be
two pairs of complex roots a

1
± ib

1
, a

2
± ib

2
• In this case, the "parabolic mirror" is

tangent to the original curve both for x = a
1

and x = a
2

• The "shadow equation" has

roots a ± b ,a ± b .
'. 1 1 2 2

This concludes the discussion of quartics. The reader' will note that a pattern has
now emerged. If we have an equation of degree n

the "mirror" will be a curve of degree n-2

Y(x) = Kxn~2 + ... + P,

(17)

(18)

for suitable constants K, ... , P. This "mirror" will pass through all the real roots of
the equation y1(x) = O. The complex roots will occur in pairs and, for the values of x
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equalling each real part of such a pair, the curves Y = Y1(x), y.= Y(x) will be tangent.

Then the "shadow ·curve" y =1
2
(x) . defined by.Equation (10) will pass through each

real roo,t of Yl(X) = 0 and will replace. each pair of complex roots a ± ib with a pair

of corresponding real roots' a ± b.

This pattern in fact emerged frrst in the case n = 2, but was not fully evident
until the cases n.= 3, n = 4 had ~en examined. For the quartic and higher graphs, no
simple method' exists for drawing the "mirror", .so that the. practical 'utility of the
appro.ach is at its best with the cubic case, where such, construction is straightforward.
Nonetheless, the higher cases give great· insight into the way in which the functions

yJ(x), y
2
(x) are connected.

* * * * *

"So you see half of eight really isn't four"

From the Leibziger Volkszeitung" courtesy of Alpha,
a German cou'nterpart of FUNCTION.
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THREE UPDATES

1. The Monash Sundial

Function, Vol.' 14," Part 4 contained the story of the Mona,sh sundial and how, after it
had been giving' the Wfeng times and dates for several years, jt was adjusted on 28 March
1990. This wa's not an ideal date to do it because the sundial may only be read accurately
on the hour and on the 22nd of each month. However, it turned out not to be possible to
carry out the adjustment on the 22nd. So we knew, after the adjustment was made, that the
sundial had given an accurate reading for time at midday on 28 March 1990. The question
remained as to how accurate it would prove to be throughout the course of the next year.

It wasn,'t very practical to check up on this during the dreary overcast winter months
between March (when we adjusted ihe sundial) and August (when we published our account of
that adjustment). However, now that we've had a whole summer to use for that purpose, we
can report on how accur~te the calculations were.

To give the conclusion frrst: the sundial is now almost certainly as accurate as we
can make it. To the trained eye, it is out still, but not by very much. By amounts in
fact that· would be quite acceptable in a kitchen clock or a cheap watch. Its accuracy as
far as tiine is concerned may be checked by watching the shadow pass over a time line (the
loop technically referred to ·as an analemma) right on the hour. The maximum error
observed since March 28, 1990, has been 40 seconds. This is well within the 5 minutes
maximum error claimed by Dr Moppert, the designer.

How about the question of the sundial's accuracy as a calendar? How good" is it on
dates?

P R
I

~
I,

J
I

I,
I

I,,,,,
I

S',/
'/ /

I

'S

We have had the opportunity to check this on a few occasions and the accuracy is
probably about as good. as we can expect. The worst discrepancy occurred in the days
around th~. summer solstice, December 22nd,
1990. Refer to the diagram at right.

The ring that casts the shadow on ,the
wall is denoted by R and the shadow it
casts is denoted by S. On those dates S
lay below the correct position (denoted by
S') by a few millimetres.There are several
possible reasons for this. First, there, are
the limits imposed by the accuracy of the
original design. Secondly, the wa1~ itself
has probal>ly. settled slightly; walls do.
'Thirdly, the adjustment of the ring is
probably still not quite perfect. But
there's, also a fourth factor.

PR, the rod supporting the' ring, is
metal and expands in the heat and this
enlarges the triangle PRS . ~d so causes S
to lie below S'. However, there's little to
be done about this.

Wall

All in all we've decided the sundial is about as accurate as we can get it - and that
accuracy is quite impressive.
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2. The Beijing Theorem

By the "Beijing Theorem" I mean the result discussed in Function, Vol. 15, Part 1,
pp. 8-12. Refer to this diagram from that article.

z

z

v

x

y

The pyramid ZUYXV is cut by an oblique plane to make a pe~tagon PRSTR. The base
UYXV of the pyramid is square. We ask under what circumstances the pentagon PQSTR can
be regular~, The Beijing Theorem states that we require the 'height OZ (= a) ·toequal
OX, which is taken to be 1 unit long. Thus the pyramid has to be precisely half an,
·octohedron.' .

First of all, I have myself (MABD) found a quite simple proof of the result. It's' a
little long to give here, but you could reconstruct it for yourself. Use vectors and

~ -~

express in vectorial form the requirement that ST II QR. This establishes that
---7 ~

IXS I = IXTI and that the plane cuts the pyramid symmetrically. Next, require QS II RT.

This gives the coordinates of all the points in terms of a. Finally require IPR I = ISTI
to frnd (after some" algebra) a = 1.

The other matter is that Colin McIntosh (Function, Vol. 15, Part 2, pp. 48-50) raise<l
the question of whether we could have a = 0 or a = 00. The ,second of these is not
possible, as it happens, but the fnst can occur.. In fact there are four cases (whereas
·0 = 1 gave two). David Albrecht (Department of Mathematics, Monash University, Clayton)
has found them ~d here they are. Notice that there' are two strict pentagons, one inside
and one outside the square, and two pentagrams, again with one inside .and one outside.
The square is, of course, the pyramid, now, squashed quite flat!
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3. Facing Mecca

following the article on "Facing Mecca" (Function, Vol. 15, Part 2, pp. 51-55) we'
have had sent to us a special compass enabling the qibla (Le. the direction of Mecca) to
be detennined from places in North America. Our thanks to Professor H. Sharif of Shiraz
University, Iran.

The compass consists of a. magnetic
needle with a second, smaller needle attached
to it at 'an angle of (as near as I can
measure it) 30°. See the figure at right.

The needle assembly is mounted in a case
which has· directions assigned to various
places in North America. These are printed
on the case beneath the needle assembly. A
simplified picture appears at lower right.
S.F. stands for San Francisco and O.C. for
Oklahoma City. These were the two places I
chose for further investigation.

I chose Oklahoma City because it is more.
or less the central one of the various
locations li~ted. San ~ranciscp I chose for
comparison and because it gives a relatively
easy alignment of the instrument.

Using· Formula (1) from the. original
article, I fmd that the qibla for Oklahoma
City is roughly 40° East of North and for San
Francisco' roughly 20° East of North. That
is, we should have:

N

Mecca

c.c.

I
I

/~

t
North

•
~L. QIB\..~

It
C.C. S.F.

N

S.F.

Mecca
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However, there is a complication. Magnetic north is not the same as true north. And this
is particularly· the case in North·· America .- the North Magneti~ Pole is situated in
northern Canada.

In the Encyclopedia Britannica (Vol. 6, p. 29) you will fmd a map from which the
difference can be e~timated. A compass needle in San Francisco points about 200 east of
true north. Thus to a good approximation the compass needle already and .directly
indicates the qibla in San Francisco. Check against my diagram of the case (above): the
two directions line up. .

Now ·let us come to the more complicated case of Oklahoma City. According to the
Britannica, magnetic north is about 100 east of true north in Oklahoma City. As
previously stated, the qibla for Oklahoma City is about 400 east of· north. East of true
north, that is to say. So. the qibla for Oklahoma City· lies about 300 east of magnetic
north.

I
I I

I~
" 25

0

:

Finally~ what of the auxiliary needle
attached to the main magnetic needle? My
only suggestion here is that·, it gives a sort
of .average for the whole region. It's about
right for Oklahoma City which is the most
central of the places listed. Furt;hermore,
it saves us the I.abour of aligning the case
with the needle and of deciphering the rather
hard-to-read p~t on the case.

Lining the case up so that the arrow pointing to North is aligned with the
north-pointing end of the compass needle means that the arrow for Oklahoma City makes an
angle cof (as .closely as I can measure it)
25. We have the situation shown in the
diagram to the right. 25°·and 300 are
probably close enough, given all the
inaccuracies involved in the calculations and t North
measurements. (If further proof is required
for this statement, it comes from the .fact
that the Oklahoma City arrow also serves for
Dallas,·· Houston and the whole of Mexico.)
Discrepancies of less than 100 probably count
for very little in daily prayer. If . one
were, however, building a mosque .. more
accuracy would be needed and proper surveying
instruments would be used.

* * * * *

"".. That Famous Prediction

The mass of a body is a measure of its energy - content; if the energy changes by L, the

mass changes in the same sense by L/9xl020
, the energy being ~easured in ergs, and the

mass in gramtnes.

A. Einst~in (1905)
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COMPUTER SECTION

EDITOR: R.T. WORLEY

How do calculators and 'computers calculate functions such as log(x), sin(x) and the
like? .I have been asked this question a number of times, and the answer I have to give is
"it depends on a lot of factors". In this column I cannot cover all the ways that can be
used, so I will describe one way - the way used by the BASIC language in an early home
computer. The choice of method used in this computer was determined by the requirement
that it take as little room as possible in the computer's program memory, since this
memory was' expensive. Speed was probably of secondary importance.

The trrst thing to realise is that most computers (from here I will use computer to
mean computer or calculator) only work to a certain accuracy, such as 7,9,11 or 17 d~cimal

digits. This means that the value calculated as log(x) need only be calc~.I1ated to this
accuracy. To do this the_ computer can, instead, calculate the value of a 'simpler'
function which agrees with log(x) to the accuracy needed. By csimpler' is meant a function
which, to calculate, uses operations like addition, subtraction, .and multiplication.·
Division may also be allowed, especially if the computer's hardware makes it not too
expensive in te~s of time..

.The typical 'simple' function is the polynomial, for example

1 + 0.5x2 + 0.041&4.

The small computer can contain a single·' short .program to calculate the value· of a
polynomial given the value of x and a table of the coefficients. Thus the computer can
calculate the value of sin(O.05) llsing the polynomial program by giving it the value 0.05
of x and: a table containing the coefficients of a polynomial that approximates sin(x),
and it can calculate the value of 10g(0.23) by giving the polynomial. program the value
0.23 . of x and a table containing the coefficients· of a polynomial that approximates
log(x).

The problem with this· approach is that of getting a polynomial to approximate the
function to the desired accuracy. Normally a polynomial approximation will have a large
error if one takes a large value of x, so the approximation only works well .for a
particular range of values of x. In addition, the function may not be able to be
approximated well by a polynomial - for example, log(x) is very large and negative for
small positive x, while no polynomial has this property - and some means of overcoming
this must be found. .

Consider frrstly the example of the function sin(x). If x is the angle measured in
degrees it is converted to radians by multiplying by 1t/180 (it is more natural in
mathematics to measure angles in radians). For angles measured in radians, it can be shown
that .

sin(x) =x - (1/6)x3 +(1/120)x5
- (1/5040)x7 + (1/362880)x9 + E

where the en"or E is small if x is small. Thus if we ignore E we have the polynomial
approximation

sin(x) = x - (1/6)x3 + (1(120)x5
- (1/S040)x7 + (1/362880)x9

•
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For a technical reason, the small computer I looked at used the substitution x = 21ty, so
it used the approximation

sin(21ty) = 21ty ~ (1/6)(21ty)3 + (1/120)(21tYi - (1/5040)(21tY)' + (1/362880)(21ty)9.

In fact, to cope with the errorE in a slightly better waYLit used the approximation
(which has slightly different coefficients)

1; sin(21ty) = y(6.283185 + y2(-41.34165 + y2(~1.602234 + y2(-~6.57498 + y2(39.71067»»).

f ·Note the clever way of writing the polynomial - it means that ~nly the power y2 of y
t needs to be calculated.

This approximation is only accurate enough for angles up to 1C/2 radians (90°). For
other angles the formulae .

sin(x) = sin(x ± 2n1t)
sin(x) = sin(lC - x)

ate frrst used to reduce the angle to the desired range.

Now consider the function In(x) = loge(x), the 'natural logmthm', or 'logarithm

to the base e' . It.can be shown that for -1 < Y < 1,

In(1 + y) =Y +(1/2)y2+ (1/3)y3 + ... + (l/n)yn + E

where the error E depends ori n, 'the numb~r of tenns in the polynoInial, and on y. If
we take n =6,. and write the equation for both y and -y we obtain ,

In(l+y) = y ~ (1/2)y?- + (1/3)y3 + (1/4)y4 + (1/5)y5, +. (lf6)y~ + E

In(l-y) = -y + (1/2)y2 - (1/3)y3 + (1/4)y4 - (1/5)y5 + (1/6)y6 + E*,

where the error· in the second equation need not be the same as the error in the fIrSt. If
we now subtract the two equ~tions, and recall that the logarithm has the property that
In(a/b) = In(a) - In(h), we obtain .~

In«I+y)/(I-y» = 2y + (2/3)y3 + (2/5)y5 + (E - E*).

If we now set

x - 1/';2
y =~ + 171/2

we fmd

'.....•t
1

1 + y _ (x + ';2) + (x - 12) _ 2x - rl2
r=y - (x + \/2) - (x ..;. \12) - Y1 - .

Taking the natural log of each side and using the'polynomial above we fmd

In(x) + O.5In(2) = 2y + (2/3)y3+ (2/5)y5 + (E - E*).

To cope with dropping the error term, the coefficients need to be changed slightly, and
after rearranging the polynomial, we get the approximation

In(x) = .693147182(-.5 + y(2.885392428 + y2(.961470663 +y2(.598978638»)
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used by my. small computer.

To give an ex~ple, In(.95) =.05129329439, whereas the approximation given by the
polynomial is .05129316143. The error is in the seventh decimal place, which is just
about the accuracy required, as the computer calculates with 6 decimal digitaccur~cy.

Once again, the polynomial approximating In(x) is only accurate enough for small .
values of y, that is, values of x close to 1/,f2. For other values of x the computer
uses the fonnula

In(x) = In«x/2
n

).2'!) = n In(2) + In(x/2
n

)

The power n is chosen so the polynomial is accur~te enough for the logarithm on the
right.

The computer provides other functions, such as exp(x) = eX, cos(x) , tan(x), ,fx,
and the inverse tangent atan(x). The fIrst and last of these are calculated by
polynomial approximations, but cos(x) is calculated as sin(1t/2 + x), tan(x) is
calculated as sin(x)/cos(x); and vx is calculated as exp(O.S·ln(x». These shortcut
methods are used, I presume, simply to .save expensive computer memory.

There are methods other than using polynomial approximations. For example· the inverse
tangent atan(x) has approximations '.

atan(x) = x - (1/3)x3 + (1/5)x
s - (1n)x

7 + (1/9)x9
,

)

atan(x) = x + (7/9)x
3

+ (64/945)x
s
.

. 1 + "(10/9) x 2 + (5/21)x4

The latter has approximately th~ same number of multiplications as the former, but
in general is more accurate. It could be used in preference to the fonner if the division
is not too expensive. I think division is too expensive in my smaIl computer, and the
polynomial was preferred.

Another approximation is

atan(x) = .2844 .x
1 _ 6.8179

x2 + 9.9348 __.6_3_0_4 ___
- x2 + 1.5947

This fonnula could be used providing that division is not very expensive (it has only
one multiplication· but three divisions). This form is sometimes·' called the "continued
fraction" form.

. In deciding on which approximation .to uSe, one really should be aware of the accuracy
to .which the .computer perfbrms the basic operations of addition, multiplication,
subtraction and the ·like. These· operation~ are not perfonned completely accurately due to
the limitations. imposed by· the way' the. computer stores numbers..Because a computer· works
only with· a fixed number of digits, if we add numbers of different Sizes some·digits of
the smaller may be rounded off.· For example, if the computer works with only 8, digits and
we add ~OO0012345678 to 123~45678, the result is not 123~456792345678but 123.45679 which
.is obtained by' rounding the result to. the.8 digit limit. If the computer works to 8
digits, then no matter what polynomial we use to calculate sin(x) we can clearly expect
there to be ·errors in the last 8th digit due to rounding errors. For this reason,
calculators, in particular, sometimes work· internally. to a greater accuracy lhan they
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display. In this case the round-off errors may only affect the undisplayed digit.

We can investigate the way a computer rounds off, and hence the internal accuracy, by
perfonning a; few simple tests. We' select a small number (call it x for reference later),
add 1 to it, and see if the result is 1. Because the display won't necessari)y show the
result to the internal accuracy, we subtract 1 again, .and see what ~e get. If we get zero
displayed, then l+x rounded down to 1. For example, Table 1 gives the results obtained
with my calculator

x lE~9 lE-10 IE-II 2£-11 4E-l1 8E-ll 5£-11
(l+x)-1 1£-9 1E-I0 0 0 0 'lE-I0 1E-I0

x 4.5£-11 4.99£-11 4.9999999£-11
(l+x)-1 0 0 0

Table 1.

From Table 1 it seems clear that the smallest number not rounded off when added to 1
is 5E-ll. The calculator, although it only displays 10 digits, can store internally
numbers of 11+ digits· (the result 1+5£':'11 is not stored accurately, though 1+1E-I0
is). Further investigation shows that (9+5Eo:1.1)-9 is also nonzero. This suggests that
the calculator is actually working with decimal digits (probably in what is called "binary
coded decimal tl

). I tried three other calculators, and they all gave different results,
but the results always indicated the calculator used decimal digits. All, -these
calculators worked only to the accuracy of the -display, which was' 10 digits in two cases
and 8 in the third.

I also tried the test on a 'computer, and obtained the results in Table 2.

x 2£-7
(l+x)-l 1.19209£-7

1.193E-7
1.19209E-7

1.19209£-7
o

1.1921E-7
1.19209£-7

x 3E-7 2E-7
(2+x)-2 2.38419£-7 0

Table 2.

These results indicate that the computer is .using binary arithmetic. The number

1.19209E-7 is 2-23
• This indicates that the computer is using numbers with 24 'binary

digits of accuracy. When I switched to more accurate arithmetic (so-called Itdouble
precision" numbers) in the computer I obtained the results in Table 3.'

x 5E-16 4.440892£-16.
(l+x)-l 4.44089£-16 0

Table 3'.

The number 4.44089E-16 is 2-51
, indicating that in double precision the computer

is using 52 binary digits.

You may care to try to determine whether your calculator or computer uses binary or
decimal digits in its numbers, and detennine how small a number is not rounded off in
arithmetic. If you fmd a calculator that uses binary arithmetic I'd be interested to
have details of it.

* * * * *
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BOOK REVIEW

Computer Ecology and Chaos by B.O. Tuck and N.J. de _Mestre (Longman Cheshire
1991 $14.99, 130 pages).

REVIEWED BY:

RORY McAULIFFEt , Wesley College

Computer Ecology and Chaos is subtitled 'An introduction to mathematical c~mputing'

but might also be described as 'A rabbit's eye view of mathematical rpodelling'. The book
concentrates on a number'of algorithms that model rabbit reproduction and is seasoned with
amusing cartoons by Bruce Rankin.

These algorithms begm with the very simple 'double it' rule. The program that
accompanies this model is written in QuickBASIC; occupies only four lines and uses the
simplest of programming principles, in this case nothing more than a loop and a print
statement. Throughout the text, even as the models become more complex, the programs are
kept simple and the emphasis is placed on the resulting mathematical models. None of the
programs are more than seven lines long and' each can easily be translated to other
versions of BASIC. I have tried out some of the material with a Year 10 student who was
using TurboBASIC on' an IBM PC. This student found no difficulty in interpreting the
instructions, the attendant programs and the small changes that were required to convert
to TurboBASIC. The use of QUickBASIC means that the programs can be implemented on both
mM and Apple machines. .

The initial doubling model soon gives way to a discussion of a self-lim.iting nlodel
defmed by the fonnula:

In the text, subscripts and other intimidating notations are avoided and the model
becomes y = bx(l-x). This allows the authors to develop much more complicated behaviours
which, depe~ding upon the choice ·of the .constant b, yield results that are
self-limiting, cyclical or chaotic. This last possibility, which is pursued in the,later
chapters, leads to studies that are subjects of current research and which provide.
exciting lines of investigation. .. The fmal chapter provides an example of a
'strange attractor' related to the population models developed earlier and which provides
a highly und.erstandable introduction to the recently developed' mathematics of Chaos.
Throughout the text students are encouraged: to ask 'what if ... ' and answer their
questions by. entering new parameter values into their programs. There are a number of
supporting exercises that extend beyond the material covered in the main text. The book
is,' therefore, highly suited .to providing the backbone of .an investigative unit of
teaching which would lead naturally into the type of project and problem solving work that
is required by the VCE.

t
The reviewer is the Immediate Past President of the Mathematical Association of
Victoria.
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The content of the book is aimed at students from Years 9 to 11 though the extension
material will stretch even the strongest high school students as 'the difficulty escalates
as ~ne progresses. My Year 10 'guinea pig' found that the early parts were easy and that
.the level of difficulty increased, much as the authors hope. None of the investigations
proved too difficult to begin though there are a number of lines of investigation that
remain open for further work.

The text is attractively produced and clearly laid out. There are teacher's notes
and a number of worksheets that may be photocopied for class use. The book. is designed
for use by teachers as an investigative unit ~d as such seems to me to be, an important
addition in an area that has been under-resourced· in the past. There would, however, be
no reason why it should not be bought and enjoyed by individual students as a text that
will both infonn .and "entertain outside the confmes of the traditional curriculum.

'* * * * *

HISTORY OF· MATHEMATICS SECTION

EDITOR: M.A.B. DEAKIN

Plimpton 322

Figure 1 depicts a Babylonian clay tablet known as Plimpton 322. This rather strange
name derives from the fact that it'is housed in the Plimpton Museum of Columbia University
(New York City) and is item 322 in their catalogu~. . . .

Figure 1
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Quite how it got. there is not known and it apparently suffered a number of adventures
and mishaps on the way. It is believed to have come from Babylon or nearabouts and,
because it is written in Old-Babylonian script, to date from between 1900 Be and 1600 Be.
The jagged left-hand edge would indicate that it is incomplete - there used to be more·· of
it. In order to assist with the preservation of what remains, it was baked and cleaned in
the early 194Os, and this process removed some 20th-century glu~ which very likely was put
there in an attempt to. stick together the fragment shown in Figure 1 and a (now missing)
left-hand portion.

What remains, bowever,can be read and (up toa point) translated into English. This
task was a~cornplished by two very distinguished orientalists: O~ Neugebauer and A. Sachs.
The description that follows relies very heav~ly on their account, in their book
Mathematical Cuneiform Texts.

The writing turns out. to· be almost entirely a list of numbers in four separate
.colqmns. Figure 2 (taken from their book) shows Neugebauer and Sachs's transliteration of
the text into more familiar numbers and·· letters from the Roman alphabet. The square·
brackets indicate places where the original is no longer legible, but the two scholars
have been able to supply' plausible readings which the brackets enclose. You will also
notice that they have suggested corrections to five readings because they believe the
original scribe made errors at these points.

III IV

{b~si8 $i-li-ip-tim mu-bi-im

. I II

. l[ta-k]i-il-ti $i-li-ip-tim I ib-sia.sag
2[sa·in-]na-as-sd-ltu-'l~-[m]a sag i- . . . -'l~

3[1,59],15· 1;S9
4[1,56,56],58,14,SO,6106,15 56,7
5[1,55,7],41;15,33,45 1:16,41
6[1],5[3,1]0,29,32,52,16 3,31,49
7[1],48,~4,1,40 ' 1,5
8[1],47,6,41,40 5,19
9[11,~~,1J,56,28,26,40 38,11

lo[lJ,41,33~·59,3,45 13,19
11[1],38,33,36,36 9,1106

12[1],35,10,2,28,27,24~26,40 1,22,41
13[1],33,i15 45
14[1],29,21,54,2,15 27,59
15[1],27,3,45 7,12,110j

16[1],25,48,51,35,6,40 29,31
17[1],23,13,46,4[0] 56

2,49
3,12,11°8
1,50,49
5,9,1
1,37
8,1
59,1
20,49
12,49
2,16,1
1,15
48,49
4,49
53,49
53109

ki-l
ki-2
ki-3
ki-4
ki[-5]

[ki-6]
ki-7
ki-8
ki-9
ki-10
ki-ll
ki-12
ki-13
ki-14
kit-1S]

lO~ 50,6 written like 56.
lOS 9,1 error for 8, I.
101·7,12,1 (the square of 2,41) errorfor 2,41.

108 3,12,1 error for 1,20,25.
log 53 error fof 1,46 (i.e., 2·53); ~f. below pp. 40 and 41.

Figure 2

But· Figure 2 still requires interpretation and translation if we are to know what the

tablet is about. Begin with the headings of Columns II, ITi. lb-si sag is believed to
8

mean "solving number <:>f the WIdth" or somet~ing like that and ib-sig ~i-li-ip-tim "solving

number of the .diagonal" or something similar. Thus the table seems to give the diagonals .
of rectangles whose widths are given. Now, in order to know the length of a diagonal of a
rectangle, we need also to ~ow the height, as well as the width. Neugebauer and Sachs
hypothesise that this information was given on the piece that is now missing. (It is not
'given in Column I, as we shall see.)



87

So let us begin by thinking of Columns II, III as giving the widths and the diagonals
of rectangles. The numbers 0 in these columns are expressed in base 60 and need to be.
converted into base ten. Thus 1,59 means 1 x 60 + 59, i.e. 119 and 2,49 means

2 x 60 + 49 or 169. Similarly, 3,31,49 means 3 x 6fl + 31 x 60 + 49, Le. 41270. We
can "thus build up a Table (Figure 3) whose left-hand columns are values of b, the base,
and d, the diagonal, of a rectangle. The original figures are given in the columns.
Neugebauer and Sachs's correction's are in parentheses.. (The [mal column is merely a
count. It corresponds to· Column IV of the tablet; see Figure 2.)

b d h No.

119 169 120 1
3367 11521 (4825) 3456 2
4601 6649 4800 3

12709 - 18541 13500 4
65 97 72 5

319 481 360 6
2291 3541 2700 7
799 1249 960 8
541 (481) . 769 600 9

4961 8161 6480 10
45 75' 60 oIl

1679 c 2929 2400 12
25921 (16.1) 289 240 13

1771 3229 2700 14
56 53 (106) 90 15

Figure 3

Knowing b, d we can calculate h, the height of the rectangle by Pythagoras'
Theorem

(1)

This enables us to supply the third column of Figure 3. But immediately.we look at this,
we see something very striking indeed: all the values of h are integral. (It is this
that justifies the corrections which are also plausible on other grounds, e.g.

106 = 2 x 53 and 25921 = 1612
.)

Triplets of iRtegers satisfying Equation (1) are known as Pythagorean triples. (See
Function, Vol. 6 Part 3,pp. 20-24.) It looks very much as if the ancient Babylonians had
some means of generating Pythagorean triples. They can hardly have found such large
numbers as 12709 merely by trial and error.
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Now there is a systematic way to generate Pythagorean triples. It was described in
the Function article referred to above. These triples come in two varieties. First there
are the primitive triples. To generate. primitive triples, let u, v be positive integers
such that:

(a) u, v are relatively prime

(b)' one is _even and the other odd

(c) u > v.

Then

b (or h) = u
2

- v
2

; h (or b) = 2uv; d = u
2 + v

2
(2)-

is a pnnutlve Pythagorean triple. All other Pythagorean triples are multiples of
primitive triples.

E.g. take u =2, v = t; then b = 3, h = 4, d =5

or take' u = 3, v =2; then b = 5, h = 12, d = 13

etc.

These are primitive triples. b = 6 (= 2 x 3), h = 8 (= 2 x 4), d = 10 (= 2 x 5) is a
non-primitive triple derived from the' simpler (3,4,5).

This out of the way, let us come back and look at the fITst column of our clay
t~blet. These numbers Neugebauer and Sachs interpret as fractions. Babylonian fractions
are expressed, remember, in base 60. Thus, for example, look at No.2 on the list in
Column 1. Mter correction, this reads

1, 56, 56, 58, 14, 56, 15

which equals

56 56 58 14 56 - 15
1 + m + 3000 + TIOOOO + 12960000 + 777600000 + 4665600000O

or 1·94915856.

Now look at Figure 4.

No.

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Fraction

1·9875
1·949158560

,1·918802126
1·886247906
1·815007716
1·785192901
1·719983676
1·692773437
1·642669444
1·586122566
1·5625
1·48941684
1·451041666
1·43023882
1·387160493

Figure 4

(d/h)2

1·983402778
1·949158552
1·918802127
1·886247907
1·815007716
1·785192901
1·719983676
1·692709418
1·642669444
1·586122566
1·5625
1·48941684
1·450017361
1·43023882
1·387160494



89

The second column here gives th~ value of the" fraction in our notatio~ I used my
calculator to get an answer to 9 decImal places. If we ·now look at (d/h) we get the
third column' of Figure 4 which, except -for a few instances, agrees very well with the
previous column.

Now

(3)

and Neugebauer and Sach~ believe this to be the import of the heading to Column I. This,
they think, should translate as "The takillum of the diagonal which has been subtracted

such that the width ~ ..", which may mean i/(J1'-b2
) , but we do not know the meaning of

the word laki/tum and it's not sure quite that· this was what was written - other parts are
quite illegible.. ~'Life wasn't meant to be easy." However,. the' correspondence between the
columns of Table 4 is hardly coincidence. Even where the agreement isn't perfect, it is
quite' good except for Nos. 1, 8 and 13.

My suggestion for No. 1 is that both the scribe and Neugebauer and Sachs omitted. a
zero. The fraction should read, in more modem notation,

[1, 59, 0], 15

in Figure 2. This gives 1·983402777, in very good agreement. Similarly with No. 13,
where [1], 27, 0, 3, 45 gives 1·450017361 which is perfect agreement to eight decimal
places.

The discrepancy in No. 8 would seem to be due to error: [1], 41, 33, 59, 3, 45
should be [1], 41, 33, 45, 14, 3, 35 to six sexagesimal places. The others (Nos. 1, 13)
are not classed as errors as the Babylonians seem· not to have recorded zeros. These are a
much later invention.

Thus Column I of the tablet records values of (dlh)2.Lookagain at Figure 3 and
pay particular heed to the values of h. Except for Nos.' 2, 5 and 15 (in fact) all are
"round numbers" in base 60, and even No. 15 is "reasonably round" and the other two
"fairly reasonably round".

This imprecise statement can be made precise as follows. The Babylonian base 60 has
prime factors 2; 3, 5. In fact

60 =22
X 3 x 5.

Every' value of h in Figure 3 may be found to be of the form

h =20. 3~ 51 (4)

and indeed -every value is even (i.e. 0. ~ 1).

Thus h = 2uv and b = u2
- v2 (not the other way around). This resolves the

ambiguity in Equation (2). Now if
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2uv = 2et 3~ 51, (5)

then each of u, v must also be of the form (4). That is to .say, in base 60, both .!.,.!.. u v
will be tenninating sexagesimals.

[Compare our base, ten, which has factors 2, 5. ~ = 0·5 and } = 0·2. These

decimal expressions tenninateas do the expressions for the· reciprocals of all numbers of

the form 2a 5~. All other reciprocals repeat ad infinitum. The case is similar in base
60· except that the reciprocal tenninates if and only if the original number is of the fonn

2cx 3~ 51.]

If we now combine Equations (2) and (3) we fmd

d _I a. ... 2 1[U v]
1i = d / v (a -b ) =! v + Ii (6)

and if u, v are nice "round" numbers in base 60, then this expression.can be evaluated
exactly..

Let us take a specific case. Choose No.3 from Figures 3, 4. From Figure 4,
h = 4800, ·b =4601. From· this data we fmd

u = 75

Thus for this case

v= 32.

d 1[ .. ]1i =2 2·34375 + 0·42666.....

and this is exact.· (Note that the recurring decimal in this last expression converts into
a terminating expression in base 60. In fact, in base 60

d1i = (0; 30) X {(2; 20, 37, 30) + (0; 25, 36)}

and this is exact.)

So we have
d .
1i = 1·385208333....

and this is exact. Taking the trouble to .square this exactly gives

[~r= 1·9188021267361111. ....

Compare Figure 4.

If we now convert the number given by Equation (7) into base 60; the result is[~r= (1; 55, 7, 41, 15, 33, 45)

(7)
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and this is not only exact, but precisely what Figure 2 gives. In other words, a
Babylonian scribe living over 3500 years ago achieved better accUracy than ·my CASIO.
fx-570! .

Finally, . look again at Figure 4. Notice how the fractions decrease regularly. The
entries· in the table are listed in a very deliberate order.

Another feature I leave to the reader to discover. If, for each instance of Figure
3, we deduce the values of u, v, we fmd that in every case bar Nos. 11, 15 the
Pythagorean triple is primitive. No. 11 is in fact the familiar· (3,4,5) case and No. 15
is rather more complicated. There are in fact good reasons, if we express these cases in
base 60, to put the numbers in this form rather than the more standard ones and Neugebauer
and Sachs go into these.

And much else besides. But enough has been said to show the level of mathematical
attainment in ancient Babylon. (Equations (2), for example, were clearly known.)
Finally, three cheers for Neugebauer and Sachs who had the necessary historical,
linguistic and mathematical expertise to tell us about all this.

* * * * *

PROBLEMS AND SOLUTIONS

EDITOR: H. LAUSCH

This section contains contributions from Australia, Austria, Ethiopia arid Germany.
Moreover, w~ inform our readers of the latest olympiad·news from""'Australia and the Pacific
Rim.

SOLUTIONS

Problem 12.4.3 (proposed by :l puckish Lewis Carroll in The Monthly Packet beginning
in April, 1880). Place twenty-four pigs -in four sties so that, as you go round and round,
you may always fmd the nUl1)ber in each sty nearer to ten than the number in the last.

One solution was received. Here is the

Official solution. Place 8 pigs in the first sty, lOin· the second, nothing in the
third, and 6 in the fourth: 10 is nearer ten than 8; nothing is nearer ten that 10; 6
is nearer ten· than nothing; and 8 is nearer ten than 6.

Problem 14.5.5 Between three .towns, A, B, C there is a continual migration of
families, so that the number of families in each town in unaltered, while the whole number
of families migrating at any specified time is always even. Show that, if by the end of
any time an even number of families left A for B, then by the end·of the same time the
number of families that have left B for A is also even.
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David Shaw (Newtown, Geelong, Victoria), who also sent in an elaborate solution to
Problem 14.5.3," presented us with a very brief response to Problem 14.5.5:

Solution. Let '!xy represent the number of families leaving X for Y. Then

eAB + eBA + eAC + eCA + eBe + eCB is an even num1?er,but

eAC - eCA + eBC - eCB = O.

because the population of C is unchanged.

By addition, eAB + eBA + 2eAC + 2~BC is even.

Therefore if eAB is even, eBA must also be even.

Apologies for the double-numbering of four problems in Volume 15, Jssue 1, the New
Year's issue. We let one pair linger on as a challenge to FUNCTJON readers:

Problem 1.5.1.5 If the bisectors of two angles of a triangle are equal. the triangle
is isosceles. We want a Euclidean proof

Problem 15.1.6 Each day a wife leaves home by car to .collect her husband at the
station when it is 18.00 hours. Today her husband arrives at 17.00 hours and sets out
walking at 4 ;kilometres per hour. The wife sets out at the. usual time, meets him on the
road, and they g~t home 20 minutes earlier than usual. Find the average speed of,the car.

- and present solutions to the second pair by John Barton, North Carlton, Victoria. Many
t~n~ .

Problem 15.1.5 A you~g man has two girl friends who live in diametrically opposite
directions from his house and whom he normally sees about an equal number of times each
month. The bus route which goes to both their houses passes the front of his house. He
.decides to leave" his house at random times and to take the fust bus which comes along.
Smce "the "busesmn" with the"" utmost regularitY" he -thiriks·"he will "see" '-his "girl friends an
approximately equal" number of times. He follows this" regime for a few months and fmds
that he has been to see one girl friend five times as often as he has been to see the
other! Why is this?

Solution. The young man lives at M, the girl friends reside at G
1
, G( The bus

tenninals are T
1
, T

2
•
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Let the time travel from T
1

to T
2

be. 1 unit. Assuming no creation or disappearance of

buses, the time from T
2

to T} is 1 unit, whether or not any waiting is done by a bus at

.Tl or T2 +

If we now assume that, for whatever reasons, out of each 1 unit of time, the time

for the bus to travel from T
1

to M is ~ unit, and the time taken for the bus to

travel from T
2

to M is ~ unit, then M will, probably, visit G1 five time as often as

he will visit G'2.

Problem 15.1.6 Let 0 and I be the circumcentre and incentre, respectively, of a
triangle with circumradius R and wadius r; let d be the distance OJ. Show that

Jl =R
2

- 2rR.

John Barton refers to the recommendable book "Modern Geometry"'(London 1943), where
the problem is given as a theorem (Th. 23, p .35).

SOlution. I abbreviate it here. Let .p' be the intersection of AI with the
circumcircle of ~C.

Then

R2
- 0/2 = (R - OI)(R + 01)

=AI.IP (intersecting chord theorem)
=AI.PB by a. theorem based on the fact that the

triangle of the ex-centres of .MBC has MBC as its ped~ triangle.

Let Z be the point on AB such that AB and IZ are perpendicular, and Q be
the point on the circumcircle of ~C opposite to P. Then

A A
AI =12 cosec 'T = r cosec. 'T ;

PB = PQ sin 4= 2R sin 4(LBQP = LEAP = 4).
Hence tf = R2

- 2rR .

p
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PROBLEMS

. The first problem was proposed by Dieter ~ennewitz, Koblenz, Germany, at the

confluence of Rivers Rhine and Moselle. Danke schon!

Problem 15.3.1 Let p > 5 be a prime number. Prove that the equation

x 4 + 4 x = p has no solution in integers if the last digit of, x is different from 5.

Readers wishing to solve a harder problem may try to prove: Let p > 5 be a prime

number. Prove that the equation· x 4 + 1. x = p has no solution in integers. In this
form the problem was stated at the 1977 Kurschak Competition (Hungary).

Here is another problem by K.R.S. Sastry, Addis Ababa, Ethiopia:

Problem 15.3.2 The Euler line of a triangle is· the line containing its orthocentre,
circumcentre and centroid [Euler has shown that these. three points do lie on one line].
Detenrtineall triangles ABC in which the Euler line bisects an angle subtended by a side
at its orthocentre.

YEAR TWELVE INTERNATIONAL

Here are two problems from Salzburg, where Mozart grew up lvithout worries about any
year-twelve examinations. Now many Salzburg year-twelve students wish these exams, ­
calle,d "Ma.tura" (I) - "entry ticket" to an Austrian university: 1. didn't exist or,
2. aren'{-- too difficult. Thanks to Professor Fritz Schweiger, a former rector of Paris
Lodron University Salzburg, and Professor Erwin Niese, mathemptics master at Akademisches
Gymnasium Salzburg - both firm supporters of Mozart - the mathematics component of the
Salzburg Maturahas become available in Australia. FUNCTION takes pride in being first to
publish these samples. - . . ..

Problem 15.3.3 Inscribe a rectangle of maximal area ~to the ellipse given by

x2 + 2y2 = 18. The four vertices of this rectangle lie on the hyperbola with the equation
222x-y=a.

(a) Determin~ these four vertices, the area of the rectangle and the value of a.

(b) Show that the foci of the ellipse and the hyperbola coincide. Show that the two
curves. intersect in· right angles.

Problem 15.3.4 Given. are two circle~ K
1

and K
2
, with centres C

1
and C

2

respectively, same radius R and a common tangent tsuch that K
1

and K
2

lie on the

same side of t. Let t touch K
1

at T
1

and K
2

at T
2

• Let_ K
2

be another circle,

with centre C
3

, radius R and tangent to K} and K
2

'such that K} and Kz lie in

the exterior of 1(3' How should the circles be placed in the plane such that the area of

the .pentagon C T T C C . is as large as possible? Express.area and perimeter of. this
1 1 2 2 3

pentagon as functions of R.
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MATHEMATICAL OLYMPIADS

1~ The 1991 Asian Pacitic Mathematics Olympiad

The Asian Pacific Mathematics Olympiad (APMO), an annual competition, was started in
1989 by Australia, Canada, Hong Kong and Singapore. Since then the number of
participating Pacific Rim countries has trebled. Beside, stu.dents from the founding
countries, participants of the 1991 APMO were from Colombia, ,Malaysia, Mexico,
New Zealand, the Phillippines, the Republic of China, the Republic of Korea and Thailand.
Here ,are the questions of this four-Iwur examination:

1. Given MBC, letG be the centroid and M be the mid-point of BC. Let X
be on AB and Y on AC .such that the points X,G and Y are colline·ar and XGY and
BC are parallel.

A

B M c

Suppose that XC and GB intersect at Q and that YB and GC intersect at P. Show
that' ~PQ is similar to MBC.

2. Suppose there are 997' points given on a' plane. If every two points are joined
by a line segment with its mid-point coloured in red, show that there are at least 1991
red points on the plane. Can you fmd a special case. with exactly 1991 red points?

3. Let aI' a2, ..·, an; bI , b2, ... ,bn be positive real numbers such. that

Show that
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4. During a break . n children at school sit in a circle around their teacher to
playa game. The teacher walks clockwise close to the children and hands out candies to
some of them according to the following rule; he selects one child and gives ·hima candy,
then he skips the next child and give a candy to the next one, then he skips 2 and gives a
candy to the next one, then he skips 3, and so on.

Detennine the values of n for which eventually (perhaps after many rounds) all
children will have at least one candy each.

5. Given two tangent circles, C
I
, C

2
, and a point P on their radical axis, Le.

on the common tangent of C1 and C2 that is perpendicular to the line joining the

centres of C
1

and C
2

• Construct with compass and ruler all the circles C that are

tangent to CI and.· G.
2

and pass through the point P.

Australian medal winners. (school year in parenthesis) were:

Gold: Anthony Henderson (10), NSW, Sydney Grammar School
Silver: Luke Kameron (12), NSW, Knox Grammar School

Meng Tan (12), Qld, Brisbane Grammar School
Bronze: Joanna Masel (12), Vic, Methodist Ladies' College

Angelo di Pasquale (12), Vic, Eltham College
Martin Roberts (12), Tas, Rosny College
Justin Sawon (12), SA, Heathfield High

Honorable Mention: Tom Brennan (12), NSW, Know ·Grammar School
Stuart Sellner (12), WA, Rossmoyne SHS
Weiben Yuan (12), NSW, Cabramatta HS.

2. The xxxn Intero.ational Mathematical Olympiad (WO)

In April, the ten-day IBM Mathematics ScJwol took place at Melbourne Church of
England Grammar School. Candidates for the team that is to repr~sent Australia at this
year's IMO and other highly-gifted students wJw look forward to at least one 1nore year of
secondary education lvere there to undergo a day-and-evening-filling programme consisting
of tests and examinations, problem sessions and lectures by mathematicians. Communication
with the outside world was largely possible only by a Telecom Australia portable phone.

Sigtuna, a place halfway between the Swedish capital Stockholm and th~ old
university city of Uppsala, J.Yhere the scientists Swedenborg and Linnaeus (Linne) .. Ue
buried, is this .year's venue of the IMO. There the Aus(ralian team will have to contend
with six problems during 9 !rours spread equally over two days in succession. The
following students were selected as t~am members:

Anthony Henderson, Luke Kameron, Joanna Masel, Angelo di Pasquale, Justin Sawon,
Meng Tan, Reserve: Tom Brennan.

* * * * *
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