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FUNCTION

VolUlne 14

The Front Cover

Part 5

The diagram on the front cover is of a 5 x 5 x 5 cube with 25 1 x 1 x 1 cubes placed
inside it. The. arrangement of the small cubes is such that if you view the larger cube
from a direction perpendicular to any face, your view through the large cube is totally
blocked off by the smaller cubes. This arrangement of small cubes is defined as follows.
The large cUbe. has its bottom left comer at (0,0,0) and diagonally opposite comer at
(5,5,5). Smaller cubes have their top right comer at (x,y,z) if the integers x, y, z
are such that 5 divides x + y + z. This 'diagonal' arrangement of cubes occurs in Mark
Kisin 's article. ~,
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THE ABSENT-MINDED SECRETARY AND SIMILAR TALES

Marta Sved, University of Adelaide

The absent-minded secretary was 'handed ten signed letters.. She duly typed ten
envelopes, and then placed each letter into a wrong envelope.. You would think that this
was quite an achievement. However, there are exactly 1334 961 ways to produce such ,a
performance. Of course, you could argue correctly that as soon as you start, counting
permutations 'of some kind, you get to astronomical figures before you finish your
counting. So look at such an event the probabilistic way. Imagine that our secretary
places the le~ters into the envelopes with closed eyes. Then the probability that each
letter goes into the correct envelope is

1/~0! = 1/3,628,800 ~ 2.75 x 10-7
,

whereas the probability that each letter goes into a wrong envelope is

1,334,961/3,628,800 ~ 0.3678794

which is quite a considerable value as probabilities go.. Moreover, this number is so
close to l/e that your hand-calculator cannot see the difference (e ~ 2·71828 is the
base of, the natural logarithms).

Hopefully, you are by now sufficiently interested in the mathematical analysis of the
event. .However, before going fito it, we will discuss a general logical fonnula,known as
the Inclusion-Exclusion Principle, stated in its' general form. '

We consider a set S of N objects, and a set of properties denoted by

{a.
l
,<x

2
, •••,a

k
}. Denote the number of objects, in S having property a

1
(not excluding

other properties), by Na ' those having property (l2 by Na ' and so on. Similarly
1 ' 2

denote by , Na a the number of objects in S having both properties a
l

and a
2

, by
1 2

Na a a the number having all three of at' 0.
2

, a
3

, continuing in the same manner for all
I 2 3 .

the combinations of the properties. Then the number of those objects in S which have
'none of the listed properties is

lcNo=::N-Na.-Na - ... +Naa +Naa + ... -Naarv ... + (-l)Nrvrv (1)
) 2 1 2 1 3 . 1 2v,,3 v"1V.i..ak

As an illustration of this principle, consider the following problem.

140 people are attending an international conference. Of these, 95 peopLe speak
English, 75 speak French, 80 speak German, 50 speak both English and French, 43
speak both English and German, 40 speak botlJ French and German, and 20 speak aU
three languages. How 'lnany people attending the conference speak none of English,
French and German?
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We let 0.
1

denote "speaks English", 0.
2

denote "speaks French", and q denote "speaks

Gennan". Then No. denotes the number of people at the conference who speak English, so
1

Na = 95. Similarly, we are given Na =- 75, Na = 80, Na a = 50, Na a = 43,
1 2 3 1 2 1 3

Na a = 40, No.. 0..0. =·20, and N = 140. Hence by the fonnula, the number of people at·the
2 3 1·2 3

conference who speak none of English, French, German is -

lV-No. -Na,-Na +Naa +Naa +Naa -Naaa
1 2 3 1 2 1 3 2" 3 1,2 3

= 140 - 95 - 75 - 80 + 50 + 43 + 40 - 20

= 3.

We can illustrate this using a Venn diagram (Figure 1) in which the rectangular region C
represents the people attending the conference, and the circular regions E, F, G represent
the people who speak English, French and German respectiyely.

c

Figure 1

We can fill in the number of people in each of the regions as follows. . Firstly

Na a a = 20, so we put 20 in E () F (') G as in Figure 2a. Because No. a =. 50, and we
1 1 3 " . 1 2

know 20 of these lie in E (') F (') G, we can put the number 30 in the region (E (l F)"G of

Figure 2b.
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ErFrG

Figure 2a

. C.

(ErF)\G

Figure 2b

c

Likewise we can put the numbers 43-20 =23 in (E (') G)\F and 40-20 =20 in
(F. (") G)\E, as in Figure 2C9 Finally, because E contains a total of No. =95 people,

1

and we h~ve already counted 30 + 20 + 23 ~ 73 in the intersection with F and G, we
can put the number 95 - 73 = 22 in E\(F U G», as in Figur~ 2d, to indicate that 22
people speak only English. Likewise we detennine that

Figure 2c

c

E\(FuG)

Figure 2d

c

5 speak only French and 17 speak only Gennan. Adding up all the numbers in the circles we
find 137 people, leaving only three of the 140 people not speaking at least" one of
English, French and Gennan.

The above is just an illustration of the Inclusion-Exclusion Principle.. Although we
cannot prove it here, the following illustrates how a proof may be constructed.

A simple Venn diagram shows the validity of this principle when two properties 0.
1

and <X
2

are ~onsidered.



133-

The total number· of elements in S is represented
by the area of the rectangle, while each of the two
circles represents the numbers Na and Nex with

1 2

the shaded area representing Na a' Thus the area
1 2

not covered by the circles gives No. It is then

clear that

The general formula (1) for k properties can· then be derived from here by a mathematical
technique known as induction.

Returning to our absent-minded secretary, we state now the general problem, known for
some two hundred years as "Ie probleme de rencontres": given the ordered sequence
1, 2 ... n, fmd all permutations where no element is at its. assigned place. Such a
permutation is called a derangement. For example, the permutation

3142 is a derangement of 1234.

Denote the number of derangements of 12... n by Dn. We are going to use the

Inclusion-Exclusion principle to prove that

D
n

= n! - [ ~ )(n-l)! + [ ~ )(n-2)! - ... + (_l)n. (2)

Here the set S considered is the set of all permutations of 12 ... n, hence N = n! . If
the pennutation is such that the element i is left at its place, then we say that the
permutation has property a

i
. For example, the permutation

4213 has property 0:
2

,

as does the permutation 4231. In addition the latter permutation has property u
3

, hence

it will also be counted in the number Nu u and in the number Na when (1) is aplied.
2 3 3

Now Na = (n-l)!; since there are (~-l)! permutations where the element 1 is
1

fixed. Thus

Similarly (n-2)! permutations have properties at and u
2

, arid the same applies for any

permutation where two elements are fixed, so

Naa +Nau + ... +NuNa + NUNo. + ... +Na a = [~.).<n-2)!
1 2 1 3 1 n 2 3 n-t n

We reason the same way for pennutations when r elements ~e fixed. In particular there
is just one pennutation, called the identity, having property U

1
U

2
...U

n
• Thus the
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application -of (1) yields equation (2) for D
n

• In particular, -D
IO

= 1,334,961, -as stated

in the beginning.

It is of some interest to write (2) in a slightly different form, by noting that

[ ~ ] (n-r)! =;} .

Thus

D - ,[ 1 1 1 (_l)n ]- n. - IT + ?'IT - ••• + -;;-r- .
n • ~~ n.

The expression inside the bracket is an approximation-of 1/e.

There are many applications of the Inclusion-Exclusion principle. Combinatorial
identities with alternating terms abound, and usually they can be interpreted by this
principle. Here we want to touch briefly on two applications. One. of them is an
important theorem in Il;umber theory, the other an amusing problem, which however presented
considerable difficulty, and occupied mathematicians of renown for quite a long period of
time.

The Euler totient-function 4>(n)

Let n be a positive integer divisible by the distinct prime numbers Pl,P2, ...,Pr'

Then the number of positive integers less than n and coprimet to n is

cp{n) = n _ ~ _ ~ _ ... _ !!- + .!!:.- + .!!:.- + ... + (_l)r n
PI P2 Pc PIP2 P1P3 - P IP2 ,,,Pr

The proof is not difficult and we -leave it to you. We suggest that you show that the
number of numbers less than 120 and coprime to it is

4>(120) =32.

The "probleme des menages"

In how many ways can you seat n mamed couples around a (round) table so that the
wives are -seated in alternate seats and no husband sits next to his wife?

The problem appeared in the writings of Cayley (1878) and Lucas (1891), but it was
not until 1934 that a closed formula for the solution was published by Touchard. In 1943
Kaplansky proved Touchard's formula by "elementary" combinatorial considerations, using
the Inclusion..Exclusionprinciple. This solution appears now in more recent text-books of
cOl11binatorics, but it requires careful exposition, taking up room exceeding the· scope of
the present article. We satisfy ourselves here by- giving the fonnula for Un' which gives

the number of possibilities of placing n husbands, having frrst seated n wives (which

t Two numbers m, n are called coprime if they have no common divisor d > 1. For
example, 12, 35 are coprime, while 12, 21 are not because 3 divides both 12 and 21.
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can be done in n! ways).

Un = n! - 2~~1 (2ni i len-i)! + 2;~2 (2n-:/ ]en-2)! - ... + 2(-1t.
It follows thatU

3
= 1, but of course, you do not need Touchar~' s fonnula for arranging a

table for a dinner party for three couples. .

With 12 people around your table, there are no less than 80 ways in which you can
arrange the husbands(k after the wives have occupied their places and adhering to the rule
of not putting married couples together.

* * * * *

ROOKS AND MULTI-DIMENSIONAL CHESS BOARDS

Mark Kisin, first-year student, Monash University

Consider the following problem.

How· many rooks must be placed on a chess-board if every squareis to be
*threatened?

It is not hard to· see that for a normal chess-board the answer is 8, and that for an
n x n chess-board the answer is n. Qearly n rooks are sufficient for the job, as
they may be placed on the diagonal (Figure 1).

R

R

R

A

R

R

R

R

Figure 1

On the other hand, if only n-l rooks are placed on the board then by the pigeonhole

principlet there must be at least one row not containing a rook, and -similarly there must
be at least one column containing no rook. It follows that the square contained by this·
row and this column is not threatened by any rooks (Figure 2).

* A square is threatened by a rook if it is in the same row or column as the rook.

t If n-l letters are placed in a box containing .n pigeonholes, at least one hole has
no letters.
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t column with no rook

Figure 2

Our purpose here' is to investigate the· situation for the case of an n X n X n
"chess" cube". In other words, to answer the following question.

Given an n x n x n cube, how many rooks must be placed so that every
cell is threatened by at least one rook? (A rook may move parallel to
the edges of the cube.)

"The above problem was one of those proposed and short-listed for the 1988 International
Mathematics Olympiad. It was then asked for the case n = 8 and was formulated as
follows.

A "safe has three dials, each numbered 1 to 8. Due to a defect in the
safe mechanism the·" safe will open if" any' two dials are in the correct
position. How many combinations need to be tried if one is to be able
to guarantee opening the safe?

That these two problems are the same may be seen by assigning 'coordinates' to the cells
of the cube. Choose a comer as the origin and mark off 1, 2, ..., n along each edge ~s

in Figure 3.

n

2

n n

x

Figure 3

If we now' label the edges x, y, z then we can describe a cell as (a,b,c) if it is in
the position illustrated in Figure 4.
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n

n
Figure 4

It is now clear that a rook's ability to move parallel to the· sides of a cube means that a
rook. placed in cell (d,ef) threatens cell (a,b,c) if and only if

i) e = b, f = c, so that moving parallel to the x-edge it changes d into a;

ii) d = a, f.= c, so that Illoving parallel to the y-edge it changes e into b; or

iii) d = a, e = b so that moving parallel to the z-edge it changes f into c.

In other words, if and only if at least two of d = a, e = b, f =:= c are true.

This is exactly the same condition for a safe with combination (a,b,c) to be opened
with. the dials set to. (d,eJ). Thus the two problems are indeed the same, with the cells
in which the rooks are placed corresponding to the combinations to be tried.

The coordinate. notation developed above is very useful, and. we shall use it to prove

Theorem 1. If m rooks are placed in an n x n x n cube such that every cell is
1 2threatened, then .m ~ '1n .

Proof. We suppose m rooks are placed so that every cell is threatened. The cube may be
considered as· consisting of planes of cells. For example, we can let X(i) denote the
plane containing the cells (i,y,z) for 1 ~ y ~ n., 1 ~ z S n as illustrated in
Figure 5a. Likewise we. can let Y(j) denote the plane containing the cells (xj,z) for
1 ~ x S; n, 1 S z S n, as illustrated in Figure 5b. The plane Z(k) is dermed similarly.

z
n

xU)
z
n

i-17-- --+--7

x
Figure Sa

The cells formingX(i)

We consider three cases:

n y

x

j-l

Figure Sb
The cells forming Y(j)

y

Case i. Every plane X(i) .contains .at least n rooks. In this case the n

X(l), ...,x(n) must between them contain at least n x' n = n
2 rooks, so

in this case.

planes

m ~ n2
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Case ii. Every plane Y(J) contains at least n rooks. In this case the n planes

Y(l), ...,Y(n) must between them contain n x n =n
2 rooks, so m ~ n2 in this

case.

This leaves the remain~g possibility:

Case III. There exists a plane X(i) that contains less than n .rooks, and a plane
Y(j)· that contains .less than .n rooks. We choose a plane which contains the
least number, say q. (q < n) of rooks. For simplicity we shall suppose that
the plane containing the least number of rooks is X(a) - if it is a Y plane
the argument is' similar, interchanging the roles of the X and Y planes.

We' regard the plane X(a) as consisting of columns C(aJ), 1 ~ j ~ n as
illustrated in Figure 6.

c(a.j)

j-1 j

Figure 6

Since X(a) is the unio~ of .the C(aJ), 1 ~ j ~ n we know

n
Rooks(X(a» = L Rooks(C(aJ)

j=l

where, for a set S,. Rooks(S) is the number of rooks in S. Since
Rooks(X(a» =q, Rooks(C(aJ) ~ 1 for at most q values of j. We can therefore
select n-q colunms C(aJ) which contain no rooks. . .

Consider one of these selected columns C(aJ). Each of its. n cells can be
threatened by a rook in either X(a) or Y(j). No rook in X(a) or Y(j) can
threaten two cells of . C(aJ) - to do that it would have to lie in C(aJ) which
we have carefully selected not to contain a rook. As X(a) contains only q
rooks which can therefore threaten only q cells of C(aJ) .the remaining n-q
cells of . C(aJ) must be threatened by rooks in Y(]). Thus Y(j) contains at
least n-.q rooks.

To summarize what we have so far in Case (iii):

a) We can select n-q values of j such that C(aJ) contains no rooks. For
each of these va1l:les of j the plane Y(]) contains at least n-q rooks.
Between them, therefore, these n-qplanes contain at least (n-q) x (n-q)
rooks.
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b) Every plane X(i), Y{j) contains at least q rooks. In particular the
planes YO) for the q values of j not selected in (a) each contain at
least q rooks, so between them they contain at least q x q rooks.

Hence the total number of rooks lying- in all the planes Y(j), 1 $ j ~ n,· m~st be
the sum of those in a) and b), Le. at least

(n-q)2 + q2 = n2 _ 2nq + 2q2

=~n2 + ~n2-4nq+4q2)

1 2 1 2
="n + ¥n-2q)

1 2
~ 1,n.

1 2Therefore m ~ -Zn in this case.

Theorem 1 tells us that we shall need at least in2rOOks, but it does not guarantee

that this number will be. sufficient. Nor does it help us deteqnine where we should put
our rooks to threaten every cell most efficiently. While, in the case of a
two-dimensional board, we could place our· rooks· on a diagonal, this approach fails in

general for the three-dimensional case as a cube does not have a 'dia~onal' with in2

cells.

Editor's note. Mark Kisin's article continued analysing how to place the rooks and
considered an n~dimensional cube. In its stead we give an argument by Peter Grossman,

one of the editors of Function, based oli Mark's approach, showing how to place in2

(rounded up if n is odd) to threaten every cell of an n x n x n cube.

An n X n x n cube can be split into two three-dimensional 'tee' pieces, as
illustrated in Figure 7.

p

q

p q

Figure 7.
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At the 'cc;>mer of one tee is a p x p x p cube and ft the comer of the other tee is a
q x. q x q cube, where p + q = n. We shall pl~ce p rooks in the p x p x p cube to
threaten all cells in the frrst tee. Similarly q rooks. can be placed in the cube at
the comer of the other tee to threaten all its cells.

.Consid~r frrstly the two-dimensional equivalent of the tee (Figure 8).

q

p

p q

Figure 8

Clearly to threaten all cells, we just need to ensure we place "p rooks so that we have a
rook in each row and. in each colunm. This can be done by placing rooks on the diagonal.

For the three-dimensional case we wish to place p2 rooks in the p x p x p cube
to have a rook in each column, where columns can be in three directions:

X(i) (l Y(}) - parallel to z-axis

X(i) (l Z(k) -:- parallel to y-axis

.Y(}) (l Z(k) - parallel to z-axis.

To do this ·we· generalize the 'diagonal line' of a square to a 'split diagonal' of a cube,
as illustrated, for a cube of side p =5, on the front cover. In Figure 9 we give the
vertical slices of this cube, showing the blocked cells, starting from its front face.

Figur~ 9

The split diagonal consists of all the cells (x,y,z) that satisfy anyone of the
following three equations:

x+y+z=p

x+y+z=2p

x + Y+ Z =3p.

Here x, y, z are each ~ 1 and S; p . .We shall show that no matter from which axis
direction you view the cube, your view along each colurrm is' obscured by one of the cells
from this split diagonal.
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We use this idea to place our p2 rooks in the p x p x p cube as follows.

We place a rook in cell (iJ,k) if i + j + k is divisible by p. This places
precisely p2 rooks, since for any 1,},.1 ~ i, j ~ p there is exactly ·one k, 1 ~ k s p
for which i + j + k isa multiple of p.

Based on this idea we now have

Theorem: If n = p + q then p2 + q2 rooks can be placed in an n X n X n cube so that
every cell is threatened.

Proof: We consider the cube as being split into two three-dimensional tee pieces as
described above. One tee has comer the p x p x p cube (ij,k) with 1 ~ i ~ p,
1 S j ~ p, 1 S k s p. We put a rook at each cell of the split diagonal of this cube, Le.
we put a rook in cell (ij,k) if 1 SiS p, 1 ~ j ~ p, 1 ~ k ~ p . and p divides

i + j + k. This places p2 ,. rooks. The other tee has comer the q x q x q cube
(ij,k) with 1 S i-p ~ q, 1 ~ j-p ~ q, 1 ~ k-p S q. We put a rook at each cell of the
split diagonal of this cube, Le., we put a rook in cell (ij,k) if 1 S i-p ~ q',

1 S j-p ~q, 1 ~ k-p S q and q divides (i-p) + (j-p) + (k-p). This places q2 rooks.'

. We can now check that every cell of the n x n x n cube is threatened.· For let
(ij,k) be any cell. Suppose i S p and j S p. Let r be the remainder on dividing
i + j by p. Then 1 ~ p-r ~ p and p divides i + j + (p-r), so we place a rook at
(iJ,p-r) and this threatens. cell r (iJ,k). A similar argument applies if i S P and
k S P or if j S p and k S p. Now suppo~ i > P .and j > p. Let r be the
remainder on dividing (i-p) + (j-p) by q. Then 1 S i-p s.q, 1 ~ j-p S q, 1 ~ q-r S; q
and q divides (i-p) + (j-p) + (q-r), so we place a rook at (ij,p-r) and this
threatens cell (ij,k). A similar argument applies if i > p and k > P or if j > p
and k > p. Since either two of ij,k must be no bigger than p, or two must be bigger
than p, we have shown that every cell (ij,k) is threatened.

2
Corollary: If n is even,!- rooks can be placed so that every cell is attacked. - If n

2

is .odd, ~. rooks can be so placed.

n - n+l n~
Proof: In the fITst case, put p =q =2. In the second case, put p =2 and q. =2'

* * * * *

All At S-ea - Solutions

In Function, Vol.· 14, Part 3, some problems were posed concerning ships -at sea,' and
solutions were promised. A concise solution to the problems ·was received from J.C.
Barton.

The first problem was:

The Ship in the Fog

You are at sea and need to deliver much-needed medical supplies to a cruise-ship.
You spot the ship and deterririne its exact position, both distance and angle. However, a
dense fog then comes down; in fact a fog so dense that visibility is for .all. practical
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purposes zero. You know that the cruise-ship always travels at the same speed V in a
straight line (if we. ig~ore the curvature of the earth), but you know nothing about the
direction of that line. Your own speed is v(l+e), where e > O. Describe a path which
will en~re .that yo~ meet the crui~-ship sometime.

Solution. Let, as in Figure 1, the cruise-ship be sighted at position 0, a distance
a from the supply ship S. We ob.serve· frrstly that to meet the cruise-ship your ship
must be at the same place at the same time, and secondly that at time I after being
sighted the cruise-ship is at a point Q a distance vI from 0 on a straight line
through O. .

Q

o a

Figure 1

s

Our aim is therefore to describe a path for your ship which has the property that, for
every line through 0, there is a time t when your ship is a distance vt from o.

Notice that if the cruise-ship is heading directly towards S it will reach S at
time a/v, sO we can let your ship stay at S until time a/v.

Now consider any time I ~ a/v'.

at timeIn Figure 2, your ship is at position P
t + 01.

o a

Figure 2

s

I and at position p' at time

We want P and P' to be at the same distance from 0 as the cruise-ship, so

OP = vt,

op' = v(t+ot) = OR

and so PR = vot. Because your ship travels at speed v(l+e) we have PP' = v(l+e)ot.
The triangle PRP' is, to a good approximation, right-angled and so

IP'RI 2 =IPP'1 2
_ IPRI 2
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In other. words,

that is,

In the limit as Ot ~ 0 we deduce

and so, on integrating,

a = (v'(T+f)2=I)log . t + c.
e

Assuming we measure angles from OS, and recalling that a = 0 at t = a/v (because we
let your ship' stay at S until ti!Ue t = a/v) we have

o=(v'(T+f)2=I)10g a/v + c
e

i.e. c = -(v'{l+£J2=r)10g a/v..
e

Substituting this we fmd
a = (v'"{T+£)2=r)log !X.

e a (1)

This, being of the fonn a = Clog bv, is a curve known as a logarithmic spiral. The
solution is therefore for the supply ship to stay at S until time a/v and then travel
in the logarithmic spiral around 0 given by (1). If a

1
is the angle of the line OQ.

along which the cruise-ship is actually sailing, then (1) can be solved to detennine the
time t your ship will meet the cruise-ship. In fact

1 .

The solution is illustrated in Figure 3.

s

Figure 3

You wait at S for time a/v then
travel along th~ spiral

9 = (v'{I+£)2=I)10g !!:.
. e a
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The next problem was:

Th~ Abandoned Cruise-ship

An abandoned cruise-ship whose wheel is locked in position is going round and round in a
circlet of which you are at the centre. You know the ship has speed v. Again a fog
comes down. this time you know the direction of the ship (from you) and which way it was
travellingt but not its distance. Can you determine a path which will enable you to
ren~ezvous with the ship if:

(a) you can choose your speedt
(b) your speed is predetermined?

[Note: If you can solve (b}, you can solve (a)t but not necessarily vice versa.]

Now suppose you don't even know wh'ich way round the ship is travelling. Can you
still flhd· a path th~t enables· you to rendezvous with the ship? This time assume that you
have a top speed, and can· travel at any speed less than that.

Solution. We let, as in the frrst problem, the cruise-ship be sighted at position 0,
at distance a from your'ship S.

As' in the previous problem, we must arrange for your ship and the cruise-ship to be
in the same place at the same time.

o

s

R

Figure 4

At time t the cruise-ship has moved a distance vt from 0 to P, so the angleS in
Figure 4 is given by .

e = vt.
a

If your ship. sets out at speed. w on the straight line SR making an angle a with SO,
then at time t· it is a distance wI from S on this line. The two ships will
therefore be at the."· same place at the same. time if

a. = e and a = }1.'t, .

Le.

a. = v I and a = wl,
a

so that

a == ..:!:..
w
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In other words, for a given speed w, the supply ship travels at an angle v/w to the
direction OA the cruise-ship was initially seen at.

If the direction (clockwise or anti-clockwise) is not known, then it is not known
whether to measure the angle a above in the clockwise or anti-clock~ise direction.
However, if a =1t, 21t, 31t, ... it doesn't matter in which direction we measure <x. We
therefore want to choose w so that v/w = 1tk for an integer k, Le. w = v/1tk for an
integer k. .If our top speed is w0' we choose ko to be an integer not less than V/1CW0

an~ travel at speed v/1tko in a direction makin~ angle 1tko with the direction in which

the cruise-ship was sighted.

* * * *.*

LETTER TO THE EDITOR

The Number Pattern

I refer to the pattern which appeared on page 128 of Function, Vol. 14, Part 4:

4
2 = 16

342 = 1156

3342 = 111556

To prove the pattern continues indefmitely, it is required to prove that

(3(10n+10n-1+...+10) + 4}2 = 102n+1 + 102n + + 10n+1 + 5(10n+10n-1+...+10) + 6

= 10"+1(10n+10n-1+ +1) + 5(10n+l0"-1+.~.+10) + 6

for n = 1,2,3,....

Let

K = IOn + 10"-1 + + "10 = 10
n

+
1
_10 = 10"+1_10

... 10:1 9'

so that 10"+1 =9K + 10. It then remains to confinn that

(3K+4)2 = (9K+10)(K+1) + 5K + 6.

Similarly constructed patterns arise from numbers such as 65, 66,..., 89 and
35, 36, 37, 38 (among others).

David Shaw,
Newtown, Geelong
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PROBLEMS SECTION

EDITOR: H. LAUSCH

New solutions to Function problems continue to reach the editorial office. Many
thanks to our contributors from Clayton (Victoria), Duncraig (Western Australia) and
Edmonton (Alberta, Canada).

Solutions

Problem 12.4.4 Let k be a positive integer and let

A ={ 2
i I i =0,1,2,... }-

Find all positive integers n such that

numbers 0
1

, ...,a
k

(a
j
'* a

j
for i '* J) from A,

for which the sum In-a11 + ....+ In-a
k
I is minimal, can be chosen in more than one way.

Solution (by Mark Kisin,.· frrst-year student at Monash University). Suppose that
1c

2
m

-
1
~ n < 2

m
, that In-a} I ~ 1n.-a

2
1~ ... ~ In-akl. and that L In-ajl is minimal. Now

j=l

in choosing the sequence al,...,a
lc

ambiguity arises only if In_2i I In-2i I (i '# J)

occurs. Without loss of ·generality, we may assume that 2i < 2i ~ then

2i ~ 2m
-
1 ~ n < 2m S 2i . Now

In_2i I = n - 2i
~ 2m

- 1 - 1 = 2m
- 2.

It follows that In-2j I =2 j
- n ~ 2m

- 2. So,

2i S 2m + n.- 2 S 2m + 2m
- 1 - 2 =2m

+
1

- 3.

Thus j =m.

In_2
i I ~ In-2j l·)

(Note also that this holds if In_2
i I = In-2i I

Consequently, if at =2Q
, then q =m + 1

is replaced by

and we have

{a
1
,a

2
, ...,a

t
_
1

} = {1,2,...,2m
-
1,2rn

}. The ambiguity created by In-2il = In-2il will not

cause ainbiguity in the selection of the numbers a
j

unless m - i = k, Le. if and only

if
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Thus i = m - k. Hence the desired integers n are of the form

¥2m+2m
-
lc

) =2m
-
l + 2m

-
k

-
l
, (m =k + 1, k + 2,.·..)..

Clearly these numbers do yield two choices of the numbers a
i

:

{2m-
I
• 2m-

2
, ..., 2m

-k } and (2m-t • 2m-
2

, ..., 2m-
k+2

, 2rn-k+1
, 2m

).

The above also establishes that there are precisely 2 solutions for these values of n,

for i and j are determined by m (and k), an4 it is impossible that

In_2i I = In-2j I = In_2
k I when ij,k are distinct.

The next problem seems to become our "Problem of the Year",. it is attracting undiminished
attention from Function readers:

Question 4, Function, Vol. 13, Part 3 (June' 1989), p.96. Let 0 be the circumcentre of
the triangle ABC, and let X and Y be the points on AC arid AB respectively such
that BX intersects CY in O. Suppose LBAC = LAYX = LXYC; determine the size of this
angle.

Here are two more solutions:

. Solution (by Andy Liu, University of Alberta, Edmonton,. Alberta, Canada).



148

Join AO, cutting XY at W. Let LBAO= a and LCAO = ~. The angles marked in the

diagr~m are easily computed, and we have 3a + 413 = 180°. Now tiOXYE ~ tiYCA. Hence

OY.AC = AYXY. Also MYW ~ MAX. Hence AB.WY =AY.AX + AYXY. It follows that

OY.AC =AB.WY, so that MEC ~ AYOW. From 2~ = LWOY = LABC =~ + p,
we have 3a = 2~. It follows easily that a =20° and f3 = 30°, so that the desired

angle is 50°.

The second solution has been sent to Function by Kin Yan Chung, Duncraig, Western
Australia, member 0/ the Australian team at the 29th International Mathematical Olympiad,
Canberra, 1988. As Kin Yan Chung labelled the points that occur in the problem with
different letters, we rephrase the problem accordingly:

Let ·0 be the circumcentre of the acute~angled triangle ABC. Let M be the point where·
BC meets AO produced, and let D be the point where.AB meets CO produced. Suppose
that LAMD = LDMB =LCBA. Find the size of this common angle. .

A

X

SQlution. Without loss of generality, we may suppose the circumradius is 1. We shall
use directed angles. Let a == LAMD =LDMB = LCBA. Extend AO to meet the circumcircle
at X. Now, LCOA =2a =LAMB, so LCMO =LMOC =1t - 2a, and hence
LOCM =4a - 1:t. Sinc'e' MEC is acute angled, 0 lies inside MBC, so we require
LOCM ~ 0, i.e.

1t
a < 3. (1)
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Further, LDOM =LCOA =2a, so LMDO = 1t - 3a and since 0 lies inside !1A.BC, we require
LMDO > .0, Le, .

1t
a < !' (2)

Applying the sine rule to ~OCM gives

OM ~ OC sin(4a-1t) - -sin 4a - 2 2a
- sln(1t-2a) - Sii1Z(i - - cos .

By a well-known result, BM.MC =XM.MA. !lOMC is isosceles, since
LCMO =LMOC =1t - 2a, so MC = OC = 1. Hence BM =BM.MC =AM.MX =
(1+0M)(l-OM) = 1 - 4 cos22a. Applying the sine rule to MJMD and

sin a sin 2a
DM.= BM sln(1t-2a) and DM =OM sln(1t-3a)'

4c 22 ) sin a sin 2a
whence (1 - os a. sln(1t-2a) =-2 cos 2a sln(1t-3 a)' or

(I 4c 22 )sin a 2 2 sin 2a W . ~ th" • b .- os a sm Za = - cos a sln(1t-3ar e transform IS equatIon step- y-step fito

equjvalent equations:

(I - 4cos22a).sin<:X.sin 3a =-2eos 2a.sin22a (sin 20. =1; 0, sin 3a #: 0 by (I), (2»,
2 1 2(1 - 4cos 2a)'Z[eos 2a-cos 4a] =-2cos 2a.(1 cos 2a)

(1 - 4cos22a)(cos 2a.-2cos22a.+1) = -4cos 2a.(1 - cos22a)

-(1 - 4cos22a)(cos 2a-I)(2cos 2a+l) = 4cos 2a..(cos 2a.+I)(cos 2a-l)

.-«1 - 4cos22a.)(2cos 2a+l) =.. 4cos 2a.(cos 2a+l) [since cos 2a ~ 1 by (1) and (2)]

8cos32a - 6cos 2a = 1

3 1
4cos 2a - 3cos 2a =2

1
cos 6a =2'

Hence 6a. = 2krt ± ~, k E Z, or a =Jk ± n' k E Z. The only a that satisfies both (1)

and (2) is 5-n= j.g =50°. It is a simple matter to now check that 50° does result

in the given figure.

Problems

a. Remember?

In the last Function issue, you were asked to keep the following problem ready for
this issue: .

Problem 14.4.11 It is known that all natural numbers can be written in the binary system,
using only 0 and 1 as digits. But if (-2) is used as a base instead of 2, can all
integers (negative or positive) be expressed as a sum of different powers of (-2)?
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[Examples: 73 = (_2)6 =(_2)4 + (_2)3 + (_2)°;

"-55 = (_2)7 + (_2)6 + (_2)4 + (_2)3 + (_2)°.]

The problem continues:

Problem 14.5.1
digits is even?

(a) What can you say about an integer in this system if its number of

(b) If a number can be represented as a sum of different powers of
(-2), is the representation unique?

b. An edible problem

Function editor P.A. Grossman communicated this most appetizing algorithmic problem,
known as the Pancake Problem. Get your spatulas ready!

Problem 14.5.2" Given a stack of pancakes of varying diameters, rearrange them into a
stack with decreasing diameter (as you move up the stack) using only· "spatula flips".
With" a spatula flip you insert the spatula and invert (i.e., tum upside down) the
(sub)stack of pancakes above the spatula. Design an algorithm that correctly solves the
pancake problem for a stack of n pancakes with a~ most 2n flips. Count exactly how
many flips your algorithm uses in the worst case.

Co Historical problems from Cambridge, England

After last issue's medieval problem we turn to the more recent past. Here are three
Cambridge Senate-House Problems. The first one was posed in 1860, the other two were
given in 1878: "

Problem 14.5.3 Solve the "simultaneous equations in the unknowns x, y, z :

2 ' 2
X -yz = a

y2 _ zx = b2

2 2
Z -xy=c.

Problem 14.5.4 ABC is a triangle, 0 its incentre. Show that AO passes through the
circumcentre of BOC.

Problem 14.5.5 Between three towns, A, B, C there is a continual migration of families,
so that the number of families in each town is unaltered, while the whole number of
families migrating at any specified time is always even. Show that, if by the en4 of any
time an' even number of families left" A for B, then by the end of the same time the
number of families that have left . B for A is also even.

. The next problem is of the same provenance (1878), only that here it has been
modified to make it a trifle harder:
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Problem 14.5.6 Let x, y, z be the three non-zero real numbers which are distinct from
each other. If x + y + z = 0, what is the product

{ y-z + z-x + x-y } . { ~ + ..L _+ 2.- } ?
x . y z y-z z-x x~

* * * * *

HISTORY OF MATHEMATICS SECTION

A Tasmanian Theorem? c

The diagram at right is the emblem of the
Mathematical Association of ·Tasmania and. it
illustrates a little-known theorem of
Euclidean geometry. Stated briefly, the
theorem says that: o ....-----.......D--..... 8

If OA + AX = OD + DX, then OC + ex = OB + BX.

In Australia; this result is widely known as "Urquhart's Theorem" after the late Mac
Urquhart who taught at the University of Melboume from 1932 to 1944 and at the University
of Tasmania from 1947 to 1966. During this latter period, he founded and became the fIrst
president of the Mathematical Association of Tasmania.

Urquhart did indeed discover· the theorem' for himself (in 1964), though, as we shall
see, he was not the first to do so. He>succeeded in proving it, but ·did not publish his
proof. (Indeed, Urquhart never published any of his mathematical '.results~)· He did,
however, tell the proof to various people including Dr Fred Syer, fonnerly of the
University of Melbourne. He, in his tum, told the "proof to John Barton, who sent it to
Function, and we published it in Vo[ulne 2, Part 3.

John Barton is a regular correspondent to Function. On this occasi~n, he wrote us a
quite long article of which. we published only a part - that part I have just summarised
and. the actual proof of Urquhart's Theorem. We left out a lot, with regret, I might say,
but it would have been rather heavy going ,for the average reader of Function.

.However, I will summarise it here omitting the' details.

The statement OA + AX =OD + DX means that
A and D both lie on an ellipse With foci at 0,
X. Thus if we put pins at 0, X and connect th~m
by means of a string of length greater than OX,
we can draw an ellipse by stretching this string
taut by means of a pencil whose possible path is
the ellipse. shown in the diagram at right. If we
used a slightly longer string we would get another
ellipse with the same foci 0, X. The statement
OC + ex = OB + BX-· means that C, B must lie on
this other "confocal" ellipse.'
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·What John Barton ~id. was to cast Urquhart's theorem into the fonn of a statement
about confocal. ellipses, a statement he then proceeded to prove by means of trigonometry
and coordinate geometry. He speculated ·that the theorem might actually be already known
in this' form and a number- of us looked quite hard in the literature of confocal ellipses
but with only marginal success.

In order to under.stand: the extent of what we found, we need some more background.

One of the mathematicians who learned of UrqUhart's result was Basil Rennie, who was
for many years Professor of Mathematics at James Cook University in Townsville. He
re-organised Urquharfs original proof and greatly improved its presentation. In this
form it was fust published~-: some ten years before the Function article, as an appendix to
.an article by George Szekeres in the Journal of the Australian Mathematical Society.

Rennie's version of the proof begins with a
lemma (Le. a preliminary result) that says:

Take a circle and two points A, C outside
it; then draw tangents from A, C to the
circle; then if the sum or difference 0/ the
lengths of these tangents equals the length
AC, A, C lie on a common tangent to the
circle. .

.See the diagram: A, C satisfy this condition;
A', C' do not. .

Rennie next showed that, under the hypothesis of UrqUhart's theorem, all four lines
OC, CD, AB? OB must be tangent to a common circle. From this he readily deduced the
fmal result.

In looking through the literature, the best we could fmd was a theorem due to the
French geometer· ... Chasles (1860)~This said that if we took an ellipse outside a smaller
confocal ellipse and drew' tangents to the inner
from two points on theqouter (as shown), then the
four tangents all touched a common· circle~

Now suppose the inner ellipse to shrink until
in the limit it becomes the line-segment connecting
the two foci. We then have Rennie's second result
(that OC, CD, AB,_OB all.touched a common circle)
as a c;pnsequence of Chasles's more'·general result.
This was the best we could fmd at that time (1981) and it seemed to say that, while
Urquhart's theorem could be seen as a ready consequence of Chasles's result, nonetheless
the priority of statement and full proof still lay with Urquhart.

However, I later learned that this is not correct. I was looking through the 1841
volu~e of the Cambridge Mathematical Journal (for a completely different purpo~) when my
eye fell on a two-page note by one ADM. .

It was the fashion for authors in this journal at that time to publish their work
under rather cryptic pseudonyms. . ADM, however, was Augustus De Morgan, a leading
mathematician of the day, now perhaps better remembered for his friendship with and
encouragement of George Boole.
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What De Morgan wanted .. to show was that if,
from a point outside· an ellipse, one draws two
tangents to that ellipse" the segments cut off..
between the point itself and the points of tangency
subtend equal angles at either focus. See the
diagram at right.

This was in fact a known result when De ~organ

wrote. What he claimed to have was a new proof and
the proof he gave used Urquhart's Theorem as a
lemma. He proved this in the course of proving his main result. Thus Urquhart's Theorem
should really be called De Morgan's Theorem, unless of course an even earlier account
turns up.

Finally, notice one interesting point: UrqUhart's proof was' published by Barton,
Rennie's by Szekeres, the Chasles version by me; Barton's proof seems never to have been
published and De Morgan's appeared under a semi-pseudonym. It must be very rare indeed
for mathematicians to be so modest about their accomplishments.

* * * * *

COMPUTER SECTION

EDITOR: R.T. WORLEY

Computing and the Fibonacci Numbers

The sequence of Fibonacci numbers 1,1,2,3,5,..., which is defined by the rule

n~3

occurs in a ~umber of places in computer algorithms. They occur, for example, in a
sorting algorithm and in a numerical integration algorithm. We shall look at these, and
then discuss how Fn may be computed efficiently.

.A sorting algorithm may be based on the idea of merging increasing "ruhs". For
example, if we are· sorting integers, we can take two increasing runs 3, 7, 11 and
4, 6, 8, 12, 15 and merge them to produce the .single increasing run
3, 4, 6; 7, 8, 12, 15. Based on this idea we can sort a lis,t of integers as follows.

1. Split the list into two pieces, and regard each piece as consisting of a number of
increasing runs. For example, split the list 1 3 2 5 15 4 16 8 13 7 9 25 10 into
two lists

1 3 2 5 15 4 16 8 13 7 9 25 10
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which we regard as consisting of increasing runs which are underlined

1 3 2 5 15 4 16 8 13 7 9 25 10.

2. 'Merge pairs of increasing runs from the lists. In our example this would produce

1 3 8 13 2 5 7 9 15 25 4 10 16

We repeat the splitting and merging ideas until the list is sorted. This idea is
used when we have very large lists to be sorted, so the, lists are held in, for
exarilple, disk files. A file· is' normally available for reading or for writing, so our
above idea requires two readable files, containing the runs to be merged, and a
writable fue, where the merg~d runs will be placed.

In one' clever way of implementing this idea, the list is initially split unevenly,
with Nt ru~s in the fust list (stored in file A) and N

2
(N

2
< N

l
) in the second

list, stored in file B: During the merging step we merge pairs of ruDS, so we can merge
the fITst N} runs from file A with the N

2
runs of file B, putting the resulting N

2

merged runs on file C. We have 0 runs left in file B and N
t
-N

2
runs left in file A.

The following table illustrates this:

before

after

file A runs

N:
1

N-N
t 2

file B lllns

N
2

o

file C runs operation

N
2

runs merged A,B ~ C

We can now merge runs from file A and file C, putting the result in file B, and so
on.

We have the following, two example tables giving what happens with different values of
N

1
, N

2
•

A B C operation to be performed

13 8 0 merge 8 runs from A,B ~ C
5 0 8 merge 5 runs from A,C ~ B
0 5 3 merge 3 runs from B,C ~ A
3 2 0 merge 2 runs from A,B ~ C
1 0 2 merge 1 run from A,C ~ B *
0 1 1 merge .1 run from B,C ~ A
1 0 0

Example 1.



In our second example we have reached a situation where W~ need to split again. We
split the 3 runs on B, writing the' frrst run to '(tIe A and the next two runs to file C, at .
which time we have reached a situation identical to that marked with .an asterisk in the
fITst e?Cample, and we continue as from there.

The question that· arises is:

What is the best way of initially splitting the runs into file A and file B1

It turns out that the best way is, for some n, to put F
n

runs in file A and F
n

_
1

in

file B. (It may be necessary, if N is not· of the form F
n

+ F
n

_
1
, to consider there to

be some empty runs added after the N runs.) Thus the Fibonacci numbers arise in this
sorting algorithm.

We now look at how the Fibonacci numbers arise in numerical integration. The
defmite integral

bJ f(x)dx
a

can be estimated by an average

N

N
I L fix)

i=I 1

taken over N points x1,...,xN' in the interval (a,b). Likewise an integral

f j{x,y)dx dy
A

over: a region A of the plane can be estimated by an average

1 N
N L .j(x.,y.)

i=l 1 1

taken over N points (Xj'Yj), i = I,...,N in the region A. Of course, the average is

just an estimate of the integral, and depends on the points (xi'Y
j
) cJtosen. There is

one way of choosing the points (xi,Y) , known as· a "lattice point rule" which can b~ used

for the case where the .region A is the square 0 ~ x ~ 1, 0 ~ Y ~ 1. 1)le lattice point
rule Rb,N' for an integer b, involves points (xj,Yj), 1 ~ i ~. N, where Xi = i/N and
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k.
Y

j
=N where k

j
is the remainder on division of ib by N. Rather surprisingly, the

best lattice point rules are tHose where N, b are Fibonacci .numbers F0' F0-1 for some

n.

•
II

••
II

•O.._------.J
° Figure 1.

The points used by R
3

,7

Finally we ~onsider calculation of the Fi~onacci numbers by computer. Suppose we
wish to write a function Fib(n) which given a parameter n calculates. the Fibonacci

number F. Perhaps the siinplest way, in Pascalt , is to use the defmitionn .

function Fib1(n:integer):integer

begin

if n < 1 then begin

writeln("Error:Fib(n) can be calculated
only for n > 1"); A

Fibl := -1

end

end;

else if n <= 2 then Fib1 := n

else Fib! = Fibl(n-l) + Fibl(n-2)

B

C

It .is interesting- to observe how long this takes to calculate the Fibonacci. numbers. The
following are the times taken on a PC.

n 10-211 22 23 24 25 26 27 I 28 I 29

time for F
n

I 0 I 1 3 4 6 9 16 25

Table 1. Time on a PC t~ compute Fn using Fib1, to nearest second

t This uses a ~ethod known as recursion where a fu~ctioncalls itself. This is nonnally
not possible in BA~IC.
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The times seem quite long as n gets larger, and seem to be the sum of the previous two
times. One would think that the time taken to calculate F

O
+

1
should be longer than the

time taken to calculate F
n

simply by the time it takes to add F
n

to F
n

_
1

, but this

does not· seem to be the case.

A close look at the function above will explain why. If we ignore the possibility
that n < 1, then either statement B is executed or statement C. Suppose we let Tn

denote the time this takes to calculate F. Then if n S 2 we have T = 1 (supposing
n 2

.executing one statement takes one urrit of time). If, on th~ o.ther hand, ,n > 2 then we
execute statementC - this involves calculating both Fibl(n-l) (which takes time T ). * n-1
and Fib1(n-2) (which takes time T ). We therefore have the "equations"

n-2

T =T = 1
1 2

T = T + T
n n-1 n-2

n~3

for the time. These are identical with the equations for the Fibonacci numbers, so
calculating F

n
by Fibl(n) will.take about F

n
units of time.

IntuItively this seems to be wrong. The major cause .of ~e problem turns· out to be
that in line C, not only does it calculate Fibl(n-l) (which requires Fib1(n-2», but it
then actually recalculates Fib(n-2) to add.it to Fibl(~-I).

Consider the following alternative method, wh~~h instead of calculating just Fn

calculates both Fn and Fn_t' It returns the value Fn, and in its second parameter

fnminusl, it returns F
n

_
t
•

function Fib2(n: integer, var fnminusl :. integer):integer

begin

var temp1, temp2 : integer

if n < 1 then begin

writeln(UFib2(n) should only be called if n ~ 1");

fnminusl := -1;

Fib2 := -1

end

else if n = 1 then begin

Fib2 := 1;
fnminusl := 0

end

* One could perhaps argue that Tn =Tn_1
+ T

n
_
l

+ 1, but .we are making quite an

approximation in assuming one statement takes one unit of time that the difference is not
significant.
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else begin

tempI := Fib2(n-l,temp2);

Fib2 := tempI + temp2;

fnminusl := temp1

end

end;

In this case, if Sn denotes the time taken to calculate Fib2(n), we have the

"equations"

S = 2
I

S = S + 2
n n-l

for n > 1

which imply S2 =S1 + 2 =4, S3 =S2 + 2 =~6, ... and clearly Sn =2n. The times taken

on a PC, given in Table 2, verify this.

n 0-29

time fOf F 0
n

Table 2. Time on a PC to calculate Fn using Fib2; to nearest second.

* * * * *

Necessity for proof; emergence of mathematics

"Between the workable empiricism of the early land measurers who parceled out the
fields of ancient Egypt and the geometry of the Greeks in the sixth c~ntury before .Christ
there is a great chasm. On the remot~r side lies what preceded mathematics, on the
nearer, mathematics; and the chasm is bridged by deductive reasoning applied consciously
and deliberately to the practical inductions of daily life. Without the strictest
deductive proof from admitted assumptions, explicitly stated as such, mathematics does not
exist. .This does not deny that intuition, experiment, induction, and plain guessing are
important elements in mathematical invention. It merely states. the criterion by which the
final product of all the guessing, by whatever name it be dignified, is judged to be or

. not to be. mathematics."

B.T. Bell,
The Development of Mathematics
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AN IDEA

K.R.S. Sastry, Addis Ababa, Ethiopia

When the need arises, such as preparation of test questions, then one can quickly
constmct the equation of a line and. of a circle or equations of two circles so that they
intersect at ·lattice points - the points having both coordinates integers. Here is an
illustration:

(1) Write down the equation of a circle in the following form:

(x_3)2 + (y-1)~ = 42 (say).

(II) By inspection fmd two lattice points on (I). This is easily done. For
example, Ix-3 1 = 4, y - 1 = 0 or x - 3 = 0, I y-11 = 4. For defmiteness, let
the points chosen be (-1,1) and (3,5). '

(III) Use the chosen points (II) to determine the equation of the line y = x + 2
that contains them.

Then y = x + 2 and (x_3)2 + (Y_1)2 =42, that is,

y = x + 2, x2 + y2_ 6x - 2y - 6 = 0, with' common points (-1,1) and (3,5). (5)

Using (5) and a translation of the plane one can construct "different" problems. For
instance, x ~ x-3, y -? y-4 transfonns (5) into

y = x + 3, x
2 + y2 - 12x - lOy + 45 = 0; (2,5), (6,9).

In general, if we begin with the circle equation (x_p)2 + (y-q)2 =' r2 the above
procedure leads to .the line equation y = ±t + b. If a less simple line equation is
desired then one can begin with the circle equation as

{X_p)2 + (y-q)2 = r2 + S2.

, For example, with the circle equation (x_1)2 + (y+2)2 = 13 and the lattice points ,given
by x-I =-3, y + 2 = 2; x-I = 2, y + 2 =3, that is (-2,0) and (3,1), we obtain
the 'line equation x - 5y + 2 = O. (5')

We can use (5) or (5') to obtain the equation of a family of circles with the same
intersection points simply by using the line. as the common line of intersection of that
circle family. For example, the circles

x2 + y2 __ 6x - 2y - 6 = 0

x2 + y2 _ 6x - 2y - 6 + A(x-y+2) = 0

intersect at (-1,1) and (3,5) for any value of A.
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