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Our leading article. by D.F. Charles. of Pascoe Vale Girls' High School.
is about that perennial problem of trying to find examples to illustrate a
si tuation. in this instance the turning points of a cubic curve, without
introducing too much complication extraneous to - the main --idea being
illustrated.

Our choice for the "Ten years ago" entry is the article by Kathleen
Ollerenshaw with its message. of permanent importance, on'what mathematics is
really abou t .

Neil Barnett's article points to some of the'mathematical thinking that
is a necessary support for current weights and measures legislation. while
Geoff Watterson has some interesting comments about pilots' and first
officers' pay before the recent pilots' strike.

We hope you like the article by S. Trompler. taken from our sister
magazine. the 8elgian Haths-Jeunes. giving the story of the introduction of
the metre. Do you think the metric system, with its large numbers. is an
improvement on the system it replaced? Or is ita disaster?

* * * * *
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FRONT COVER
by

Jean Sheldon

The front cover diagram was generated, using an Apple Mac II computer,starting with a 5 by 5 square consisting of a border of plus signs, with a3 by 3 interior of circles (see diagram, step 1), rotated repeatedly throughan angle of 150 (see diagram, steps 2 and'3), giving a total of 24 repe­titions, each superimposed on the rest.

The software package used on the Mac II was the Adobe Illustrator '88.

The starting point of the construction, the 5 by 5 square, figures asthe generating idea for solving' a . mathematical problem in KathleenOllerenshaw's article (p. 138).
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PLEASANT CUBIC.S
DoFo Charles, Pascoe Vale Girls' High School

As a teacher one often needs to make up cubic functions of the form

f(x) .= x
3

+ ax
2 + bx + c

for student work sheets, tests. exams and the like. The students are tosketch the curve of the function by finding the x-intercepts. the y-inter­cept, and the coordinates and nature of the turning points.

The teacher may sit down and choose.3 integers, then construct a cubicequation with these integers as solutions. For instance. choose -1. -3, 2so that

f(x) = (x + I)(x - 2) (x + 3).

At least one of the soLutions must be an integer so that the studentscan factorize the function by the factor theorem. In the example above

f(x) = x
3

+ 2x2
- 5x - 6.

the student' may try x = 2 and find that f(x) = 0 so that (x-2) is afactor. She then divides f(x) by (x-2). obtaining a quadratic as thequotient. then proceeds to factorize the quadratic. This all runs smoothly.Next the student tries to find the x-coordinates of the turning points bydifferentiating .the function. setting"the derivative to zero, then solving.In our example

f' (x) = 3x
2

+ 4x - 5;

hence. to find the turning points we must solve

3x
2

+ 4x - 5 = 0.'

In most cases the student must complete the square or use the formula to findsolutions. This process can be needlessly time-consuming and "messy"', wi thoirrational.solutions.

If the ability to solve a quadratic by these means is not the conceptbeing tested. if time is of the essence. and if not many marks are allocatedto the problem then the teacher might try to find a cubic function whosederivative factorizes by inspection. that is. a cubic function whose graphhas all important points rational.

These functions may often be hard to find. so the teacher might:

(i) choose an example from the book which he knows will work; or
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(ii) choose a cubic with 2 identical rational solutions so that
x-values of all important points are rational. (One turning point
then always coincides with one of the intercepts.)

It would be interesting to be able to construct quickly a c\lbic function
with 3 different solutions whose derivative factorizes by inspection.

Unfortunately a turning point -in a cubic is not exactly in the middle of
the interval between two adjacent x-intercepts. Not only that, if you widen
~r narrow one of these intervals. the turning point in the other interval
will move. For example. an attempt to lengthen the interval of length b, in
the top diagram of Figure 1. may result in a change of the kind shown: the
length a of the other interval also changes. as does the position of the
turning point TP.

y

TP

x

Figure 1

Knowing this we construct a cubic, one of whose solutions is 0;
i.e. we take

X
123

= 0, A, B. where A. BEN. the set of integers;

f(x) x(x-A) (X-B)

= x
3

- (A+B)x2 + ABx.

Differentiating f we obtain

f'{x) = 3x
2

- 2(A+B)x + AB.



At the turning points f'(x} 0, so
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x
12

2{A+B} ± 1~(A+B)2-12AB
6

For rational solutions ~(A+B)2_3AB must be an integer.

where C E N.

Since this equation looks 1ike Pythagoras' Theorem. we could try to
generate integer solutions in a similar way to which Pythagorean triads are
generated.

Note that if we find integer solutions to A and B then the required
ratios a and b will be given by:

a:.b

and by:

IBI - IAI : IAI
IB I > IAI·

if the signs of A and B are the same and

a:b = IAI : IBI if the signs of A and B are different.

Two such solution generators I have found are:

and

(i)

(ii)

I A : B = -4n : (n+l)(n-3) I

I_A_:_B__C_n_
2

-_1_)_2__n_4_-_4z_13_+_2_n_2_-_4n__+_l__I, .

where n is an integer.

The second of these seems a bit clumsy looking and I am not S11re whether
they eventually generate the same solutions or whether ei ther or both
generate all primi tive solutions, since al though A arid B become large
with increasing n (especially in the second one). sometimes a common factor
cancels out, reproducing one of the earlier ratios. or creating a new one. 1
would appreciate hearing from any reader who can find or knows of any simpler
or more general solution generators.

Let's try generator (i) with n
intercepts).

2 (n gives a cubic with only 2

A ~ -4 x 2 : (2+))(2-3)

-8 -3 = 8 : 3.
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This gives a ratio of distances a and b of

a : b = 3 : 5.

This is the ratio wi th smallest integers. To test it we construct a
cubic function whose intervals between x-intercepts are in the ratio 3: 5.

Try x = 1, ~ 4, ~ 9
123

f(x} (x-l)(x-4)(~-9)

3
X - 14.x:

2 + 49x - 36

f'(x} = 3x2
- 28x + 49

= (3x-7) (x-7); giving rational x-values.

With n = 1 generator (ii). like generator
solution and with n = 2 r.eproduces the above ratio.
a ratio of a: b = 16 : 5.

Trying = 10, ~ 5.
16 11 gives:x ~

123

f(x) _x3 .+ 4x2
- 115x - 550

f' (x) 3x
2 + 8x - 115

(3x + 23) (x-S).

(i). gives a trivial
With n = 3 it gives

Testing other values of n gives other rational ·x-values.

In practice the· teacher need only remember the ratio 3: 5 as this is
sufficient. with various transformations. to generate any number of different
cubic functions. all of which are "pleasant".

* * * * *
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Ten years ago

METHODS OF PROOF

Dame Kathleen Ollerellshaw,
Institute of Mathematics

and its Applicationst

There are several recognised methods of mathematical proof.
but proof is never absolute and there are varying degrees of
rigour. A rna thematical proof is only valid wi thin the I imi ts of
the def ini tions laid down. We can change the rules or move the
goal posts in mathematics as surely as we do in other -evolving
activities and start an entirely new ball game. often very fruit­
fully. Geometrical truths. though eternal in a Euclidean world.
did not suffice for the geometry of outer space. Proof may
tradi tionally be by the "direct method" (as wi th Pythagoras' s
theorem); by one of the indirect methods; such as reducti;o ad
absurdum; or by the method of exhaustion of all possibilities. An
example of the latter is the standard proof that there can be (and
are) only five regular Platonic ·Solids - the tetrahedron. the cube.
the octahedron, the dodecahedron and the icosahedron. Sir H~rmann

Bondi and I used this method when solving and finding the correct
answer to the classical Nine Prisoners Problem this time last

year. tt The recently accomplished computer-ocrushing solution to
the famous Four Colour Hap Problem is an example of proof by

exhaustion of defined POSSibilit~es..#

As an example of proof by translation. in this instance by
projective geometry. here is one of the most beautiful results of
all mathematics found by Pascal (1623 ~ 1662) at the age of 16.

Pascal's theorem states that:

If a hexagon is such that its six points of intersection lie
on any conic, then the three points of intersection of oppo~ite

sides lie on one straight line.

The points can be taken in any order (Fig. 1). The theorem can
be proved by using "cross-ratios" (which I shall not explain here)
and for the simplest of the conics - the circle. By projection

A professional organisation ofrnathematicians. based in the U.K ..
This article is excerpted from Dame Kathleen' so presidential
address, entitled The HagLe of Mathematics, and is reproduced. with
permission. from the lusti tute' s BulleOtin (Vol. 15. No.1. Jan.
1979) .

1977.

See Function, Vol.1. No.1.
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this establishes its truth for all conics as cross-rat·ios remain
invariant under projection and all conics are projections of one
another.

5

Figure 1

2

The result is astonishing, beautiful and of great generality, and
the proof is elegance itself. To add to the rnag~c, 144 years after
the death of Pascal in 1662, another Frenchman, C.W. Brianchon,
when still a student, discovered by means of the "principle of
duality" a related theorem.

Brianchon's theorem states that:

If a hexagon formed by six straight lines is such that they
are tangents to a conic, then the three lines joining opposite
vertices intersect at a point (Fig.2).

F

A

Figure 2

c
The figures for these two proposi tions do not look alike,

which emphasises the power of the particular method of proof
employed. in which one result is deduced from the other.

I had thought to show you several classical proofs of special
beauty. - I shall ration myself to just two, the first in
probability. which I came across for the firs~ time only recently.
This is known as Buffon's Needle Problem. tn a Sultan's palace the
floors were tiled to give thin parallel lines, narrowly spaced at a
distance d apart. The ladies of the harem would keep dropping



their embroidery needles. The Sultan decided to lay bets on the
probabili ty of a needle when dropped crossing a line: If the
length of the needle is .i , e < d. what odds was he to lay to be
sure over time of being the winner? Buffon's solution involves the
mul tiplication of two probabili ties and a difficul t integration,
the answer being 2t/1fd. Buffon died in 1788. More than a hundred
years later another Frenchman. Rabier. 'provided a' marvellously
simple method of arriving at the same solution. I use Rabier' s
description as quoted iIi Coofidges' s "Mathe~tics of the Great
Amateurs" . "The probabi 1i t"y of the needle crossing a I ine is the
expectation of a man who is. to receive one crown if a crossing
takes place. This expectation is the sum of the expectations of
the various elements of the needle. and these are unaltered if the
needle is bent into a circle. The probability of a crossing is now
the ratio of the diameter of this circle. namely e/~, to d. the
distance between the lines. But if the bent needle crosses a line
once. it will cross it twice. so the expectation is 2f.11rd"
(Fig.3). I had a real thrill out of this and I have revelled in ~t

137

/ Figure 3

- a difficul t problem until Rabier thought of bending -::he needl{~

into a circle, rather like Christopher Columbus and the egg.

The second example is simpler. In the February 1978

Bulletin t Professor Patterson of Aberdeen, at the end of an
article about "Mathematical Challenge." the competi tion ini tiated
in Scotland for sixth-formers, put forward a problem. I quote:
"Consider the game of noughts and crosses. In how many ways can a
line of three noughts or three crosses be achieved? The answer is
eight. There is a three-dimensional version (trade-named Plato).
This has 27 holes and two players. each wi th a set of.,. coloured
marbles, who place these in turn in the holes. The winner is the
player who achieves. when all the holes are filled, the larger
number of rows-of-three in any direction. Question: How many
different ways are there of achieVing a row of -three?" The makers
of the game give an incorrect answer 48. whereas by counting care­
fully and remembering the diagonals we can check that ther~ are 49.
The problem Professor Patterson posed was to extend this to n
dimensions and to give the number of rows-of~three in an

The Bulletin of the Institute of l1athematics and its
Applications.
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n-dimensional hypercube. Several people sent the correct answer,
most by inelegant methods or in inelegant form, but a proof sent by
Dr David Singmaster, which it later transpired had already been
given in 1941 in the Scientif.ic American. has a delightful
simplicity.

Consider first the two-dimensional noughts-and-crosses matrix
(Fig. 4). There are nine posi tions represented here by the nine
1 i ttle circles or "holes". The three horizontal rows of holes,

+ + + + +
+ 0 0 0 +
+ 0 0 0 +
+ 0 0 0 +
+ + + + +

three vertical rows and two diagonals, give the eight possible rows
of three. Now surround this matrix of holes wi th a boundary of
crosses (shown here as plus signs). There must plainly· be 16·
crosses, that is 52 - 3 = 25 - 9. Then, through any particular
cross .. say the cross in the first column and second row, orie and
only one line can be drawn which passes through three holes. More­
over, this line will pass through one and. only one other cross.
This is true for each of the crosses. It follows that the number
of rows-of-three for the holes of the original matrix is

~(52 - 32
) = 8 as we already know. In exactly the same way in the

2

three-dimensional ~ame Plato, the 27 holes can be surrounded by a
boundary of (5 - ~3) = 98 crosses, and precisely the same
argument establishes that the number of rows-of-three which can be

achieved wi th the 27 holes is 2:.(53
- 33

) = 49. Moreover·, the
2

argument can be extended to give ~{(k + 2)n - kn )} for the number
2

of rows of k in an n-dimen~ional k-hypercube. When k = 4
which is another well-knovm form of the game, there are 76 rows of
four where n = 3.

* * * * *
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WEIGHTS AND MEASURES AND

THE OVERFILL PROBLEM

Neil So Barnett, Footscray Institute of Technology

In order to protect consumers, every country. at least in the Western
world, has its legislation on "weights and measures". This legislation is to
ensure that if a producer stamps on his product that it weighs 300 grams (for
example). then the purchaser has redress at law if the product weight varies
appreciably from this. Meeting weight (or volume) specifications exactly is
rarely possible; neither is it a reasonable expectation. given the variety
and quanti ty of products that our consumer society demands. Nonetheless,
some measure of fairness needs to be defined and enforced by law if the
purchaser is not to be exploited.

It is a fact of life that all things vary and so. even with the best of
intenti.ons. if a producer doesn't have clear information about the. extent of
the variation of his products and processes. he may well be. unwittingly,
selling his customers short. Weights and measures legislation exists to
protect against unscrupulous operators and also to impress on producers the
need to monitor the variation of production. so that they don't inadvertently
fail to meet their commitment to customers.

The unscrupulous operator, if he is indeed aware of specific weights and
measures legislation. will balance the risk of being caught breaching the
legislation. and the related penal ty. wi th the profi t he can make in the
meantime. The genuine producer. however. will consider the variation that he
has to contend with. consider the iegislation and stamp his product
accordingly. If he is wise. he will look closely at the .variation he has,
assess what it is' costing him and seek to reduce it. In so doing. he will
continue to meet legislation requirements. but at ·a lower cost. and as a
result his company will be more'profitable and his product more competitively
priced.

There is always a risk that a producer. whether unscrupulous or genuine.
will breach weights and measures legislation. The honest producer W9uld like
this risk' to be small. The unscrupulous producer must balance the extra
profi t he gets from breaking the law wi th the size of the penal ty if he
happens to be caught and must also take into account the cost of bad
publicity. should he be caught.

Suppose that a company is producing jars of jam. stamped 200 g. The
company knows that if it sets its filling machine to 210 g rarely, if ever.
will the actual weight fall below 200 g; however. many jars will contain
215 g or more. This variation can be due to the' operation of the filling
machine and also to the weights of jars. The extra jam it "gives away" is a
cos t to the company. If i t could improve the performance of the fill ing
machine so that it could be set at 205 g and almost never produce jars
actually less than 200 g or greater than 210 g. then the customer would have
the same assurance of quantity. but at less cost to the company. This saving
the producer can either pass on to the consumer as a reduction in price (and
hence be more competi tive) or retain as addi tional profi t. One cannot
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over-emphasise the importance of competi tiveness (not only in price) of
fast-turnover consumer products.

Recently I was asked to examine the problem of overfill in relation to
weights and measures legislation for a company producing various foods
marketed in cans, jars and packets. They were fully aware of the relevant
weights and measures legislation and were keen both to serve their customers
well and to avoid "giving away" product because of excessive variation in
their filling process. My initial action was to eXamine closely the
implications of the weights and measures legislation in force in Victoria and
to perform some simple calculations similar to the following.

Weights and measures legislation is uniform throughout Austr~lia. The
established practice of any weights and measures inspector is to obtain and
sample at random twelve articles of the same product at anyone time. To
conform with the necessary requirements:

(i) no single item of these twelve shall be less than 95% of the stated
label weight; .

and
(ii) the average weight of these twelve items must be at least equal to

.the stated label weight.

The legislation is a deal more detailed than this, but the above requirements
(i) and (ii) are all that need concern us here. A couple of diagrams help
illustrate these two requirements, but it should be remembered that unless
every container is weighed, and topped up if found to be underweight, there
is no 100% guarantee t4at weights and measures legislation. will not be
breached. The aim is to ~e the risk. in terms of a probability. small.

INDIVIDUAL WEIGHTS (PLOTTED VERTICALLY)

L

.95 111/1//11 Region of breach of legislation III/II/II

~ is the setting of the filling machine,
L is the label weight on the filled container.
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AVERAGE WEIGHTS OF SAMPLES OF TWELVE

(PLOTTED VERTICALLY)

Jl

L

1//111/1/ Region of breach of legislation Ill/l/lll

Provided there is a degree of stability in the operation of the filling
machine, for any given setting, the probability of a sample of twelve
breaching the legislation can be calculated. By the "stability" of the
filling. operation we mean that the process variability can be estimated.
usually by calculating the standard deviation of the weights of a substantial
sample of filled containers. If this stability is not present: then the risk
of breach of legislation (as measured by a probability) is an unknown factor.
We assume that the weights found are normally distributed, with mean ~, when
the filler is set at j.£. and standard deviation . a. (It is assumed that
weight variation of final product is a consequence mainly of variation of the
filler and not the containers.- this can easily be checked if there is some
doubt. )

Having made a decision on /-L. the setting of the filler. then the

prol:?abilityt of breaching legislation with individual weights X is

1 - [Pr{X ) .95~) J12 and of breaching with the average· weight X is

Pr(X ( L). If we'denote these two occurrences by S and A. respectively.
then the probability of breaching legislation is given by PreS U A). which
is PreS) + Pr(A) - PreS () A).

With a setting of J-L on the filler. the average overfill per container
is J-L - L. Suppose that in an effort to fill a 440 g container the filler is
set at 442 g and that a reliable estimate of the filling standard deviation
under stable conditions is 3. Then

PreS) = 1 - [Pr{X') ·95 X 440)J12,

and by using an appropriate computer program is found to be approximately

12 x 10-9
• The risk on the mean, however, is much larger: Pr(X < 440) turns

out to be approximately 0 ·01. Thus the total risk. allowing for the two
approximations. is not more than

t We denote the probability of the occurrence of A by Pr(A).
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7 -69 X 10-15 + 0-01

= 0-01. to two decimal places,

i.e_ of the order of chance in 100.

Suppose now the filler setting is dropped back to 441 g in order to
reduce overfill. peS) doesn't change appreciably, being approximately

1-094 x 10-13
• The mean risk. however, becomes approximately

= 0-125.

As before~ this latter is the dominant term, and the risk of breaching
weights and measures legislation is approximately 0'.125, i.e. about 12
chances in 100. considerably greater than before; but now the average
overfill per container is reduced by 50%.

Just what consti tutes an acceptable risk must be a company pol icy
decision. Suppose that. with a current a value of 3. a risk of the order
of 1 in a 100 is deemed acceptable. Where the filling process-is stable,
attempts can be made to reduce a whilst maintaining the level of risk, the
gain being a reduction in average overfill per can. Suppose a company goal
is set to reduce a to 2.5. Then in order to retain the current level of
risk we can calculate that the filler setting may be taken at ~ = 441-67.
The average overfill per can is then reduced by 0-33 g. This may seem a
fairly insignificant amount. However. suppose the product costs 1¢ per g
to manufacture and that the company produces 500.000 containers of this size
annually. The average annual saving would amount to $1650. The company may
well use the same filler fOT perhaps fifteen other sizes and products at a
comparable overfill and production rate. Clearly. then. by "sharpening" the
filling variability tens of thousands of dollars might be saved annually on
overfill alone.

Finally. it is worth pointing out that, when considering what
constitutes an acceptable risk. it is the risk of breaching legislation when
the product is tested by weights and measures inspectors that has been
estimated_ A chance of one in a hundred of breaching the law thus translates
into an average rate of one offence in everyone hundred check weighings by
weights and measures inspectors. One should thus take into account how often
inspections may reasonably be expected.

* * * * *
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A PILOT'S LOT

G.A. Watterson, Monash University

After the Australian airline pilots resigned their jobs t the airline
companies placed advertisements in the newspapers telling us about the
incomes and flying hours (for the year ending June, i989) of 10 Captalns and
10 First Officerst randomly chosen. The data are reproduced below .

Year's Year's .Average
Income flying weekly

$ hours stick
hours

Captain A 103.055 439.4 9.6
Captain B 84,123 280.3 6.1
Captain C 104,861 607.5 13.2
Captain D 103,268 551.0 12.0
Captain E 97,610 333.8 7.2
Captain F 126,528 362.4 7.9
Captain G 85,498 409.6 8.9
Captain H 99.385 395.3 8.6
Captain I 120,999 316.2 6.9
Captain J 106,896 409.0 8.9

Year's Year's Average
Income flying weekly

$ hours stick
hours

First Officer A 61,270 373.5 8.1
First Officer B 72,121 588.2 12.7
First Officer C 60,796 409.2 8.9
First Officer D 62,115 585.3 12.7
First Officer E 65,798 380.8 8.3
First Officer F 59.726 610.2 13.3
First Officer G 74.740 514.4 11.2
First Off-icer H 42.425 377.7 8.2
First Officer I 60,814 329.0 7.2
First Officer J 61,,-844 496.5 10.8

How might we react to such data?

My first calculation was designed to find out how many weeks a pilot
worked in a year. It is easy to check that if we divide their year's flying
hours by 46 we get the quoted average weekly "stick" hours (Wi th two
exceptions, which might be just minor rounding off errors). So I conclude
that all pilo.ts worked 46 weeks per year, leaving 6 week~ for holidays.
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I then asked my computer to plot the pilots' incomes versus their year's
flying hours. It produced this (not very accurately plotted) graph.

Income -

120000+

90000+

60000+

A

A

B

B

A

B

----+---------+---------+~--------+---------+---------+--
300 360 420' 480 540 600 hours

A = Captains B First officers

What is immediately clear is "that Captains earn rather more money than First
Officers. It is also clear that Captains' incomes cannot be easily related
to their flying hours. I asked the computer to fit a straight line. as "best
it could. through the A symbols. The result was' the line with equation:

Captain's Income = 100,944 + 5.5 x hours.

Notice that this mathematical model would predict that a captain wi th no
f lying hours would earn $100.944, whi Ie one wi th 600 hours would earn
$104.244. The difference between the two is hardly worth bothering about ­
and in fact is not "statistically significant". The data is consistent with
the theory that Captains' incomes vary randomly around $103,222 (the average
of the 10 Captains' incomes). irrespective of hours flown. (The variation
might be partly explained by age, years of service. qualifications, etc .. )

The incomes of First Officers have a best-fitting straight line:

First Officer's Income 46.888 + 32.8 x-hours.

- Whi Ie this does suggest that their incomes are more dependent on flying
hours, yet even here, the data are consistent with the model that First
Officers' incomes vary' randomly around their mean income, $62,165.
irrespective of flying hours~

The following Figure shows the data, together with ~he two lines super­
imposed.
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What with six weeks' . holidays. and pay little influenced by actual
flying hours, a "pilot's lot was definitely a happy one".

* * * * *

Comment on the pilot problem by a pilot's wife on an ABC talk-back programme:

"The pilots all think that much the best way to solve the problem would
be. instead of advertising abroad for new pilots, . to advertise abroad for a
new prime minister."

* * * * *
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ROUNDING UP, DOWN AND OFF

Michael A.B. Deakin, Monash University

Some years ago, ,an employee of a' U.S. bank made a lot of money for
himself. He noted that most bank calculations do not work out exactly. For
example, if an account holds (say) $980.16 for a year at 20% p.a., compounded
annually, there is due to be ~id into it at the end of the year a sum of
$196.032. Of course, the amount actually credi ted is $106.03. What our
enterprising employee did was to instruct the computer to direct the "spare"
0.2 of a cent into his own account.

Now 0.2 of a cent is hardly a thing on which to build a fortune. Or so
we might think. But the employee had the bank's computer do this with every
one of its calculations. (He also programmed it to erase, when it had
finished, all records of this transfer of funds. except in the growing size
of his own account.) So for every calculation undertaken, the chap scored.
on average, half a cent. By the time he was found out, he bad made several
million dollars.

The effect of ,such roundings is to alter the amount that we find for
compound interest on investments. For example. if we invest a principal. P.
of $1000 for a number. N (say 30) of years at a rate R % per annum.
compounded annually (here take R = 20, say), we have at the end an amount
A(N) given by

A(N) - p[ 1 + l~O r
In our case, this works out to be $237,376.31.

~ (1)

But if at the end of each year, we round down to the nearest cent, the
amount actually credited turns out to be $237,373.94. some $2.37 less. This
is hardly a matter of great concern, but some years ago I had some fun
looking for a formula which might estimate these small corrections.

Similar things happen if at each stage we round up to the nearest cent.
In this particular case. we get $237,378.41, an addi tional $2.10, again a
drop in the ocean compared with nearly a quarter of a million dollars, but
nonetheless not entirely zero.

Even if we round off to the nearest cent. using a 5/4 convention (that
is to say, 1.49... C becomes 1¢, but 1.50... ¢ becomes 2¢), we do not get the
precise answer (except in rare cases). In the example given above, this
procedure yields $237,376.63, close to the value 'given by Equation (1) but
nonetheless 32C off.

Now, again, nobody is going to worry unduly about this 32C - unless like
our enterpr.ising bank officer, you get lots and lots of such amounts.

But it did occur to me that effects like these might be more important
wi th credi t card "accounts and Q,ther si tuations where interest is computed
daily. I began by considering a debt of $500 on a credit card charging 20%
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p.a. (Mastercard have recently gone from 19.2% to 21%. and I chose 20% as a
"round" number near these; it was a fortunate choice, as will.appear later.)
I followed the debt for a month under a regime of daily compounding. using
rounding down. rounding up and 5/4 round-off. The results are shown in Table
1.

~__-:-__~__-+-_ COMPOUN~ INTEREST R~NDIN6 + """"'"'"
----~YS-=-l--.!-~~OUND.DOWN! ROUND UP I 5/4 ROUNDI

PRINCIPAL I 1 ! $500.27 i $500.27 . I $500.28 i $500.27 !

$500~O ~ 2 I ~0~t_~0~~OO~6 r ~o~~l
__'_. ;_- 3 I $500.8~ ! $500.81 j' $500.84 i $500.81 !
1---_. -;-,. 4__-1 $501.10 I $501.08 ! $501.12 i $501.08 i

RATE p.8 .. ; 5 ! $501.37 i $501.35 ! $501.40 { $501.35 !
---- --t--·------------+-· I ------t-----------r--.-------,

20.00X; 6 i!l- $S01.65±.$501.62 I $501.68 'I $501.62 , t
7 ! $501.92 . $501.89 1 $501.96 i $501.89 !

.1 8 I $502.20 !' $502.16--~224 ! $502. 171
._~!>. OF DAYS 1 __~__._. ;---!?02~- $502~L_J _ _l~Q.?.·52 -J--- $50~_45 ;

31 ! 10 ! $502.75 i $502.70 ! $502.80 I $502.73 I
I·~---·-·--___:_-..,------------ J - I ..,-------+._ i 11 l $503.02 : -!~02.97 j $503.08 I $503.01 :

Factor I 12 ! $503.30 r $503.24 , $503.36 I $503.29 !
1.0005479452L_'_3_---.L- $503.57 ! $503.~~.64 I $503.57 !

i 14 I $503.85 I $503.78' 1$503.92 l $503.85 :
----~;--15----1 $504.13 \ $504.051 $504.20 I $504.13.

i 16 ! $504.40 1$504.32 ~ $504.48 $50~.41
. 17 I $504.68 ~ $504.59 . $504.76 $504.69

·---·-------r·--·18--T~04.95-r~~ $505.04 $504;97

. ! 19 -!~5-.23--·! $505.13 ! $505.32 ; $505.25 ;
·--------;--2"0---1-·· $505.51 i $505.40 -T15~6()""~553~'

-------L 21' i .. $5051.~_-l __~_505.67__ j $5t2.~:~--l_~~.~U
i 22 --L:

1

_ $506.06 ! $505.94 ! $506.16 : $506.09 '
I 23 $506.34 1$506.21 $506.44. $506.37

__. ~4 r $506.62 .! $506.48 $506.72 j $506.65 ---r

I .-..-------.-t-.-~-~-i- $506.89 I $506.75 --+-- $507.00 -t- $506~}_~
i 26 I $507.17 I $507.02 : $507,28 I $507.21 :

-===--==-~_ 2~07.45 ' $507.29 i $507.~~7.49--.I
___+---_28 -+- $507.73 ! $507.56 $507.84 i $507.77 i

29 : '$508.01 ! $507 .83 $508. 12 ! $508.05 i
-.-•••----------- "l-j--30-·---r--$508.2S--r-$508.10 I $508~40-j-~!
,----.--------.-,,------r -----r-.--,---.-. .
I i 31 I $508.56 $508.37! $508.68 I $508.61

Table .1

20% p.a. is (20/~65)% per, diem and so each of the entries in the
"formula" column is mul tiplied by a factor of 1 + (20/365)/100. i.e.
1.000 547 945 2055 ... which the computer has stored to .ten decimal places
and displayed in the left-hand column.
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The different rounding conventions lead to small differences in the debt
at the end of the month. These are not particularly significant and I did
not expect that they would be. To put them in perspective, calculate the
effective rate of interest each represents. E.g. if we round down. what
rate. compounded daily, will give us $508.37 instead of $508.56 at the end of

E I . ~ COMPOUND INTEREST ROUNDING: .
-----.-;--------:--_._-_... -_...--:---- .....-.- ...._-------~- -------_._-_.~-----------_ -

- ---...-1__ _.._._ __ __._.._.~---------- ..-:_. ~. . __ _.. .,_...:. _. _. ;

I ; DAYS \ fORMULA jROUHO DO~UHO UP ~__~~~.QUN~~
P~INCIP_Al,_j------!------~ $50.0~ I $50.02 .._._~__.!~2..03~J50.00.__~

$50.00 i 2 I $50 .05 . $50.04 I $50 ..9.E.- ~_L--_.-giO .06 _:
__---'--__.._ ' ~ l $50.08 $50.06 $50.09 L-$2~-l

___~i_ 4 ~ $50.11 ; $50.08 ~ $50.12 : .$50.12 :
RATE p.8. i .5 ;--$50 14- ! $50 10 ; $50.15---~~~5-:
'"20.OO.--r-···-·-6·---··--T--$~6i-$50. i 2--;---$'50."18--~·-----$50~"1-8··-·----·.

~-i--i--~~-+-- :~:~~ _i -~+~-=~:=31%jF~-==--t~f;-~-=~
NO. OF DAYS i 9 : $50.25 ! $50.18 I $50.27 : $50.27 ;
-·--3i-·----T----1O·-·-....··-~-·--$5027-1···--- $50.20'-.·t-----fso .30 --~---·---$50jO-- ..··--·;

r---·-.-----;--li-----r--$5'~3o-r$50.22 :-$50~3--:-··-f5~33-.... ··:
f;~~-----r ..- ...-·12--_U5o.·33==~$5~~~=--o-'-l--$50~36-.---r=. $~q~~i~-=·~.~:

_.!.:.9..Q0547~~2! ~_._.__~-_J2.~~.-. L.---.-~-~.:.?-~- ..-.._i~Q~39 .j__!~~.:~~ ..__ ~
j 14 ! $50.38 : $50 .28 ~ $50 .42 ~ $50.42

'---·-----:---15-·-----·..··;--·--$50~-~--:-$50.30--; ..-·-$5o.45·--r- $50 .45 ~

t-------_._-=- 16 . -"--;_ $50 .4·4i-·--$50~3i---~_:_$50.48-~~ $56':48"=~
_. -...:__.__~~ i_._$~.2:47 __--'-;__!~..:.~_. $5051! $50.~..~---,~

1 18 ; $50.50 J $50.36 i $50.54 i $50.54·----·-----!---·---·-·-·--'-------·..-----,-1--·-·----··..-· -..-;--------r--.-----
1- --l-:_.. ~_ _L---~~2·52 I $50.38 I $50.57 i _._tSO .5?-_._._j

I 20 1 $50.55 '$50.40 I .$50.60 $50.60;

Table 2

the month? I.e. we solve

$508.37 = $500[ 1 + 3~OO fl (2)

for R. The result' is 19.55%. Similarly, rounding up corresponds to a rate
of 20.27% or 5/4 rounding off to a rate of 20.11%.



149

It surprised me ~ little to see this last figure so high; in the earlier
case, the $1000 invested for 30 years, the effective rates were 20% in each
case, to a very high accuracy and the 5/4 round-off estimation had strayed
from the true figure only in a minor. random way.

I I COMPOUND INTEREST ROUNDING :

-=~=--==i_===T-~-==_. ..J.====-l--·---···---·---'-~---------;
; DAYS ! F~~MUl~_ ~.R~.ND DOWNl ROI)NO UP 5/4 ROUND;

PRINCIPAL : 1 ; $5.00 $5 00 $5.01 $5.00·
--$5.00-----;-2---1---··~Ol· 1 . $5~OO'-'- j $5.02 $5.00

'---+1- ------------t--------+------
; 3 i $5.01 1 $5.00 i $5.03 $5.00,

~
---1 4 ! $5.01 r--~OO----r- $5.04 j $5.00' ;

AA~ ~i_:_l_-_---.-._~-----L- $5.01 ! $5,00 t--- $5.0~_I--t~·.90.---j
20.00S I 6 I $5.02 I $5.00 i $5.06 i $5.00 . i

~---_-.. --L---.2---.--T _~5.02 -C.!~.OO--·-;-- $5~07-l-__$5.Q2_--,~
l--- i ~_ l $5.02 I $5.00 : $5.08. : $5.00 ;

~~D~YS :_..__~._+_.~.:.2-~-.-.-~.-.!?.OO ~ $5 .09 -i--._ $5.00~

1--__3_
'
_. .~--.._l9--~-:9~-_+-.--$5,02--~ $5.10 I $5.00 ~

.------L- 11 L.. $5.03 I $5.00 : $5,11 i $5.00~
Factor l 12 ! $5.03 $5.00 $5.12 i $5.00

1.0005479452! 13 I $5.04 $5.00 $5.13 $5.00
··-------~T 14 r $5.04 I $5.0~ $5.14 $5,00 ----l

: 15 , $5.04 ! $5.00" : $5.15 $5.00'·---·--------...;-----------1--·----......1 -----·--1----·· . --l.

F j 16 I $5.04 I $5,00 i $5.16 $5.00

. . ~~~ $5.05 I $5 00---+--_ $5.1~ $5.00
.__._.... -'~----~---~ $5.05 i $5.00 $5.18 i--$5.2.2.-----!

t
l

_.__~__~__~__~ $5.~. i $5.00 _! $5.19 ! $5.00 :
___. -i-- 20 _ ......~_--$~-:Q.6--:.-._~-:OO . $5.20 I $5.00

r·----t---~~+-~·-1-:~:~~-+-R~~ I :~:~~
L. . .~__ 23 __.~_ $~.06 ·-f--$5.~2... j ~~.3 i $5.00 .-.J
! ! 24 1 $5.07 i $5.00 .._~-_ $5.24_-l.-- $5.00
I . 25 ! $5.07 I $5.00 ! . $5.25 1 $5.00 :

[
-------!-·--~26-·-t----$5,07·---.....~--·--$5:00----;.:---$~26---r---$~Oo;

---------T-- 27'- ; $5,07 ! $5.00 ! $5.27 i $5.00' 1
------..-.----'.-.-----_------...;--------.---+------ ;. ...L. ~

I' : 28 i $5.08 \ $5.00 ; $5.28 ! $5.00 ;

t=---=--=-:=_)9~_~._J52Ll_~2~.__$5.~_ $5.00._:
I '30 I $5.08 ! $5.00 ; $5.30 i $5.00 J
[-------·-··--~--·-·31-·_-~---~t~09-·_·· i- $5.00 ---I $5.31 i $5.00 _~

Table 3

What I really had in mind, however, was the investigation of how these
effective rates varied wi th'the principal. To this end, I had the computer
produce an analogue of Table 1, but for a debt of $50 instead of $500. This
produced Table 2, and this does show the effect I was looking for. The
effective rate of interest produced by rounding down is now only 14.5%, while
that produced by rounding up is' now 21.7%.' But now look at the 5/4 round-off
column. It is exactly the same as the rounding-up column! Surely this can't
be simply the result of chance.
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Indeed. it isn't. We see why this correspondence occurs if we look at
an even simpler case. Table 3 shows the situation with a principal of $5.
Now .here, if we do the calculation by the formula we find a small amount of
interest accruing each day, so that after a month has passed it has amounted

to about ~¢. But if we round down each time, we reset the amount back to $5
2 .

and it never has a chance to increase. The effective rate of interest is now
zero.

Table 4

Contrast this. wi th the effect of rounding up. At the end of Day 1,
the amount should be $5.0027... , hardly any advance on $5. The accrued
interest is just over a quarter of a cent, but we told the computer to round
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up. so round up it does and it keeps rounding up like this each day for the
whole month, so that at the end of the month the interest comes to 31¢. The
effective interest rate is a whopping 70.90%!

The 5/4 round-off works just like the round-down. The computer sees the
0.27 of a cent, rightly judges it to be near~r to nothing than to one cent.
rounds down to zero and this resets the amount at $5. It does this for each
of the succeeding days as well. So no interest ever accrues.

i,-' ...- COMPOUND INTEREST ROUND'IN6

Table 5

Clearly this is the pattern if the principal is small. For values of P
less than $5 the relative discrepancies become even larger. If P = $0.01,
we find an effective interest rate for round-up of over 40,000%. But how
small is small? When does this effect.stop?
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To answer this, note that if the interest on the first day is less than
half a cent, 5/4 round-off and round-down wi.!l reset the amount to zero. The
cut-off therefore occurs when

p( 1 + 3JgO J = P + 0.005. (3)

Equation (3) has the exact solution .p = $9.125. (The choice of 20 as
the value .for R is what leads to this relatively simple result.) So the
pattern already seen in Table 3 should also appear if P = $9.12. but not if
p = $9.13.

Table 6
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A glance at Tables 4, 5 shows that this is indeed the case. A further
glance at Table 5 shows us something else. The 5/4 round"':off column now
follows the round-up. whereas before it followed the round-down .

. This is because. now we have passed the cri tical threshold oJ $9.125.
the small discrepancy is larger than half a cent, and so the 5/4 rule means
that we round up.

This pattern shoulq continue until we reach a principal of 2 x $9.125.
i.e. $18.25. The interest for one day at 20% p.a. on $18.25 is precisely one
cent . and so now the 5'.4 ruie. rounds down and the round-down rul e wi 11
actually give some interest.

Table 7
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Table 6 is the computer's attempt to verify this prediction. and we see
immediately that in the "Round-down" column. something has gone badly wrong.
This shows that you can't always trust computers. The problem is the factor
1 + 20/36500. This is 1.000 547 945 2055 .... but the computer carried only
the first ten decimal places. Thus. it ,"thought" the interest was
0.999 998 996 250 and, seeing a number less than one, even if only by a cat's
whisker. it did as it was told and rounded it down to zero.

I overcame' this problem, by kick-starting the calculation (Table 7): I
added the, one cent interest for the first day to the 18.26, before starting
the computer. The correct reading for Day n in Table 6 may be discovered
by looking up the entry for Da.y {n-1} in Table 7. All the features we
p~edicted for 'Table 6 show up as they ought to in Table 7.

COMPOUND INTEREST ROUNDING

DAYS FORNUlA ,ROUND DOWN ROUND UP 5/4 ROUND
PRINCIPAL I $1000.55 $1000.54 $1000.55 $1000.55
$1000.00 2 $1001.10 $1001.08 $1001.10 $1001.10

·3 $ 1001.64 $1001.62 $1001'.65. $1001.65
4 $1002.19 $1002.16 $1002.20 $1002.20 THRESHOlD

RATE ,.a. 5 $1002.74 ,$1002.70 $1002.75 $1002.75 PASSED
20.00~ 6 $1003.29 $1003.24 $1003.30 $ 1()03.30 HERE

7 $1003.84 $1003.78 $1003.65 $1003.85 ......-
8 $1004.39 $1004~33 $1004.41 $1004.40

NO. Of DAYS 9 $1004.94 $10.04.88 $1004.97 $1004.95
31 10 $1005.49 $1005.43 $1005.53 $1005.50

11 $1006.04 $1005.98 $1006.09 $1006.05
Factor 12 $1006.60 $1006.53 $1006.65 $1006.60

1.0005479452 ,13 $1007.15 $1007.08 $1007.21 $1007.15
14 $1007.70 $1007.63 $1007.17 $1007.70
15 $1008.25 $1008.18 ,$1008.33 $1008.25
16 $1008:80 $1008.73 $1008.89 $1008.80
17 $1009.36 $1009.28 $1009.45 $1009.35
18 $1009.91 $1009.83 $1010.01 $1009.90
19 $1010.46 $1010.38 $1010.57 $1010.45
20 $1011.02 $1010.93 $1011 ..1'3 $1011.00
21 $1011.57 $1011.48 $1011.69 $1011.55 THRESHOLD
22 $1012.12 ,$'012.03 $101.2.25 $1012.10 PASSED
23 $1012.68 $10'12.58 $1012.81 $1012.65 HERE
24 $1013.23 $1013.13 $1013.37 $1013.20 l1li(

25 $1013.79 $1013,68 $1013.93 $1013;76
26 $1014.34 $1014.23 $1014.49 $1014.32
27 $1014.90. $1014.78 $1015.05 $1014.88
28 $1015.46 $1015.33 $1015.61 $1'015.44
29 $1016.01 $1015.88 $1016.17 $1016.00
30 $1016.57 $1016.43 $1016.73 $1016.56
31 $1017.13 $1016.98 $1017.29 $1017.12

Table 8
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Table 8
Thus a pattern becomes established: after each $9.125, the 5/4 column

reverses direction, rounding up where it used to round down or vice versa.
The computer. doing a Ii ttle rounding of its own, will misbehave for any
mul tiple of $18.25, al though not as drastically as in Table 6. 'This now
explains the feature that we first noted with Table 2. The amounts here all
lie in the range between 5 x $9.125 (= $45.625) and, 6 x $9.125 (= $54.75)
'and as this is a "round-l~p" region. that ~s what we see.

Now look again at Table 1. Up to Day 7, the 5/4 rounding produces the
same resul t as rounding down. But 55 x $9.125 = $501.875 and this
threshold is crossed between Day 6 ($501.62) and Day 7 ($501.89). So now the
5/4 process begins to round up. and it continues to do so' till the end of the
table, ,because the next threshold ($511.00) is not reached before the end of
the month.

Finally, look at Table 8. Here I took the case P = $1000 and I had the
computer point o~t where. now. two thresholds had been passed.

As P gets bigger and bigger, the I ikel ihood of passing a threshold
increases. The number of thresholds to be found within a run of 31 days goes
up accordingly. This means that the patterns become less obvious and we get
a trend to the random behaviour noted in the first example - the one with
annual compounding.

You might like to explore the behaviour more. There is a lot more to
discover. When P gets bigger and bigger, how many thresholds do we expect
to see? What if we pass two thresholds in a day? How big would P have to
be for this to occur? What about three? And so on.

Finally. I should mention ,that these patterns occur because we are
taking powers of a factor only just a little bigger than 1. That is to say,

we are' looking at e:x:pressions of the form (l+c)N where € is a small
number. The smallness of € is, however, offset by the fact that we are
using quite high values of N, going up to 31 in our case.

The study of such ,expressions in these circumstances is precisely what
led to the study of e>"'Ponential functions. In particular. if we take
€ = l/N and let N get larger and larger. we approach the number e. the
base of the natural logari thms. Thus a study of compound interest leads
naturally to that elusive number.

In fact, one dollar, invested at 100% p.a., 'but compounding all the
time, produces e dollars at the end of the year. I did this with daily

compounding. One dollar, invested at 100%, compounded daily, gives

[ 1 + 3~ r6S

dollars at the end of the year.

Compare this with the value of e.

* * * * *

This is $2.71456....
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A heritage of the French revolution:

the long and tortuous history of the metre t

by S. Trompler

A universal measure of length taken from nature is. 'of all the good
effects which have come to us from the French Revolution. that
which cost us the least. and if this great change initially ran
into opposition this was solely because of an attitude of inertia
and laziness which always begins by ridicul ing new and useful
i.~eas.

Jean Baptiste Delambre

The need and the desire for a universal measure of 'length is very old.
The more people move from one place to another. the greater the inconvenience
of having different units of measure proves to be.

At the end of the 18th century uni ts of length and weight varied not
only from one country to another bu t equally wi thin each country from one
region to another.

CAESAR already sought to impose on Gaul the Roman laws of weights and
measures and arranged for the setting up of standard lengths and weights in
certain 'sacred places and punished severely the makers of false measures;
CHARLEMAGNE also established standard weights and measures. kept at the
Palais. Royal. and declared that identical measures should be used throughout
his empire. BU,t rebellious lords effectively annulled these decisions, each
one making it a 'point of honour to have his own units of measure.

Many different attempts have been made at establishing a uniform system,
but all foundered. We shall speak only of the most recent.

Two natural units of length co-existed in the second half of the 17th
century: the length of a pendulum with a period of one second and a fraction
of the length of a meridian.

Scholars were particularly attracted to the pendulum: its length is easy
to establish at any time and in any place. It would suffice to determine the
connexion between this length arid other units used. in·order to control and
define them.

The length of the terrestrial meridian, made in ancient times by
ERATOSTHENES, was made again and improved in 1670 by Abbot 'PICARD (he
measured the meridian arc between' Paris and Amiens). Abbot MOUTON was the

tTr~slated from Nath-Jeunes, No. 45, 2.1, 1989, pp.3-6. [Hath-Jeunes is a
Belgian journal. which began publication 10 years ago, and with which
Function has reciprocal translation rights.]
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first to propose a decimal division: he took a meridian length as starting
point and subdivided it until he found a manageable length; he called the
length of one minute of arc on the meridian" a milliare. This unit is the
nautical mile, known previously, but the idea of applying it to all meas~res

of length and from there extending it to surfaces and volumes was new.

The length of a pendulum which has a period of one second served as a
control.

But alas, in 1673 RICHER discovered that a pendulum with a period of one
second was shorter at Cayenne than· it was at Paris! "No universal pendulum,
no universal measure of length offered by Nature to man". exclaimed MOUTON.

LA CONDAMINE took up the torch. and it is he who is the true originator
of the metric system. Since the pendulum measure varies from place to place
on the earth's surface. it is necessary to fix a particular place.

" "

In 1747, he made his measurement at Quito. on the equator, and forged
there a bronze rod of the same length as the pendulum, and set it in marble
on which were engraved these words: "Hodel of a simple equinoxial pendulum
having 1 at ground level at Quito 1 a period of one second 1 prototype ofa
universal unit /of length; may it also be universal" (this rod is still in
place at Quito).

But he died in 1774 without his proposal for universality being accepted
and adopted. Next, mNDORCET took up the challenge, but he preferred
lati tude 45° because "Its situation Ln the middle. of countries where science
flourishes allows one to check the "standard length easily and also as often
as one wishes U

• The 45° parallel passes near to Bordeaux and in 1775 the
(government) Minister TURGOT ordered a start to be made.

Unfortunately a very accurate pendulum is needed and that of the
observatory was not working properly. By the time another had been
constructed TURGOT was in disgrace: once more the proJect was abandoned.

Was thi"s the .end of the attempt? No. TALLEYRAND elaborated a new
project for which he sought the collaboration of England. The reason for
this was that the Royal Society of London, established before the Paris
Academy of Sciences. would almost certainly not recognize any research
carried out without its involvement. Without England accepting the new
measure the hope for universality would fail. Moreover, the two
organizations had just collaborated in drawing up new maps of their countries
and England was thinking of reforming its own system of measure. This was
therefore the right time.

RIGGS MILLER presented TALLEYRAND's project, a little modified. to the
Chamber of Communes in 1790. taking as base the length of the London
pendulum. The French agreed. All was well set, but .... a squabble between
England and Spain, an ally of France. was threatening plans. England let
things drag and, after an election, RIGGS MILLER was no longer a member of
the Chamber of Communes. The project was buried once again.

However, Spain and the United States began to favour the enterprise. So
much the worse for England, France would act wi thout her and. in 1791. the
Academy of Science proposed a new measure based upon the terrestrial
meridian. The principal promoters were CONOORCET, LAGRANGE, LAPLACE, MONGE,
CX>ULOMB. DELAMBRE, LAVOISIER. What a collection of sages! How could one
fail to succeed with men so eminent!
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In 1792 DELAMBRE and MECHAIN set out to measure the length of the
meridian from Dunkirk to Barcelona. DELAMBRE wri tes: "HECHAIN measured the

length from Barcelona to Rodez as being 170,000 toisest. I counted the
length from Rodez to Dunkirk as being 380,OOOtoises".

But that was not all. The local inhabi tants place no confidence in
their efforts: "They recognised us, remembered that we had wished to place a
marker on the top of Hontjai tower, they led us to the top, they dragged us
across fields in teeming rain ... ".

Nevertheless the work advances. They are on the right path.

Alas. on 8 August. 1793. academies are suppressed. Happily. the
Temporary Commission of Weights and Measures continues functioning. But not
for long: LAVOISIER is arrested on 28 November. DELAMBRE recounts: "The
Commission have asked the Committee for Public Safety to allow LAVOISIER,
accompanied each ,day by a gendarme, to continue the work he has begun. Such
favours have been granted rather widely to much less celebrated men a.nd for
reasons more or less trivial."

The Commi ttee for Public Safety reply to their peti tion: "consicjering
how much being delegated an official task or given a mission contributes to
improving one's happiness, the government has decided that such tasks will be
given only to those worthy of trust because of their staunch support of the
Republic and their hatred for kings; with the agreement of the members of the
Committee of Instruction specially concerned with weights and measures, we
decree that BORDA, LAVOISIER, LAPLACE, COULOHB, BRISSON and DELAl1BRE cease,
starting from today, to be members of the Commission

Happily. revolutionary opinion evolves. those in command change and.
without awaiting the termination of these decrees (they will be annulled only
in 1798). the law of 7 April 1795 institutes a metric decimal system in
France. determines the nomenclature for the new units of length (metre). ,of
area (are). of volume (litre). and of weight (gramme); these units will be
subject to later change. and various standard units. starting in 1799. will
be constructed with increasing care for exactness . The defini tion of metre
will' vary several times and it. has been fixed since 1983 as the length

travelled in a vacuum by light in 1 of a second.299792458

Having come to the end of our epic on the metre. we can perhaps end with
the words of the unfortunate LAVOISIER: "Nothing greater, more simple, or
more coherent in all its parts has been devised by man."
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,t An ancient French measure of length 6 feet. (The foot was a measure of
length in both England and France in the 18th century.)
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