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We again, as we did in the last issue, reproduce an article from
Function of ten years ago. Graph theory, concerned with the kind of graphs
consisting of vertices and edges, discussed in this article, is of growing
importance in the uses of mathematics involving planning and decision making.
Marta Sved’'s article on fractals introduces a very recent development of
mathematics, one that enables mathematics to get to grips with interpreting
phenomena that had previously been found too irregular to be amenable to
adequate analysis.

The quotation from Truesdell about Leonardo da Vinci’s mathematical
training is an interesting one. Is your training similar to his?
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FRONT COVER - RUBIK’S CLOCK

Rubik’s cubef began life in 1974, made its public début in 1978 and by
1980 had spread across the whole world, selling to addicts young and old,
from cabinet ministers to five-year olds. FErnsé Rubik, a Hungarian architect
and teacher of design, followed his cube with Rubik's hinge, marketed in 1985
under the name of “Rubik’s magic puzzle: link the rings”. In 1988 Rubik’s
Clock appeared. Neither the hinge nor the clock has developed a band of
addicts of a size comparable to those who joined the cube craze. This is
almost certainly because the hinge was found easier than the cube. The cube
was an Everest puzzle: once beyond the lower slopes the difficulties seemed
insuperable, the challenge could not be rejected. The clock was again found
easier than the hinge; but it still remains one of the best puzzles around. 3

Each of the puzzles is concerned with permutations, and each permutation
of a system realises a symmetry of that system. The part of mathematics that
deals with such symmetries is called group theory. And mathematicians were
soon writing numerous papers explaining the symmetries of the cube and the
hinge in terms of the groups of permutations that the allowed manipulations
of the cube (and the hinge) generated.

Ve explain below how the clock puzzle can be solved. Effectively we are
using group theory, but we shall not mention this again in what follows.
What we show is that the time on each clock can be set independently of the
times shown on the other clocks, with the exception only of the pair of
clocks at each corner of Rubik’s Clock. The corner clocks are so corstructed
that any move of the hand on a face of a corner clock is accompanied by the
same move of the hand on the clock on the same corner on the reverse side:
the hands of ‘the two clocks at a corner are rigidly connected, so that when
one moves clockwise the other moves, when viewed from the other side, the
same distance anti-clockwise, and vice versa.

The front cover shows a picture of a face of Rubik’s Clock. On the
reverse side is an identical set of nine clocks, differing only in their
colouring. In the picture the hand of each clock points to 12. -Move the
control wheels at the four corners and also from time to time press one or
more of the four buttons down, or raise them up again, and -the clock hands
will quickly begin to point to apparently random times, different on each
side. The problem is then to return all the <clocks to their original
position where all eighteen hands point to 12.

If someone gives you the Clock with the clock hands pointing all over
the place, you will have a harder task trying to solve the problem than you
will have if you start with them all pointing to 12, and then experiment by
using the control wheels and varying the position of the buttons carefully to
find out the effect of each possible operation.

T1-"01‘ further information see the international best-seller Masfering Rubik’s
Cube by Don Taylor, 1980, published by Book Marketing Australia P/L, 195
Bridge Rd., Richmond, Victoria, 3121.
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- So let us suppose that the Clock is in what I shall call its “home”
position, i.e.. in which all the clock hands point - to 12, and proceed to
analyse the possible operations that can be performed using the four control
wheels and the four buttons. '

To facilitate the description it will help to label the buttons, the
clocks and thé control wheels.

Upper face

Figure 1

As shown in figure 1, label the control wheels a, B. v, &§. the corner
clocks I, II, III, IV, and the other clocks .1, 2, 3, 4, 5, the clock in the
centre being clock ‘5. This is for the upper face. For the reverse side, the
lower face of the Rubik's Clock, label the clocks below clocks 1. 2. 3, 4, 5
by 1, 2, 3", 4, 5, respectively (see figure 2). Examining the action of
the control wheels in the various positions of the buttons will quickly show -
that this gives us enough labels to cover the various clock-hand changes that
can occur: each pair of corner clocks rotates its hands in unison, and it is
possible to have different times showing on any other pair of clocks.

The buttons have been labelled A, B. ¢, D when in the positions shown
in figure 1, that is, when they have been pressed upwards to project outwards
from the upper face to the maximum extent. Lower case letters a, b, c, d,
respectively, will be used to label tlie buttons when in their other possible
position, i.e. pressed down so that they project downwards to a maximum
extent. Thus the sequence AbcD will indicate that buttons A and D are
up and buttons b and c¢ are down. [It is in fact possible to place one or
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Lower face

Figure 2

more of the buttons carefully in a half-way position, neither up nor down,
(like the Grand Old Duke of -York's ten thousand men, in the nursery rhyme).
1f this is done then the result (on my Rubik’s Clock) when a control wheel is
operated is to cause the simultaneous occurrence of what would have happened
if all the half-way buttons were up and what would have happened if they were
all down. Placing the buttons in this neither up nor down position needs

delicate positioning and is almost certainly not intended to be part of an

allowed operation on the Rubik’s Clock. We shall ignore such possibilities
in what follows.]

Before we can describe the operations possible upon Rubik’s Clock, we
need a notation to describe their effect on the clocks.

If 1clock number ‘1 has its hand moved one hour clockwise we denote ‘this
by (1)', if by one hour anti-clockwise we denote it by (1) .oif it is

moved by 2 hours clpzckwise denote this by (1)2, and if by 2 hours
anti-clockwise by (1)™; and so on: if n 1is a positive integer, then (1)°

denotes a movement of clock number 1 by n hours clockwise, and ™
denotes a movement by n  hours anti-clockwise. Similarly for clocks
numbered 2, 3, 4, 5, 1/, 2, 3, 4, 5 ; thus (3')_2 denotes a movement by
clock number 3’ by 2 hours anti-clockwise. . ‘
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We treat the corner clocks slightly differently: if n is a positive
integer then (I)” denotes that clock I, looked at from the upper face, has
moved n hours clockwise, and that simultaneously (for this necessarily
happens) that viewed from the lower face the other side of clock I has moved
n hours anti-clockwise.

What happens when a control wheel is turned depends on the position of
the buttons. Each button can be either up or down; so there are
2 x2x2x2 =16 possible positions for the buttons. Thus A4bed denotes
the button position where the button in the top left corner is up and the
other three buttons are down.

We assume in our description of the operations that we have selected one
face that we shall consider as the upper face, the other being the lower
face, and that this choice is fixed.

Experimenting with the buttons and the control wheels shows that we can
perform the following operations upon the clocks. . Denote by «, 8, v, § a
turn of control wheel «, 8, vy, §, respectively, through one hour, i.e. 30°,
clockwise. :

Button position Control wheel Effect
Abcd @ (M4 (5)*
Abed B or v or § anrammtavytan) e )y @)t

()'(s)™?

ABed a or B S (MHPanini@)@e)

ABed v or § (I ) @)y @) i)t

Abcd @ or v (DYDY (3) (4) ' (5)*

Abcd gors ant(mvy*ay ey st
()

ABcd @ or g or v (AN IID1)(2)*(3)(4) (5)}

ABCd 3 (I3 )Y'(e) (s ) )

ABCD eor gor yor 5§ (IMIDYIIN)'(IV)*(1)'(2)*(3)*
(1)) ,

abed eor Bor yor § (D'AD*IID*aV)(1)2)?

CONCONCON
If we turn a control wheel through n hours, i.e. through n x 30°,
clockwise, then this has the effect of just repeating n ‘times one of the
operations listed above. Thus, with button position ABCd and wheel §

moved through n hours, 1 e. w1th the operation A4BCd §". the effect on the
clocks is (IV)"(3") (4 )™ (5 )™

We have used above 6 button positions. There are 10 more: 3 more where
one button only is up; 3 more in which 2 adjacent buttons only are up: one
more in which another diagonally opposite pair of buttons are the only
buttons up; and 3 more in which three buttons are up. It will be found, by
experimenting with the Rubik's Clock, that the effect of control wheel
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movements for these other button positions is just what we would expect if
each of the control wheels behaved exactly as each -of the other control
vheels, taking into account their relative positions. Thus aBcd g has the
effect (II)'(1)(2)'(5)%: etc.

Now notice that if one operation has the effect (x)" on clock number
x and if another has the effect (x)” on that)ﬂ::lock, then following one by
the other, in either order, has the effect (x)™.

So now we have described all possible operations, and can, using the
notation we have introduced, write down the effect of a sequence of
operations performed on the clock.

We begin by showing that we can change any of the clocks by one hour
clockwise, while at the same time leaving all other clocks unchanged in
position.

A corner clock Two operations suffice: for clock I ABCD 8 together
with aBCD /3'1. These two produce the effects
(DI I (IV)H1)'(2)*(3)*(4)'(5)" and
I In a0 @) E) @ e
respectively. Combined their effect is (I)l.

The centre clock, Five operations suffice:
upper face: 5 Abed a ¢ (1)1(1)1(4);\(5)1
~abcd v : (II1)Y(2)*(3)(5)"
aBeD o' (DI 1)) 3 ) ) (5 )}
ABCD ot ¢ (I)THID) NIIT) (V) H(1) N2) i3yt
@)
abed a : (I)'(IDNIID'(IV) (1) N2 ) (3 ) Ha )
(5')™
The effect of these five operations is just (5)1; i.e.
the central upper face clock is moved clockwise by one
hour and all other clocks remain where they were. Notice
(check it) that the five operations can be carried out in
any order to achieve the result (5)1. To calculate the
effect of the five operations we just add up the indices
occurring for each of the clocks, interpreting a total of
0 as indicating no change. Thus the .sum for clock (5)

is 1+1-1=1; and for clock (III) is
1-1~-1+1=0, etc.

A side clock, Six operations suffice: )

upper face: 1 abcd 4t : (III) M (IV) ™ (2) ™(3) }(4) (5) !
apcd « : (INIID'1)'(2)'(3)' ) (5).
The effect of these two is (I)l(IV)—l(l)l. Now use the
operations already given to move clock I one hour back

and clock IV one hour forward. The result is (1)1: the
clock number has been moved forward by one hour.
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So we have now solved the Rubik’s Clock problem! Move each of the
fourteen clocks I, 11, III, IV, 1, 2, 3, 4, 5, 1", 2, 3, 4, &5,
separately, to their home positions, from whatever initial position they are
in.

¥We have also shown that every possible position of the fourteen clocks
can be reached: so there are 127 = 1,283,018,464,548,864 distinct sets of
times the clocks can take up. :

Of course the way to solve the Rubik's Clock problem in practice is by a
much quicker method than by fixing the time of each clock independently.

I have a method that will move the clocks from any starting position to
the home position, where all hands point to 12, taking at most 20
operations, and usually fewer than this. [In counting. these 20 operations, I
count each rotation of a control wheel through whatever angle, for given
positions of the buttons, as a single operation.]

= ok ok ok ok

MONASH UNIVERSITY OPEN DAY MATHEMATICS COMPETITION

The Open Day was held on 6 August, 1989. ' Some 155 secondary students
took part in the competition. The results of the qualifying test, of 8
written questions (in 4 different versions), were: :

Score (o] 1 2 3 4 5 6 7 8 Total
Students 20 39 40 29 15 6 4 2 0 155

Some questions were at Year 12 level, so it is not surprising that
students from lower years might have had trouble. However, two prize winners
were actually in Year 11. -

The 6 students who achieved scores of 6 or 7 in the qualifying test, and
competed in an oral final, were:

Russell Coker (Yarra Valley, Year 11) 1st.
Jiun Lai (Monash High, Year 12) 2nd.
Abhik Sengupta (Melbourne High, Year 11) 3rd.
Steven Siew  (Syndal High, Year 12)

Colin Banks (Glen Waverley High, Year 12)
Chris Loeliger (Murtoa High, Year 12).

Congratulations on some very fine performances! Prizes to each of a free
subscription to Function, 1990. The top three also won prizes of $20, $10,
and $5.
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Ten years ago

THE TUTTE GRAPH
D.A. Holton, University of Otago

The path to the proof of the Four Colour Map Theorem is paved

with a large number of false “proofs”. The diagram below
(figure 1) shows a graph which arose in the course of one of these
attempts. . ' ‘

Figure 1



For a background to the problem, see John Stillwell's article
in Function, Vol. 1, Part 1. The idea, of course, is to prove that
the regions of any map can be coloured with four or fewer colours,
so that no two adjacent regions have the same colour. This can be
converted into a graph theoretical problem by taking a dot to
represent the capital of each country and joining two dots by a
line if the corresponding countries have a common boundary. FEach
dot of the resulting graph can then be coloured by one of four or
fewer colours, so that no two joined dots have the same colour, if
and only if the original map can be coloured in four or fewer
colours. For convenience, this graph theoretical formulation was
the one used by Appel and Haken in their proof of the Four Colour
Theorem.

In 1880, Tait observed that in order to prove this Four Colour
Theorem, it would be enough to show that the lines of every cubic,

3~connected planar grapht can be bcoloured in 3 colours so that no
two lines with the same colour meet at a given dot.

Tait claimed that, clearly, every cubic 3-connected planar.

graph had a hamiltonian cycle, that is that there is a route along
the lines of the graph which starts and ends at one dot and which
passes through all the othér dots once and only once.

Now if a graph is cubic it is not difficult to prove that it
must have an even number of dots. Should the hamiltonian cycle
exist, its lines could then be coloured alternately in two colours.
The remaining lines could then use the third colour. So if Tait
~was right about these cubic 3-connected graphs having hamiltonian
cycles, the Four Colour Theorem would surely follow.

For a long while people puzzled over Tait's hamil tonian claim.
It waited, however, till 1946 before Tutte produced the graph of

figure 1 which finally showed that not all cubic 3-connected planar

graphs were hamiltonian.

But how do we prove that the Tutte graph is not hamiltonian?

One way, of course, would be to illustrate, by exhausting all
possibilities, that there is no cycle through every point of the
graph. This is enormously tedious.

Is there a characterisation of hamiltonian graphs? If there
is, then there is a theorem that says “G is hamiltonian if and
only if ’blaa’”. All we need to do then is to test Tutte's graph.
If it didn't have the property °'blaa’ then we would know that it
was not hamiltonian.

Unfortunately, despite a great deal of effort, no-one has yet
come up with this magic property 'blaa’. If and when they do they

t A cubic graph is one in which 3 lines come in to every dot
and a graph is 3-connected if it takes the. removal of at least 3
dots, and their incident lines, to discomnect the graph. A planar
graph is one that can be drawn in the plane so that no two lines
cross.

105
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will be accorded instant mathematical fame. In the meantime we
have a graph at hand. What to do?

Well, fortunately we have some pa'r_tial ’blaa’ results. For
instance, Tutte himself has proved that every 4-connected planar
graph is hamiltonian. Unfortunately, Tutte’s graph is not
4-connected. We can find three vertices whose removal will

~ disconnect the graph. So that test is out.

Another partial ’blaa’ comes from two Russians - Kozyrev and
Grinberg. Their result says that if G is planar and hamiltonian
with n dots, then

i}_jz(i - 2)(f1 - f i) = 0.

G O(£F ) + HESE ) + 2068 ,) + .+ (02)(£7F ) = 0.

To explain the fi and the f’© -look at the planar graph of
figure 2, which has the hamiltonian cycle 1, 2, 3, 4,..., 15, 16, 1.

10

Figure 2

This cycle divides the plane in two. Various lines of the graph
divide the inside of the cycle into regions. One region is formed
by 1, 2, 14, 15, 16, another by 3, 4, 7, 8, 11, 12. The term £

- 1

is the number of such regions inside the hamiltonian cycle formed
by i 1lines. Hence, for the graph in figure 2 we have f2 =0,

f3 =0, fA =2, f5 =2 and fé =1. The £’  term tells us the

number of regions formed in a similar way on the outside of the
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cycle. So we see that f’a =1, f'“ =1, f’s =1, f’6 = 2.
Substituting these values in the Kozyrev-Grinberg expression

L-2)(f - 1)

i=2

we get

(3-2)(0-1) + (4-2)(2-1) + (5-2)(2-1) + (6-2)(1-2)

which is indeed zero.

Now Tutte proved his graph was not hamiltonian, but a nicer
proof was given by an amateur mathematician, Watts, in 1972. This
proof uses the Kozyrev-Grinberg result. It is a little too long to
include here but the basic idea is to assume that Tutte’s graph has
a hamiltonian cycle and use the Kozyrev-Grinberg equation to obtain
a contradiction. The complete proof can be found in the book
“Mathematical Gems”, by R. Honsberger (published by the American-

Mathematical Society, 1974). In the same book the Kozyrev-Grinberg
theorem is also proved. ’

Forlmore results in the area of hamiltonian gréphs you should
read L. Lesniak-Foster: “Some recent results in hamiltonian
graphs”, Journal of Graph Theory, Vol. 1, 1977, 27-36.

® % ok %k ¥

Comment, from D.A. Holton, ten years later

A few things have happened in the area of hamiltonian graphs
and planarity since “The Tutte Graph” appeared in Function.

‘ However, we appear to be no closer to a “nice” proof of the Four
Colour Map Theorem.

Figure 3
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One comment on planar hamiltonian graphs may be of interest.
Look at the part of the Tutte graph shown in Figure 3. You will
(eventually) see that if you want to enter at one of the vertices
1, 2, 3, pass through all the unnumbered vertices once each and
exit at one of the other vertices 1, 2, 3, then you will have had
to have entered or exited through 2. There’'s no way of coming in
through 1 and out through 3, or vice versa.

This should help you to find another proof of the fact that

" the Tutte graph is non-hamiltonian.

If you place the part graph of Figure 3 as shown in the graphs
of Figure 4, you’ll find that you have six non-hamiltonian graphs
on 38 vertices. The placement is done by blowing up each of the
vertices in Figure 4, denoted by a large black dot, into the graph
of Figure 3, and letting the edges labelled 1, 2, 3, at each such
vertex, terminate, in the blown-up diagram, at the vertices
labelled 1, 2, 3, respectively, in Figure 3. It is now known that
these are the only non-hamiltonian 3-connected cubic planar graphs
on 38 vertices and that all 3-connected cubic planar graphs.on 36
or fewer vertices are hamiltonian. -

It is now unlikely that there exists a simple ‘'blaa’ property
for hamiltonian graphs. Though, of course, in 10 years’ time I may
be proved wrong.

Figure 4

L
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ON FRACTALS
Marta Sved, University of Adelaide

Classical geometry as handed down to us from mathematicians of ancient
Greece, and pursued through many generations until our own days, deals with
things like lines and planes, circles and spheres, triangles and polygons,
also with more exciting objects, like cylinders and cones, giving ellipses,
hyperbolas, parabolas as their plane sections. Regular polygons and regular
polyhedra hold their own fascination.

Though geometry offers a rich and endless variety for our studies, its
objects are idealisations of things which occur in our every-day experience.
Some of the objects occurring in nature show still remarkable, though .more
complex geometrical structures, like we see in.waves, eddies of water,
ripples of sand, snow flakes, shells, clouds, only naming a few, while it is
hard to find regularity in rugged shore-lines, faces of rocks, or other
things which appear, at least on first sight, random, irregular, fragmented.

In the 1970’s, it was the French mathematician Benoit Mandelbrot, who
was the first to create a connection between complex structures occurring in
nature, and structures emerging from earlier mathematical studies.
Considering the problem of finding accurately the length of a shore-line, he
came to the conclusion that the problem has no satisfactory answer as long as
we apply to it our ordinmary notions of measuring, for the shore-line may
appear straight from a certain height, but getting nearer, we observe some
inlets and promontories, and getting still nearer, we find that these have
their own wrinkles and folds, and continuing the approach to the individual

grains of sand, and resorting to a microscope. the process of measuring the
length never ends.

Figure 1, picturing the “Koch Island”, shows an idealised model of the
situation. The figure shows stages of construction, beginning with an
equilateral triangle, representing “straight” shores of the island. Next we
divide each side into three parts and construct on the middle parts
equiangular triangles as “promontories”. In the next step each of the

individual smaller triangles is given the same treatment, contihuing
(theoretically) to infinity. ‘

Figure 1
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Mandelbrot coined the word “fractal” to characterise such “fragmented”
objects. In FEuclidean geometry we measured length (say) in millimetres {(mm),
areas in square millimetres (mm“), volumes in cubic millimetres (mm ), and
talk about lengths having dimension 1, areas dimension 2, and volumes
dimension 3. When we compare a line-segment with our unit line segment, we
say that its length is ¢, if we can place exactly ¢ units to cover the
segment. When on the other hand we want to compare a square of side-length
¢, with the unit square, then we must place £  unit squares to cover our
square, and for a cube of edge £ we need £ unit-cubes to fill up the
cube. So the dimension expresses an index: 1 in the case of a length, 2 in
the case of an area, 3 in the case of a volume. In each case we had simple
objects and compared them with similar unit-objects. Now Mandelbrot observed
that although very small stretches of a shore-line (or you may think of the
pictures of the Koch Island) are similar to larger stretches, comparing their
lengths with some given measuring unit does not lead to a sensible answer.
He drew the bold conclusion that the dimension of such objects is not an
integer, like that of a straight interval, or a square, or a cube, but must
be given a different definition. He found that if such configurations are
assigned appropriate dimensions, which are not integers, then measuring them
becomes meaningful. In his earlier writings he gave the name fractal to
configurations of which the dimension was not an integer.

Without going any deeper into the mathematics of fractal dimensions, let
us look at some examples of fractal configurations, which come from
mathematical theories. Modern computer graphics applied to some mathematical
procedures produce amazingly beautiful pictures such as shown in figures 2
and 3.

Figure 2 Figure 3
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The book:
The Beauty of Fractals, by H.O. Peitgen & P.H. Richter (Springer-Verlag)

offers a beautiful collection of such configurations appearing on computer
screens. Many of these are in colour. - Without understanding the mathematics
behind it, you can still get much enjoyment looking at these reproductions of
pictures which could grace any exhibition of abstract art. We recommend that
you get hold of this book from some library or a friend who has bought it,
and look at the pictures.

Figure 4 shows a simpler picture. You can amuse yourself by producing
an approximate cardboard copy. The figure is called the Sierpinski gasket,
named after the Polish mathematician who produced it before the birth of
fractal theory. The figure is one which arises after an infinite sequence of
repeated operations, of which you may try a few.

Figure 4

Begin with a large equilateral triangle as shown on figure 5. Divide
each side into two equal parts, joining the points of bisection. Now cut out
the shaded middle part, cheating a little at the corners, so that the figure
should not fall apart. Repeat the procedure on the remaining three smaller
triangles. Keep repeating carefully as long as you can. You obtain a
fragile object, if not yet a fractal.
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Figure 5

Now comes the surprise, from a field of mathematics that you would not
suspect that it has anything. to do with all this. Write down the first 16
lines of the Pascal triangle of -binomial coefficients, which you could copy
from mathematical tables, or produce quickly yourself using the formula

()= (%) (&)

You obtain
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 3B 35 21 7 1
1 8 28 56 70 56 28 8 1
1 9 36 84 126 126 84 36 9 1

1 10 45 120 210 252 210 120 45 10 1

Oops, I am running out of space, and find it bard to print out all 16 lines
on this page. : -

But it does not really matter, for what I want to do next is to put a
| instead of each odd number, and a dot instead of each even one.
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I obtain now

You may have noticed that I have produced now all 16 lines without really

referring to my original Pascal triangle, because instead of the Pascal
addition formula I use the simple rule:

even + even = even.
even + odd = odd
odd + odd = even.

Now look at this figure and your Sierpinski gasket!

You may find a little more'about even and odd binomial coefficients if

you get hold of an older issue of Function (Vol. 11, 2, April 1987) and look
at the article

“What are the odds that [ Z } is even?”

However, you could get another fractal figure out of your original Pascal
triangle, if you divide each of the coefficients by 3, and write down the
remainder of the division in the place of the original coefficient. Now try
to produce this new pattern to 27 rows. '

Finally, for a little mathematical exercise, try to use your figure to
determine the following:

1f n and k are any positive integers, under what condition is
]
[3’; | a multiple of 37

* k % k¥ Xk
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MY DENTIST’S CLOCK
G.A. .Wafterson, Monash University

I was enduring the filling of some teeth the other day., when I looked
across at the clock on the 'dentist’s surgery wall. What I saw surprised me.
Had my eyes or brain been damaged by the injections in my gums? The clock
looked decidedly wonky.

Figure 1

I kept looking. The clock still looked wonky. The placement of the pivot of
the hands, away from the centre of the circular clock face, meant that the
hour numbers on the face had been displaced from their normal positions. The
numbers were, of course, still 30° apart as the hour hand turned about its
pivot. But that meant that they were unevenly spaced around the-
circumference of the face. The morning hours looked as if they would be slow
to get through, while the afternoon hours looked as if they would go quickly!

Suppose that we take the centre of the clock face as origin, 0, and the
radius of the clock face as 1 (our unit of measurement). Suppose that we
introduce the axes Ox and Oy in the usual way, with 4 = (a.0) as the
pivot position for the hands on the x axis.

Consider the hour number, N, one of the numbers 1,2,3,...,12.



115

AY

Y

Figure 2

In figure 2 the angle 4°, between the vertical (12-0°clock) position
and the hour number N, has to be

8° = N x 30°.
The angle o;;N, 4° say, is given by
¢ =360 - 90 -~ 4.
Consider the triangle AOAN, in figure 3.

0 a A
n° #°

Figure 3
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The “sine rule” says that for the three angles, ¢°, ¢°, and 1° as in
figure 3, we have

_L - _1_ v— _AN_.
siné ~ siné = sinnp’

We v;ish to find #n, but as AN is not yet known, we must make use of -the
first equation to yield

siné = a sing = a sin(360-90-4)

= ~a sin(90+6)

= -a cos(Nx30),
so that

€% = sin '(~a cos(Nx30)).
Further, because
n+ &+ 6§ =180,
then
n° = 180° — ¢° - £°
= -90° + N x 30° - sin-l(—a cos (Nx30)).

As an example, if we take the pivot A to be half way along the clock
face radius, then a = %, and to the nearest degree, 5  is given in the
following table for the various hours, N.

N 1 2 3 4 5 6
n -34 -16 0 16 34 60
N 7 8 9 10 11 12
n 94 135 180 224 266 300

A table like this allows us to see that the hours 3 and 9 are, of
course, in their usual positions on the clock face, but that hours on either
side of 3 ‘differ from 3 itself by about 16° (more accurately, by
15.52°), using O as centre. On the other side of the face, the hours

eitheg‘ side of 9 differ from 9 by about 44° (more accurately, by
44.48").

If only the afternoons did speed up like the clock suggests!

X %k ok %k %k
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'3-D PYTHAGORAS
Aidan Sudbury, Monash University

Nearly everyone has heard of Pythagoras' theorem: the square of the
hypotenuse of a right-angled triangle is equal to the sum of the squares of
the other two sides. 1In fact it is so famous that there are some truly
dreadful puns based on it — the squaw on the hippopotamus ... but this
article is in far too good taste to mention things like that. However, what
is not so well-known is that there is a simple generalisation of the theorem
to 3-dimensions. Consider the following figure:

z

X

Here Ox, Oy and 0z are three co-ordinate axes in 3-dimensions forming a
cornper at O just like the corner of a room. XYZ is a triangle, so to
speak, resting in the corner. The generalisation of Pythagoras' theorem is:

(Area A xvz)* = (Area 4 0vZ)> + (Area A 0zx)* + (Area A 0xY)°.
This is quite easy to prove if you know the formula for the area of a

triangle that was discovered by Hero of Alexandria in the 1st century, A.D.
If a triangle has sides of length a, b, ¢ then its area is

A = /(s(s-a){s-b)(s-c)
vwhere s = (atb+c)/2 1is the semi-perimeter. (For a proof of Hero's formula
see Editor’s comment at end.) Now you should be able to show that
s(s-a)(s-b)(s-c) = %{2bzc2 + 2c%a% + 22%% - &' - b - o). *)

Then, if you put OX = x, OY =y, OZ = z, so that the sides of XYZ are

/732, fZA%° and /i (by 2-D Pythagoras), then you can obtain after
some simplification
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(Area A XvZ)?

"

—6(4” + 42°%° + ax’y’)

e B - )

(Area 4 0Yz)® + (Area A 0zx)? + (Area A 0xY)°.

"

It is possible to generalise Pythagoras’ theorem to spaces of any
dimension, n, but it is very hard to visualise what it means for n > 3.

Editor’s comment : Hero's formula follows from the formula
A = %bc sin A, by eliminating sin A using the cosine formula
a® = b® + ¢* - 2bc cos A. Thus

A = %bzcz sin’a = %bzcz( 1-cos?4)

1,2 2 bi+c?-a)?
Kbc(l" [ 2bc ])

i_s(ébzcz_(bz_*cz_az)z)

which easily reduces to the right-hand side of equation (*), above. On the
"~ other hand, you can derive Hero’'s formula directly as follows:

AZ

= 5

15((2bc) = (b%+c*-a%)?)

(2bc+b +o?-a )(2bc—(b +oP=a ))

»-t»al

((b"C) -a”) (a*~(b-¢)?)

§§(b+c+a)(b+c-a)(a—(b-c))(a+(b—c))

i

Tslatbte) (brc-a)(cta-b) (a+b-c)

—6-25 (25-2a)(2s-2b)(2s5-2¢)

i.e. A% = s(s-a)(s-b)(s-c).
which is Hero's formula.

* %k ok & %
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QUATERNIONS AND THE
PRODUCTS OF TWO VECTORS

J-A. Deakin
Goulburn Valley College of TAFE

“Quaternions” were originally introduced into mathematics as a
generalization of the concept of a complex number by the Irish mathematician
Sir William Hamilton. We define a quaternion Q to be the "hypercomplex’
number '

Q=a+bi+cj+dk
where a, b, ¢, d are real numbers, and i, J. k are quantities having the
properties
R A S |
ij=k, jk=1i, ki = j (4)
Jji =k, kj = ~i, ik = —j

Geometrically we could interpret the quaternion Q as being a
“4-dimensional” vector, with real component & and quaternion component
bi + cj + dk. The norm, or length, of ¢ is )

IQI = /22 +——b2—+ cZ-—+ dZ
and the conjugate of Q is the quaternion

Q=a-bi-cj- dk.

2 2

Also Q0 =00 = a* + b2 + &% + 4&°.

If we consider the ‘pure’ quaternions, i.e. quaternions with no real
components :

Q1 = all + b1J + clk
Q2 = azi + sz + czk
and find the product, we obtain
QQ, = (ali +bj+ C1k)(azi +bj+ czk)

22 s s :
=aali +abij+ acik
12 12 12
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. .2 ..
+ bxaz-]l + blbz_] + blcz_]k
. . 2
+ Clazkl + clbsz + clczk
= —(alaz * b1bz * clcz)

+ (blc2 - bzcl)i - (alc2 -~ azcl)_] + (z~zlb2 - azbl)k

=—-(aa +bb +cc)+ i j k
172 12 172

a b ¢

171

a b ¢

2 2 2

Let u, v be the vectors

i+ b

al
Lo

+
it}

+
0
Px £

e
"

FroN

v=ai+hb
~

e
o

Then the scalar product

urv=aa +bb +cc
172 172 172

~ ~

is minus the real part of the quaternion product Q1Qz and the vector

product
uxv=|1i j k
~ o~ ~ Ao~
a b ¢
11
a b ¢
2 2 2

is the quaternion part of the quaternion product Q1Qz'

Hamilton was impressed with the possibilities for the application of
quaternions to physical problems, and indeed was so enthusiastic that one
Sunday when walking with his wife (16 October 1843), he carved the
fundamental formulae (4) of his quaternion algebra in the stone of a bridge

in Dublin, which can still be seen today®’ .

Nevertheless, the use of quaternions as such was relatively short-lived,
and it was. the genius of the American mathematician/physicist/chemist, J.
Willard Gibbs, who identified the real and quaternion parts of the product of
two ‘pure’ quaternions with what we now call the scalar and vector product of
two vectors.

Ed.: I am told that it is no longer visible; weather and time have taken
their toll.
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The algebra of vectors was developed in the form we use today by Gibbs,
and it is of interest that the mew vector algebra and its application to
elementary geometry and mechanics was popularized by the Australian
mathematician, Weatherburn, then Professor of Mathematics at the University

of Western Australia, in his two standard textbooks?'®® _— one case of an

important topic of the upper secondary school curriculum to which an
Australian mathematician made real contributions.

References

(1) E.T. Bell, Men of Mathematics, New York, Simon & Schuster, 1986, p.360.

(2) C.E. Weatherburn, Elementary Vector Analysis, London, G. Bell & Sons
(various editions).

(3) C.E. WVWeatherburn, Advanced Vector Analysis, London, G. Bell & Sons
(various editions).
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Why Mathematics Works

Everyone knows that if you want to do physics or engineering, you had
better be good at mathematics. More and more people are finding out that if
you want to work in certain areas of economics or biology, you had better
brush up on your mathematics. Mathematics has penetrated sociology,

.psychology, medicine, and linguistics. Under the name of cliometry, it has

been infiltrating the field of history, much to the shock of old-timers. Why
is this so? What gives mathematics its power? What makes it work?

One very popular answer has been that God is a Mathematician. If, like
Laplace, you don’t think that deity is a necessary hypothesis, you can put
it this way: the universe expresses itself naturally in the language of
mathematics. The force of gravity diminishes as the second power of the
distance; the planets go around the sun in ellipses; light travels in a
straight line, or so it was thought before Einstein. Mathematics, in this

view, has evolved precisely as a symbolic counterpart of the universe. It is

no wonder, then, that mathematics works; that is exactly its reason for
existence. The universe has imposed mathematics upon humanity.

Philip J. Davis and Reuben Hersh: The Mathematical Exper;’.ence,
p. 68, Birkhiauser, 1981, Boston.
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A SPY STORY
A. Liu, University of Alberta, Canada

A message was to be sent to agent Double-O Zero. Just as a courier was
about to be dispatched, another agent staggered into headquarters. He had
been fatally wounded, but managed to reveal that there were two enemy agents
in the courier-pool. Unfortunately he died before naming them.

“This has serious repercussions”, lamented the Chief, “but at the
moment, we must get this message to Double~-O Zero. What can we do?”

“We can send three copies of the message by three couriers”, offered an
aide. “This way, Double-O Zero is bound to get one.”

~ “That will not do”, said the Chief. <“It is essential that the message
does not fall into enemy hands.”

“We can break up the message into several parts”, another aide
suggested, “in such a way that it is unintelligible unless all parts are
available. We make three copies of each part, and send several couriers.
Each courier carries several parts, and no duplicate copies.”

“That sounds all right”, said the Chief, “but we must still make sure
that no two couriers carry all the parts between them. Can someone come up
with a practical scheme?” '

The aides conferred for a while. Then one of them recalled a diagram
she had seen in a mathematics book. She drew a copy for the assembly.

A

Cc F

“This diagram has seven points and seven lines”, she pointed out.

“I assume”, remarked another aide, “that you consider the circle passing
through B, E and G as a line. I beg your pardon. I use the term ’line’

very loosely here. Anyway, each line passes through three points and each
point lies on three lines.”

“§hat is the relevance of all this to our current problem?” the Chief
wanted to know.
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“We can break up the message into seven parts, each represented by one
of the lines. We can dispatch seven couriers, each represented by a point.
A courier carries a copy of a part of the message if and only if the point
representing the courier lies on the line representing the point.”

“Very good”, the Chief nodded with approval. “Since each part is
carried by three couriers, Double-O Zero will get all the parts. Since each
courier carries three parts, no two couriers carry all the parts between
them. Implement this scheme immediately!” ’

Exercises

1. (2) If seven couriers are to be dispatched, show that we can break up
the message into only five parts. -

{b) Prove that it cannot be done with four parts.

2. (a) If the message is to be broken up into seven parts, show that we
can dispatch only six couriers.

{b) Prove that it cannot be done with five couriers.

3. (2) What is the minimum number of parts into which the message must be
broken up?

(b) What is the minimum number of couriers required in this case?
4. (a) What is the minimum number of couriers that must be dispatched?

{b} What is the minimum number of parts required in this case?

*® ok ¥ x %

Astrology

The role of astrology in the development of mathematics, physics,
technology, and medicine has been both wisrepresented and downplayed;
contemporary scholarship has been restoring proper perspective to this
activity. We are dealing here with a prescience and a failed science. It
can be called a false or a pseudoscience only insofar as it is practiced with
conscious deception.

Philip J. Davis and Reuben Hersh: The Mathematical Experience,
p. 101, Birkhauser, 1981, Boston.
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Fifteenth Century Mathematics Teaching -
A Comment on Leonarde da Vinci’s
Training in Mathematics

Boys [like Leonardo da Vinci] from the intermediate
stream — the “semilearned”, we might call it - attended
“abacus schools” from the age of seven to twelve, more
or less. Their instruction in arithmetic was in spirit
much like teaching of mathematics today in American
university classes for physicists, chemists, engineers,
biologists, economists, pre-medical students, and
computer scientists: recipes to be got by heart,
innumerable routine examples differing from each other
in principle not a whit, just mindless drill, as
monotonous as an assembly line, with no justification
even of the roughest sort, not a trace of proof or
logical criticism, no hint that to think might serve any
purpose. As the word “mathematics” derives from a Greek
verb meaning <“to ascertain, understand, comprehend”,
these schools’ approach to mathematics is the embodiment
of the antimathematical. :

‘From “The Page-Barbour Lectures for 1985”7,

. , - by Clifford Truesdell: Experimental Science
without Experiments: Leonardo da Vinci, page 5,

published by the University of Virginia Press, 1987.

%* & k k¥

PROBLEMS AND SOLUTIONS

Problem 13.4.1 Show that, on a 4 by 4 chessboard, a knight cannot start

at any square and then visit once only, in turn, each other square of the
board. :

Problem 13.4.2 If you watch a game of snooker on video, using the Fast
Forward facility, not only is the action greatly speeded up, but the balls
come to rest with astonishing.rapidity. Why?
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PERDIX

The 30th International Mathematical Olympiad took place from July 13th
to July 24th in Braunschweig (Brunswick), the birthplace of Gauss, West
Germany. Fifty countries competed, slightly fewer than in 1988. China came
first with 237 points, Rumania second with 223 points, USSR third with 217
points, East Germany fourth with 216 points, USA fifth with 207 points. The
maximum possible points is 252 {(at most six in each team, and 42 points' the
highest possible score for each contestant). Last year, 1988, China, Rumania
and the USSR also held the first three places, but in the order USSR, first,
with Rumania and China equal second. Australia was 22nd this year (17th in
1988). with 119 points.

Congratulations to all members of the Australian team. The team was
slightly changed from that announced in Part 2 (p. 64) of this year’s
Function: Danny Calegari withdrew at the last moment and his place was taken
by the reserve Christopher Eckett. Mark Kisin and Alan Offer both obtained
silver medals and Kevin Davey and Brian Weatherson bronze medals. Our
individual congratulations to Mark, Alan, Kevin and Brian for an excellent
result.

Here are the competition questions. What do you think of them? Send me -
your solutions. )

XXX, INTERNATIONALE
MATHEMATIK-OLYMPIADE

13.-24. Juli 1989

@ s
XXX
C. F.Gauss 1777-1855

INTERNATIONALE
MATHEMATIK
OLYMPIADE

Bundesrepublik Deutschland
Braunschweig-Niedersachsen

English version
FIRST DAY
Braunschweig, July 18th 1989
1. Prove that the set {1, 2, ... , 1989} can be expressed as the disjoint
union of subsets 4 (i =1, 2, ..., 117) such that

(i) each A contains 17 elements;

(ii) the sum of all the elements in each A1 is the same.

2. In an acute-angled triangle ABC the internal bisector of angle A meets
the circumcircle of the triangle again at A1' Points B1 and C1 are

defined similarly. Let Ao be the point of intersection of the line
AA1 with the external bisectors of angles B and (. Points BO' and
C0 are defined similarly.

Prove that
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(i) the area of the triangle ABC is twice the area of the
- hexagon AG1BA1CB1; .
(ii) the area of the triangle AoBoco is at least four times the
area of the triangle ABC. '
3. Let n and k be positive integers and let S be a set of n points
in the plane such that
(i) no three points of S are collinear, and

(ii) for every point P of S there are at least k points of S
equidistant from P.

Prove that
’ k < 1/2 + /2n.

Time: 4.5 hours
Each problem is worth 7 points.

SECOND DAY
Braunschweig, July 19th 1989

4. Let A4BCD be a convex quadrilateral such that the sides AB, AD. BC
satisfy AB = AD + BC. -
There exists a point P inside the quadrilateral at a distance h from
the line C¢D such that AP = h + AD and BP = h + BC.

Show that
RS I
vh /4D /BC
5. Prove that for each positive inﬁeger n there exist n consecutive

positive integers none of which is an integral power of a prime number.

6. A permutation (x1' Ky oeen s xm) of the set {1, 2, ... , 2n}, where
n is a positive integer, 1is said to have property P if
|x, —=x_| =n for at least one i in {1, 2, ... , 2n-1}.

i i+1

Show that, for each n, there are more permutations with property P
than without.

Time: 4.5 hours
Each problem is worth 7 points.

® ok K %k ¥
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I received the following letter from Mr John Barton.

North Carlton
16 July 1989

Dear Perdix,

Herewith one trigonometric solution of Q. 4, p. 96 (vol. 13, No. 3).
There are several others, of similar style, in which Ceva’s theorem is not
explicitly used. The frustrating thing, however, is that a "pure euclidean’
demonstration eludes me. In principle, I suppose, every trigonometric
solution has its corresponding pure geometrical parallel solution, but this
trigonometrical solution, and the other similar ones, are hardly to be
described as simple.

Question 4, FUNCTION, Vol. 13, Part 3 (June 1989), p. 96

Draw the line AOM, as shown.
It is easy to find the
angles, as . marked, in terms
of /BAC, denoted by «o. If
BC = a, the radius R of the
circum-circle is

a/(2 sin a). We have, by
Ceva’s theorenm,

2XY cos a BM CX

a/(Zsin &)  MC XY © L.

since triangles YBO and
AYX are isosceles, so that
YB = OB = R and XA = XY.
Hence

4sin a cos a . BM

a HE'CX:]..

By the sine rule for A COX,

cx a/(2 sin a)

sin(x—2a) - sin(5a=x) * °° that

CX = -a sin 2a/(2 sin a sin 5a).
BM 2 sin a sin 5a 1 sin 5a
Hence 37 = sin 2a 4dsinacos a2 sin 2a cos a

But BM _ sin /BOM _ sin 2(4a-n) _ sin 8e Hence
MC = sin /MOC ~ sin 2(x-3a) = -sin 6a °

sin 5o sin 6o = 2 sin 2a cos « sin 8a
cos a - cos lla'= 2 cos a(cos 6a - cos 102)

= cos 7o + cos 5a — cos 1lla - cos 9a,
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de

so that
cos a - cos Ta = cos 5a ~ cos 9a

sin 4o sin 3a = sin 7e sin 2a,

vhence, cancelling sin 2a,
2 cos 20 sin 3¢ = sin Ta
sin 5a + sin a = sin 5a(1-2 sinza) + cos 5a sin 2o.

Cancel sin 5a, and divide through by sin a to get

1 = 2(cos 5a cosa - sin 5¢ sin a)
= 2 cos 6a.
Hence 6a = + % + m.2n (m an integer).

The first few positive solutions are 10°, 50°, 70°, 110°, 130°.
If o =10° and we take O between Y and C., then A0 > ¢cO which
contradicts data. If o = 70°, X is not between A and C, which

contradicts data. Hence a = 50°.

There surely must be some relatively simple construction to allow a
“pure euclidean” solution? Note that the points B. Y, 0, M are

concyclic, but how can one show this without first solving the problem?

Can anyone solve Mr Barton's problem: can you find a solution not
involving the trigonometric complications he has used? .

® %k % % ok
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