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We again, as we did in the last issue, reproduce an article from
Function of ten years ago. Graph theory, concerned with the kind of graphs
consisting of vertices and edges, discussed in .this article, is of growing
importance in the uses of mathematics involving planning and decision making.
Marta Sved' s article on fractals introduces a very recent development of
mathematics, one that enables mathematics to get to grips with interpreting
phenomena that had previously been found too irregular to be amenable to
adequate analysis.

The quotation from Truesdell about Leonardo da Vinci's mathematical
training is an interesting one. Is your training similar to his?
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FRONT COVER 8m RUBIK'S' CLOCK

Rubik's cubet began life in 1974. made its public debut in 1978 and by
1980 had spread across the whole world. selting to addicts young and old,
from cabinet ministers to five-year olds. Erno Rubik, a Hungarian architect
and teacher of design, followed his cube with Rubik·s hinge, marketed in 1985
under: the name of "Rubik' s magic puzzle: I ink the rings". In 1988 Rubik· s
Clock appeared. Nei ther the hinge nor the clock has developed a band of
addicts of a size comparable to those who joined' the cube craze. This is
almost certainly because the hinge was found easier than the cube. The cube
was an Everest puzzle: once beyond the lower slopes the difficulties seemed
insuperable, the challenge· could not be rejected. The clock was again found
easier than the hinge; but it still remains one of the best puzzles around.

Each of the puzzles is concerned with permutations, and,each permutation
of a system realises a symmetry of that system. The part of mathematics that
deal~ with such symmetries is called group theory. And ,mathematicians were
soon writing numerous papers explaining. the symmetries of' the cube and the
hinge in terms of the groups of permutations that the allowed manipulations
of the cube (and the hinge) generated.

We explain below how the clock puzzle can be solved. Effectively we are
using group theory, but we shall not mention this again in what follows.
What we show is that the time on each clock can be set independently of the
times shown on the other"c1ocks, wi th the exception only of the pair of
clocks at each corner of Rubik's Clock. The corner clocks are so constructed
that any move of the hand on a face of a corner clock is accompanied by the
same move of the hand on the clock on the same corner on the reverse side:
the hands of·the two clocks at a corner are rigidly connected, So that when
one moves clockwise the other moves, when viewed from the other side, the
same distance anti-clockwise, and vice versa.

The front cover shows a picture of a face of Rubik' s Clock. On the
reverse. side is an identical set of nine clocks, differing only in their
colouring. In the picture the hand of each clock points to 12. Move the
control wheels at the four corners and also from time to time press one or
more of the four buttons down, or raise them up again. and ·the clock hands
will' quickly begin to point to apparently random times,' different on each
si.de. The' problem is then to return all the ·clocks t:o their original
position where all eighteen hands point to 12.

,If someone gives you the Clock with the clock hands pointing allover
the place. you will have a harder task trying to solve the problem than you
will have if you start with them all pointing to 12, and then experiment by
using the control wheels and varying the position of the buttons carefully to
find out 'the effect of each possible operation.

t For further information see the international best-seller Mastering Rubik's
Cube by Don Taylor. 1980, published by Book Marketing Australia PIL, 195
Bridge Rd., Richmond, Victoria, 3121.
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So let us suppose that the Clock is in what I shall call its "home"
posi tion. i .e.o in which all the clock hands point, to 12. and proceed to
analyse the possible operations that can be performed using the four control
whee1s and the four buttons. .

To 'facili tate the description it. will help to label the buttons. the
clocks and the control wheels.

Upper face

Figure

As shown cin figure 1. la~l the control wheels Q. p, ..,. 6, the corner
clocks I. II. III, IV. and the other clocks. 1, 2. 3. 4, 5. the clock in the
centre being clock oS. This is for the upper face. For the reverse side. the
lower face of the Rubik's Clock. label the clocks below clocks I, 2.3. 4. 5
by 1'. 2'. 3'. 4', 5'. respectively (se~figure 2). Examining the'action of
the .control wheels in the various positions of the buttons will qUickly show·
that this gives us enough labels to cover the various clock-hand changes that
can occur: each pair of corner clocks rotates its hands in unison. and i.t is
possible to have different times showing. on any other 'pair of clocks.

The buttons have been labelled A. B. C. D when in the positions shown
in figure 1. that is. when they have been pressed upwards to project outwards
from the upper face to the maximum extent. Lower case letters a, b. c. d.
respectively, will be used to label the buttons when in their other possible
position. i.e. pressed down so that they project downwards to a maximum
extent. Thus the sequence AbeD will indicate that buttons A and Dare
up and buttons b and c are down. [It is in fact ~ssible to place one or
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Lower face

Figure. 2

more of the buttons carefully in a half-way position, neither up nor down.
(like the Grand Old Dukeof·York's ten thousand men, in the nursery rhyme).
If this is done then the result (on my Rubik's Clock) when a control wheel is
operated is to cause the simultaneous occurrence of what would have happened
if all the half-way buttons were up and what would have happened if they were
all down. Placing the buttons "in this nei ther up nor down 'posi tion needs

delicate positioning and is almost certainly not intended to be part of an
allowed operation on the Rubik's Clock. We shall ignore such possibilities
in what follows.]

Before we can describe the operations possible upon Rubik's Clock, we
need a notation to describe their effect on the clocks.

If clock number -1 has its'hand moved one hour clockwise we denote -this
by (1)1, if by one hour anti-clockwise we denote it by (1)-1; if it is
moved by 2' hours clockwise denote this by (1)2. and if by 2 hours
anti-clockwise by (1)-2; and so on: if. n is a positive integer, then (l)n

denotes a movement of clock number 1 by n hours clockwise, and (1)-n
denotes a movement by n hours anti-clockwise. Similarly for clocks
numbered 2, 3, 4, 5, 1', 2', 3'. 4'. 5'; thus (3,)-2 denotes a movement by
clock number 3' by 2 hours anti-clockwise.
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We treat the corner clocks slightly differently: if n is a posi tive
integer then (I)n denotes that clock I. looked at from the upper face. has
moved n hours clockwise. and that simul taneously (for this necessarily
happens) that viewed from. the lower face the other side of clock 1 has moved
n hours anti-clockwise.

What happens when a control wheel is turned depends on the position of
the buttons. Each button' can beei ther up or down: so there are
2 x 2 x 2 x 2 = 16 possible positions for the buttons. Thus Abed denotes
the button posi tion where the button in the top left corner is up and the
other three buttons are down.

We assume in our description of the operations that we have selected one
face that we shall consider as the upper face. the other being the lower
face. and that this choice is fixed.

Experimenting with the buttons and the control wheels shows that we can
'perform the following operations upon the clocks-. Denote by ex. /3. "y. S a
turn of control wheel a. /3. "y. O. respectively. through one hour, i.e. 30°,
clockwise.

Button position Control ·wheel

Abed ex

Abed /3 or 'Y or 0

ABed Q or /3
ABed "1 or 0

AbCd Q or 'Y

Abed /3 or 0

Effect

{I)1(l)1(4}1(5)1

(II)1{III}1(IV}1(1' )-1(2' ')-1(3' }-l

(4' ) -1(5' }-1

(I) (1) (II) l{ 1) l(2}1(4)1(5) 1

(III)1{IV)1{2' )-1(3' )-1(4' )-1(5' )-1

(I)1( III)1(1)1(2)1(3)1(4)1(5)1

(II)l(IV)l(l' )-1(2' }-1(3~ )-1

(4' ) -1(5' )-1

Q or f3 OF "y or 0

Q or f3 or 'Y.

o
Q or f3 or "y or 0

abed

ABeD

ABed

ABCd (1)1(11)1(111)1(1)1(2)1(3)1(4)1(5)1

(IV)1(3' ) -1(4' ) -1(5' ) -1 _

{I)1(II)1(III)1(IV)1(1)1(2)1(3)l

(4)1(5)1 .

(I)1(II)1(III)1{IV)1(1,)-1(2,)-1
(3' )-1(4' )-1{5' )-1

If we turn a control wheel through n hours, i .e. through n x 30°,
clockwise. then this has the effect of just repeating n 'times one of the
operations listed above., Thus. with button position ABCd and wheel 0
mov~d through n hours. i.e. with the operation ABCd Sn, the effect on the
clocks' is (IV}n{3' )-n(4' )-n(5' }-n.

We have used above 6 button positions. There are 10 more: 3 more where
one button only is up; 3 more in which 2 adjacent buttons only are up; one
more in which another diagonally opposite pair ot buttons are the only
buttons up; and 3 more in which three buttons are up. It will be found. by
experimenting with the Rubik 9 s Clock. that the effect of control wheel
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movements for these other button posi tions is just what we would expect if,
each of the control wheels behaved exactly as each of the other control
wheels,' takipg into account their relative positions. Thus aBcd ~ has the
effect {II)1(1)1(2)1(5)1; etc.

Now notice that "if one operation has the effect (x)n on clock number
x and if another has the effect (x)m on that clock, then following one by
the other, in either order, has the effect (x)n~.

So now we have described all possible operations. and can. using the
'notation we have' introduced. wri te down the effect of a sequence of
operations performed on the clock.

We begin by showing that we can change any of the clocks by one hour
clockwise. while at the same time leaving' all other clocks unchanged in
position.

A corner clock

The centre clock,

upper face:· 5

A side clock,

upper face: 1

Two operations suffice: for clock I ABCD ~ together
with aBCD ~-1. These two produce the effects

(I)1(II)1(III)1(IV)~(1)1(2)1(3)1(4)1(5)1and

( I I ) -1 ( I I I) -1 ( IV) -1( 1) -1(2) -1(3) -1 ( 4 ) -1 ( 5 ) -1 .

respectively. Combined their effect is (1)1.

Five operations suffice:

Abed a : (I)1{1)1(4)1{5)1

abCd '1 : .(11,1)1(2) 1(3)1(5) 1

aBeD a-1 {I)-1(III)-1{1' )1(2' )1(3' )1(4' )1(5,)1

ABCD Q'-l : (I)-1(II)-1(II1)71(IV)-1(1)-1(2)-1(3)-1

(4) -1(5)-1

abed Q : {I)1(II)1(III)1(IV)1(1' )-1(2' )-1(3' )-1(4! ')-1

(5' ) -1.

The effect of these five operations is just (5)1; i.e.
the central upper face clock is moved clockwise by one
hour and all other clocks remain where they were. Notice
(check it) that the five operations can be carried out in
any order to achieve the result (5)1. To calculate the
effect of the five operations we just adq up the indices
occurring for each of the clocks. interpreting a total of
o as indicating no change. Thus the.sum for clock (5)
is 1 + 1 - 1 = 1; and for clock (III) is
1 - 1 - 1 + 1= 0, etc.

Six operations suffice:

abCD 1-1 : (II1)-l(IV)-1(2)-l(3)-1(4)-1(5)-1

Abed a : (1)1(111)1(1)1(2)1(3)1(4)1(5)1.

Th~ effect of these two is (I)1(IV)-1(l)1. Now use the
operations already' given to move clock lone hour back
and clock IV one hour forward. The result is (1)1: the
clock number has been moved forward by one hour.
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So we have now solved the Rubik's Clock problem! Move each of the
fourteen clocks I, II. III. IV. I, 2. 3. 4. 5, 1'. 2'. 3', 4'" 5'.
separately, to their home positions, from whatever initial position they are
in.

We have also shown that ever"! possible Posi tion of the fourteen clocks
can be reached: so there are 121 = 1.283,918~464.548,864 distinct sets of
times the clocks can take up.

Of cours~ the way to solve the Rubik's Clock problem in practice is by a
much quicker method than by fixing the time of each clock independently.

I have a method that will move the clocks from any starting position to
the home posi tion•. where all hands point to 12, taking at most 20
operations. and usually fewer than this. [In counting these 20 operations, I
count each rotation of a control wheel through whatever angle, for given
positions of the buttons, as a single operation.]

* * * *.*

MONASH UNIVERSITY OPEN DAY MATHEMATICS COMPETITION

The Open Day was held on 6 August, 1989. Some 155 secondary students
took part in the competition. The results 'of" the qualifying test, of 8
written questions (in 4 different versions), were:

Score
Students

o 1 2 3
20 39 40 29

4
15

5
6

6
4

7
2

8 Total
o 155

Some questions were at Year 12" level. so it is not surprising that
students from lower years might have had trouble. However. two prize winners
were actually in Year 11.

The 6 students who achieved scores of 6 or 7 in the qualifying test, and
competed 1.n an oral final, were:

Russell Coker (Yarra Valley,

Jiun Lai (Monash High.

Abhik Sengupta (Melbourne High.

Year 11)

Year 12)

Year 11)

1st.

2nd.

3rd.

Steven Siew (Syndal High. Year 12)

Co1in Banks (Glen Waverley High, Year 12)

Chris Loeliger (Murtoa High, Year 12).

Congratulations on some very fine performances! Pri~es to each of a free
subscription to Function. 1990. The top three also won prizes of $20. $10.
and $5.
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Ten years ago

THE TUTTE GRAPH

D.A. Holton, University of Otago

The path to the proof of the Four Colour Map Theorem is paved
wi th a large number of false "proofs". The diagram below
(figure I) shows a graph which arose in the course of one of these
attempts.

Figur,e 1



For a background to the problem. see John Stillwell's article
in Function. Vol. 1. Part 1. The idea. of course. is to prove that
the regions of any map can be coloured with four or fewer ~olours.

so .that no two adjacent regions have the same colour.. This -can be
converted into a graph theoretical' problem by taking a dot to
represent the capi tal of each country and joining .two dots by a
line if the corresponding countries have a common boundary. Each
dot of the resulting graph can then be coloured by one of four or
fewer colours. so that no two joined dots have 'the same colour. if
and only if the original map can be coloured in four or fewer
colours. For convenience. this graph theoretical formulation was
the one used by Appel and Haken in their proof of the Four COlour
Theorem.

In 1880. Tait observed that in order to prove this Four Colour
Theorem. it would be enough to show that the lines of every cubiC.

3-connected planar grapht can be coloured in 3 colours so that no
two lines with the same colour meet at a given dot.

Tai t claimed that. clearly. every cubic 3-connected planar.
graph had a hamiltonian cycle. that -is that there is a route along
the lines of the graph which starts and ends at one dot and which
passes through all the other dots- -once and only once.

Now if a graph is cubic it is not difficult to prove that it
must have an even number of dots. Should' the hami! toniancycle
exist, its lines could then be coloured alternately in two colours.
The remaining lines could then use the third colour. -So if Tait

-was right about these cubic 3-connected graphs having hamil tonian
cycles, the Four Colour Theorem would surely follow.

For a long while people puzzled over Tait's hamiltonian claim.
It waited, however, till 1946 before Tutte produced the graph of
figure 1 which finally showed that not all cubic 3-connected planar
graphs were hamiltonian.

But how do we prove that the Tutte graph is not hamiltonian?
One way. of course, would be to illustrate, by exhausting all­
possi-bi I i ties, that there is no cycle through every point of the
graph. This i~ enot-mously tedious~

Is there a characterisation of hamil tonian graphs? If there
is, then there is a theorem that says "G is hami I tonian if and
only if 'blaa'". All we need to do then is to test Tutte's graph.
If it didn't have the property 'blaa' then we would 'know that it
was not hamiltonian.

Unfortunately, despite- a great deal of effort, no-one has yet
come up wi th this _Riagic property 'blaa.·. If and when they do they

A cubic graph is one in which 3 I ines come -in to every dot
and a graph is 3-connected if it takes the_ re~val of at least 3
dots, and their incident lines. to disconnect the graph. A planar
graph is one that can be drawn in the plane so that no two lines
cross.

105
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will be accorded instant mathematical fame.
have a graph at hand. What to do?

In the meantime we

Well, fortunately we have some par.tial 'blaa' results. For
instance. Tutte himself has proved that every 4-connected planar
graph is hami I tonian. Unfortunately, Tutte' s graph is not
4-connected. We can fInd three vertices whose removal will
disconnect the graph. So that test is out. .

Another partial 'blaa' comes from two Russians - Kozyrev and
Grinberg. Their result says that if G is planar and hamiltonian
with n dots, then

n

I (i - 2)(£1 - £' i) = O.
i-2

i.e. ... + (n-2)(£ -£' ) = O.
n n

To explain the £i and the £"i 'look at the planar graph of

figure 2. which has the hamiltonian cycle 1.2.3.4....• 15. 16. 1.

Figure 2

This cycle divides the plane in two. Various lines of the graph
divide the inside of the cycle into regions. One region is formed
by 1. 2. 14, 15. 16. another by 3. 4. 7, 8, 11, 12. The term f

i

is the number of such regions inside the hamiltonian cycle formed
by i lines. Hence, f or the·graph in figure 2 we have f 2 = 0,

f = 0, f = 2, f = 2 and f = 1. The f' term te11s us the
3· 4 5 6

number of regtons formed in a similar' way on the outside of the



cycle. So we see' that f'3 = I, f'4 = I, f' 5 = 1, f' 6 = 2.

Substituting these values in the Kozyrev-Grinberg expression

n

I (i - 2) (fi - f' i)
1=2

we get

(3-2)(0-1) + (4-2)(2-1) + (5-2)(2-1) + (6-2)(1-2)

which is indeed zero.

Now Tutte proved his graph was not hamiltonian, but a nicer
proof was given by an amateur mathematician, Watts, in 1972. This
proof uses the Kozyrev-Grinberg result. It is a little too long to
include here but the basic idea is to assume that Tutte's graph has
a hamiltonian cycle and use the Kozyrev-Grin~rg equation to obtain
a contradiction. The complete proof can be found in the book
"Mathematical Gems", by R. Honsberger (published by the American"
Mathematical Society, 1974). In the same book the Kozyrev-'<;;rinberg
theorem is also proved.

For more results in the area of hamilxonian graphs you should
read L. Lesniak-Foster: "Some recent r~sults in hamiltonian
graphs", Journal of Graph Theory, Vol. 1,' 1977, 27-36.

* * * * *

Comment, from D.A.· Holton, ten years later

A few things have happened in the area of hamiltonian graphs
and planarity since "The Tutte Graph" appeared in Function .

. However. we appear to be no closer' to a "nice" proof of'the Four
Co~our Map Theor.em. .

Figure ~

107
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One comment on planar hami1 tonian graphs may be of ,interest.
Look at the par t of the Tu t te graph shoWn in Figure 3~ You wi 11
(eventually) see that if you want to enter at one of the vertices
1. 2, 3, pass through all the unnumbered vertices once each and
exi t at one of the other vertices 1, 2, 3, ·then you will have had
to have entered or exited through 2. There's no way of coming in
through 1 and out through 3, or vice versa.

This should help you to find another proof of the fact that
the Tutte graph is non-hamiltonian.

If you place the part graph of Figure 3 as shown in the graphs
of Figure 4, you'll find that you have six non-hamiltonian graphs
on 38 vertices. The placement is done by blowing up each of the
vertices in Figure 4, denoted by a large 'black dot, into the graph
of Figure 3, and letting the edges labelled 1, 2, 3,' at each such
vertex, terminate, in the blown-up diagram, at the vertices
labelled 1. 2, 3, respectively, in Figure 3. It is'n~w known that
.these are the only non-hamiltonian 3-connected cubic planar graphs
on 38 vertices and that all 3-conn~cted cubic planar graphs. on 36
or fewer vertices are hamiltonian..

It is now unlikely that there exists a simple 'blaa' property
for hamil tonian graphs'. Though, of course, in 10 years' time I may
be proved wrong.

Figure 4

* * * * *
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ON FRACTALS.

Marta Sved, University of Adelaide

Classi-cal geome~ry'as handed down to us from mathematicians of ancient
Greece. and pursued through·many generations until our own days. deals with
things like lines and planes. circles and spheres. triangles and polygons.
also with more exciting objects. like cylinders and cones. giving ellipses,
hyperbolas, parabolas as their plane sections. Regular polygons and regular
polyhedra hold their own fascination.

Though geometry offers a rich and endress variety for our studies, its
objects are idealisations of things which occur in our every-day experience.
Some of the objects occurring in nature show still remarkable. though .more
complex geometrical structures, like we see in, waves, eddies of water.
ripples of sand, snow flakes, shells, clouds. only naming a few. while it is
hard to find regularity in rugged shore-lines. faces of rocks. or other
things which appear. at least on first sight. random. irregular, fragmented.

In the 1970' s. i:t was the French mathematician Benoi t Maridelbrot. who
was the first to create a connection between complex structures occurring in
nature. and structures emerging from ear,lier mathematical studies.
COns~dering the problem of finding accurately th~ length of a,shore-line, he
came to the conclusion that the problem has no'satisfactory an!jwer as long as
we apply to it our ordinary notions of measuring. for the shore-line may
appear straight from acertai~ height. but getting nearer. we observe some
inlets and promontories, and getting still nearer, we find'that these have
their own wrinkles and folds. and continuing the approach to the individual
grains of sand. and resorting to a microscope. the process of measuring the
length never ends. .

Figure 1, picturing the "Koch Island". shows an idealised model of the
si tuation. The figure shows stages of construction, beginning wi th an
equilateral triangle, representing "straight" shores of the island. Next we
divide each side into three parts and construct on' the middle parts
eqUiangular triangles as "promontories". In the next step each of the
individual smaller triangles is given the same treatment. continuing
(theoretically) to infinity.

Figure 1
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Mandelbrot coined the word "fractal" to chara~terise such "fragmented"
objects. In Euclidean geometry we measured length (say) in millimetres (rom).
areas in square millimetres (nun2

) , volumes in cubic millimetres (mn?). and
talk about lengths having dimension 1. areas dimension 2. and volumes
dimension 3. When we compare a line-segment' wi th our uni t line segment. we
say that its length is t. if we can place exactly t units to cover the
segment. When on the other hand we want to co~re a square of side-length
t. with the unit square, then we must place t unit squares to cover our
square, and f or a cube of edge t we need t 3 uni t.-cubes to fi 11 up the
cube. So the dimension expresses an index: 1 in the case of a length. 2 in
the case ·of an area. 3 in the case of a volume. In each case we had simple
objects and compared 'them with similar unit-objects. Now Mandelbrot observed
that although very small stretches of a shore-line (or, you may think of the
pictures of the Koch Island) are similar to larger stretches. comparing their
lengths wi th some given measuring uni t does not lead to a sensible answer.
He drew the bold conclusion that the dimension of such objects is not an
integer. like that of a straight interval, or a square, or a cube. but must
be given a different definition. He found that if such configurations are
assigned appropriate dimensions. which are not integers. then measuring them
becomes meaningful. In his ear I ier wri tings he gave the name fractal to
configurations of which the dimension was not an integer.

Without going any deeper into the mathematics of fractal dimensions. let
us look at some examples of fractal configurations. which come from
mathematical theories. Modern computer graphics applied to some mathematical
procedures produce amazingly beautiful pictures such as shown in figures 2
and 3.

Figure 2' Figure 3
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The book:

The Beauty of Fractals, by H.O. Peitgen & P.H. Richter (Spri~ger-Verlag)

offers a beautiful collection of such configurations appearing on computer
screens. Many of these ~re in COi9ur. Without understanding the mathematics
behind it. you can still get much enjoyment looking at these reproductions of
pictures which could grace any exhibition of abstract art. We recommend that
you get hold of this book from .some library or a friend who has bought it,
and look at the pictures.

Figure 4 shows a simpler picture. You can amuse yourself by producing
art approximate cardboard copy. The figure is called the Sierpinski gasket,
named after the Polish mathematician .wh9 prQduced it before the birth of
fractal theory. The figure is one which arises "after an infinite sequence of
repeated operations, of which you may try a few.

Figure 4

Begin wi th a large equilateral triangle as shown on figure 5. Divide
each side into two equal parts, joi~ing the points of bisection. Now cut out
the shaded middle part. cheating a little at t~e corners, so that the figure
should not fall apart. Repeat the procedure on the remaining three smaller
triangles. Keep repeating carefully as long as you can. You obtain a
fragile object •. if not yet a fractal.
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Figure 5

'Now comes the surprise. from a field. of mathematics that you would not
s~spect that it has anything. to do with all this. Write down the first 16
lines of the Pascal triangle. of ·binomial coefficients~ which you could copy
from mathematical tables, or produce qUickly yourself using the formula

[~:~ J = [~J [;1 J.
You obtain

1 2 1

3 3

1 4 6 4

5 10 10 5

6 .15 20 15 6

1 7 21 35 35 21 7

8 28 56 70 56 2S 8

9~ 36 84 126 126 84 36 9

10 45 120 210 252 210 120 45 10 1

Oops, I am running out of space, and find it hard to print out all 16 lines
on tho! s page.

But it does not really ~tter, for what I want to do next is to put a
instead of each odd number, and a dot instead of each even one.
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I obtain now

I·

You may have noticed that I have produced now all 16 lines wi thout really
referring to my original Pascal triangle, because instead of the Pascal
addition formula I use the simple rule:

even + even = even.
even + odd = odd
odd + odd = even.

Now look at this figure and your Sierpinski gasket!

You may find a little more about even and odd binomial coefficients if
you get hold of an older issue of Function (Vol. 11, 2. April 1987) and look
at the article

"What are the odds that [~J is even?"

However, you could get another fractal figure out of your original ·Pascal
triangle, if you divide each of the coefficients by 3. and wri te down the
remainder of the division in the place of the original coeffici~nt. Now try
to produce this new pattern to 27 rows.

Finally, for a little mathematical exercise. try to use your figure to
determine the following:

"If n and k are any positive integers. under what condition is

[
3nk I

J
, a multiple of 3?

* * * * *
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MY DENTIST'S CLOCK

GoA•.Watterson, Monash University

I was enduring the filling of some teeth the other day. when I looked
across at the clock on the 'dentist's surgery wall. What I saw surprised me.
Had my eyes or brain been damaged by the injections in my gums? The clock
looked decidedly wonky.

11
12

10

5

8

6
7

Figure 1

I kept looking. The clock still looked wonky. The placement of the pivot of
the hands. away from the centre of the circular clock face. meant that the
hour numbers on the face had been displaced from their normal positions. The
numbers were, of course, still 30° apart as the hour hand turned about its
pivot. But that meant that they were unevenly spaced· around the-
circumference of the face. The morning hours looked as if they would be slow
to get through. while the afternoon hours looked as if they would go quickly!

Suppose that we take the centre of the clock face as origi.n, 0. and the
radius of the clock face as 1 (our unit of measurement). Suppose that we
introduce the axes Ox and Oy in the usual way, with A = (a.O) as the
pivot position for the hands on the x axis.

COnsider the hour number. N, one of the numbers 1.2.3..... 12.
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y

o x

Figure 2

In figure 2 the angle 0°, between the vertical (12-o'clock) position
and the hour number N,has to be

The angle DAN, 4>0 say, is given by

</>=360-90-0.

Consider the triangle ~OAN, in figure 3.

o ~_.....,..__a ........ A

Figure 3 N
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The "sine rule" says that for the three angles, t/J0, ~o, and '70 as in
figure 3. we have

a. 1 AN
sine = sin</> = sin'7·

We wish to find '7. but as AN is not yet known. we must make use of the
first equation to yield

sine 8 sin~ = 8 sin(360-90-0)

-8 sin{90+0)

-8 cos (Nx30) •

so that

Further, because

'7 + e + 0 180.

then

'70 =. 180° - ~o - eO

= _90° + N x 30° - sin-1{-a cos (Nx30)}.

As an example, if we take the pivot A to be half way along the clock

face radius, then
1 and to the nearest degree, ° is given in thea =2' t'J

following table for the various hours, N.

N 1 2 3 4 5 6

'1 -34 -16 0 16 34 60

N 7 8 9 10 11 12

" 94 135 180 224 266 300

A table like this allows us to see that the hours 3 and 9 are, of
course. in ·their usual posi ti.ons on the clock face, but that hours on ei ther
side of 3 ·differ from 3 itself by about 16° (more accurately, .by
15.52°), using 0 as centre. On the other side of the face, the hours
ei ther side of 9 differ from 9 by about 44° (more accurately. by
4~.48°).

If o~ly the afternoons did speed up like the clock suggests!

* * * * *
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3-D PYfHAGORAS

Aidan Sudbury, Monash University

Near ly everyone has ·heard of Pythagoras' theorem: the square of the
hypotenuse of a right-angled .triangle is equal to the sum of the squares of
the other two sides. In fact it is so famous that there are some truly
dreadful puns based on it - the squaw on the hippopotamus ... but this
article is in far too good tast~ to mention things like that. However, what
is not so well-known is that there is a simple generalisation of the theorem
to 3-dimensions. Consider the following figure:

z

z

x

y

y

(*)

x
Here Ox, Oy and Oz are three co-ordinate axes in 3-dimensions forming a
corner at 0 just like the corner of a room. XYZ is a triangle, so .to
speak, resting in the corner. The generalisation of Pythagoras' theorem is:

(Area ~ XYZ)2 = (Area t:. OYZ)2 + (Area ~ OZX)2 + (Area ~ OXy)2.

This is qui te easy to prove if you Im.ow the formula for the area of a
triangle that was discovered by Hero of Alexandria in the 1st century, A..D.
If a triangle has sides of length s. b, c then its area is

~ = I{s(s-a)(s-b)(s-c)

where s = (a+b+c)/2 is the semi-perimeter. (For a proof of Hero's formula
see Edi tor's conunent at end.) Now you· sho.uld be able to show that

( )() 1 2 2 2 2 2 2 4 4 4
S s-a s-b· (s-c) = 16(2b c + 2c a + 2a b - s· - b - c ).

Then, if you put

1Y2
+z

2
, {Z2+X 2 and

some simplification

ox =x, oy = y, OZ = z, so that the sides of XYZ are

/X2+y2 (by 2-D Pythagoras). then you can obtain af ter
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sin A using the cosine formula
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)
2 1 2 2 2 2 2 2

(Area !:J. XYZ = 16(4y z + 4z x + 4x y )

(Area A OYZ)2 + (Area ~ OZX)2 + (Area II OXy)2.

I t is possible to general fse Pythagoras' theorem to spaces of any
dimension, n, but it is very hard to visualise what it means for n > 3.

Editor's comment: Hero's

II = ~bC sin A, by el iminating

a2 = b
2 + c 2

- 2bc cos A. Thus

2 122 .2 122 2
~ =4b C 5 In A = 4b c (I-cos A)

=~b2c2(1 _[b2;~:-a2r)

= ~6(4b2c2_(b2+c2_a2}2)

which easily reduces to the right-hand side of equation (*), above. On the
other hand, you can derive Hero's formula directly as follows:

112 = ~6«2bc)2_(b2+c2-a~)2)

i.e.

'1 2 2 2 2 2 2= 16(2bc+b +c -8 ) (2bc-(b +c -a. »

1 ( 2 2 2 2= 16( b+c) -a. )(a -.(b-c) )

1=16(b+c+a)(b+c-a)(a-(b-c})(a+(b-c»

1=16.<a+b+c)(b+c-a)(c+a-b){a+~-c)

1=162s(2s-2a)(2s-2b)(2s-2c)

6
2 = s(s-a)(s-b)(s-c),

which is Hero's formuia.

* * * * *
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QUATERNIONS AND THE

PRODUCTS OF lWOVECTORS

J.A. Deakin
Goulburn Valley College of TAFE

"Quaternions" were originally introduced into mathematics as a
generalization of the concept of a complex number by the Irish mathematician
Sir William Hamil ton. We define a quaternion Q to be the 'hypercomplex'
number

Q = a + bi '+ cj + dk

where a, b, c, d are real numbers, and i, j, k are quantities having the
properties

.2 .2 .- k2
-= -1

}
~ .. J

ij - k, jk - i, ki - j (A)

ji - -k, kj == -i, ik == -j

Geometrically we could interpret the quaternion Q as . being a
"4-dimensional" vector, wi th real component a and quaternion component
bi + cj + dk. The norm, or length, of Q is

IQI = ;a2:':-i?+C'2+d2

and the conjugate of Q is the quaternion

Q= a - bi - cj - dk.

A1so . QQ = QQ = a
2 + b

2 + C
2 + d

2
•

If we consider the 'pure' quaternions~ i.e. quaternions with no real
components

and find the product, we obtain

a a .1,2 + a b .1'J' + a C .1·k
1 2 1 2 1 2
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+ C 8. ki + c b kj + C C k
2

·1 2 1 2 1 2

-(a
1
a

2
+ b b + C

1
C

2
) + i j k

1 2

a b C
1 1 1

a b c
2 2 2

Let u, v be the vectors

u = 8.~ + bd + c~

v a~ + bz;[ + c~.

Then the scalar product

uov = a a + b b + C C
1 2 1 2 1 2

is minus the real part of the quaternion product

product

u X v= i -L k

8. b c
~ 1 1

a b c
2 2 2

is the quaternion part of the quaternion product Q
1
Q

2
•

and the vee tor

Hamil ton was impressed wi th the possibili ties for the application of
quaternions to physical problems, and indeed was so enthusiastic that one
Sunday when walking wi th his wife (16 ()ptober 1843), he carved the
fundamental formulae .(A) of his quaternion algebra in the stone of a bridge

*in Dublin. which can still be seen todafl> .

Nevertheless. the use of quaternions as such was relatively short-lived,
and it was. the genius of the American mathematician/physicist/chemt'st, J.
Willard Gibbs, who identified the real and quaternion Parts of the product of
two 'pure' quaternions with what we now call the scalar and vector product of
two vectors.

* Ed.: I am told that it is no longer visible; weather and time have taken
their toll.
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The algebra of vectors was developed in the form we use today by Gibbs-,
and it is of interest that' the 'new vector algebra and its application to
elementary geometry and mechanics was popularized by the Australian
mathematician, Weatherburn, then Professor of Mathematics at the University

of West'ern Australia, in 'his two standard textbooks(2),(3) - one case of an
important topic of the upper secondary school curriculum to which an
Australian mathematician made real· contributions.

References

(1) E.T. Bell, Men of Machematics, New York, Simon &Schuster, 1986, p.360.

(2) C.E. Weatherburn, Elementary Vector Analysis, London, G. Bell & Sons
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(3) C.E. Weatherburn, Advanced Vector Analysis, London, G. Bell & Sons
(various editions).

*****

Why Mathematics Works

Everyone knows that if you want to do physics or engineering, you had
better be good at mathematics. More and more people are finding out that if
you want to work in certain areas of economics or biology, you had better
brush up on your mathematics. Mathematics has penetrated sociology.
,psychology, medicine, and linguistics. Under the name of cliometry, it has
been infiltrating the field of history, much to the shock of old-timers. Why
is this so? What gives mathematics its power? What makes it work?

One very popular answer has been that God is a Mathematician. If, like
Laplace, you don't think that deity is a n~cessary hypothesis, you can'put
it this way: the universe expresses itself naturally in the language of
mathematics. The _force of gravi ty diminishes as the second power of the
distance; the planets go around the sun in ellipses; light travels in a
straight line, or so it was thought before Einstein. Mathematics, in this
.view, has evolved precisely asa symbolic counterpart of the universe. It is
no wonder, then, that mathematics works; that is exactly its reason for
existence. The universe has imposed mathematics upon humanity.

Philip J. Davis and Reuben Hersh: The Machematical Experience,
p. 68, Birkhauser, 1981, Boston.
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A Spy STORY

A. Lin, University Qf Alberta, Canada

A message was to be sent to agent Double-o Zero. Just as a courier was
about to be dispatched. another- agent staggered into headquarters. He had
been fatally wounded. but managed to reveal that there were two enemy agents
in the courier~pool. Unfortunately he died before naming them.

"This has serious repercussions". lamented
moment. we must get this message to Double-o Zero.

the Chief t "but at
What can we do?"

the

"We can send three copies of the message by three couri_ers", offered an
aide. "'Ibis way. Double-o Zero is bound to get one."

"That ~ill not do". said the Chief. "It is essential -that the message
does not fall into -enemy hands."

"We can break up the message into several parts". another aide
suggested, ~~in such a way that it_ is unintelligible unless all parts are
available. We make three copies of each part, and send several couriers.
Each courier carries several parts, and no duplicate copies."

"That sounds allright"t- said the Chief. "but we must still make sure
that no two couriers carryall the parts between them. can someone come- up
with a practical scheme?"

The aides conferred for a while. Then one of them recalled a diagram
she had seen in a mathematics book. She drew a copy for the assembly.

A

Ce:;.------..;::::..........-:::::~----~F

"This diagram has seven points and seven lines". she pointed out.

"I assume". remarked another aide. "that you consider the circle passing
through B. E and G as a line. I beg your pardon. I use the term t line t

very loosely here. Anyway. each line passes through three points and each
point lies on three lines."

"What is the relevance of all this to our current probl~m?" the Chief
wanted to lmow.
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"We can break up the message into seven parts~ each represented by one
of the lines. We can dispatch seven couriers, each represented by a point.
A courier carries a copy of a part of the message if and only· if the point
representing the courier lies on the line representing the point."

"Very good". the Chief nodded wi th approval. "Since each part is
carried by three couriers, Double-D Zero will get all the parts. Since each
courier carries three parts,' no two couriers carr.y all the parts between
them. Implement this scheme immediately!"

Exercises

1. (a) If seven couriers are to be dispatched, show that we can break up
the message into only five 'parts.

(b) Prove that it cannot be done,with four parts.

2. (a) If the message is to be broken up into seven parts, show that we
can dispatch only six couriers.

(b) Prove that.it cannot be done with five couriers.

3.

4.

(a) What is the minimum number of parts into which the message must be
broken up?

(b) What is the minimum number of couriers required in this case?

(a) What is the minimum number of couriers that must be dispatched?

(b) What is the minimum number of parts required in this case?

* * * * *

Astrology

The role of astrology in the development of mathematics, physics,
technology, and medicine has been both misrepresented and downplayed;
contemporary scholarship' has been restoring proper perspective to this
activity. We are dealing here with a prescience and a failed science. It
can be called a false or a pseudoscience only insofar as it is practiced with
conscious deception.

Philip J. Davis and Reuben Hersh: The Mathematical Experience,
p. 101, Birkhauser, 1981', Boston.
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Fifteenth Century Mathematics Teaching ­
A Comment on Leonardo da Vinci's

Training in Mathematics

Boys [like Leonardo da Vinci] from the intermediate
stream - the "semi learned" . we might call it - attended
"abacus schools" from the age of seven to twelve. more
or less. Their instruction in arithmetic was in spirit
much I ike teaching of mathematics today in American
university classes for physicists, chemists. engineers,
biologists, economists. pre-medical students. and
computer scientists: recipes to be got by heart,
innumerable routine examples differing from each other
in principle not a whit. just mindless drill. as
monotonous as an assembly line. with no justification
even of the rough~st sort. not a trace of proof or
logical criticism, no hint that to think might serve any
purpose. As the word "mathematics" derives from a Greek
verb meaning "to ascertain, understand. comprehend".
these schools' approach to mathematics is the embodiment
of the antimathematical. '

'From "The Page-Barbour Lectures for 1985".
by Clifford 'Truesdell: Experimental Science

without Experiments: Leonardo ds Vinci. page 5,
published by the University of Virginia Press. 1987.

* * * * *

PROBLEMS AND SOLUTIONS

Problem 13.4.1 Show that, on a 4 by 4 chessboard. a knight cannot start
at any square and then visit once only, in turn. each other square of the
board.

Problem 13.4.2 If you watch a game of snooker Qn video. using the Fast
Forward facility. not only is the action greatly speeded up, but the balls
come to rest with astonishing.rapidity. Why?
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PERDIX

The 30th International Mathematical Olympiad took place from July 13th
to July 24th in Braunschweig (Brunswick). the birthplace of Gauss. West
Germany. Fifty countries .competed. slightly fewer than in 1988. China came
first .wi th 237 points. Rumania second wi th 223 points. USSR third wi th 217
points. East Germany fourth with 216 points, USA filth with 207 points. The
maximum possible points is 252 (at ,most six in each team. and 42 points' the
highest 'possible score for each contestant). Last year, 1988. China, Rumania
and the USSR also held the first three places, but in the order USSR, first.
with Rumania and China equal seconu. Australia was 22nd this year (17th in
1988) .~i th 119 points.

Congratulations to ,all members of the Australian team. The team was
slightly changed from that announced in Part 2 (p. 64) of this year's
Function: Danny Calegari wi thdrew at the last moment and his place was taken
by ~he reserve Christopher Eckett. Mark Kisin and Alan Offer both obtained
silver medals and Kevin Davey and Brian Weatherson bronze medals. Our
individual congratulations to Mark. Alan. Kevin and Brian for an excellent
result.

Here are the competition questions. What do you think of them? Send me
your solutions .

. XXXo INTERNATIONALE
MATHEMATIK-OLYMPIADE
13.-24. Juli 1989.

Bundesrepublik Deutschland
Braunschweig· Niedersachsen

English version

FIRST DAY

Braunschweig, July 18th 1989

1. Prove that the set {l. 2, ...• 1989} can be expressed as the disjoint
union of subsets Ai (i = 1,2.... ~ 117) such that

(i) each Ai contains 17 elements;

(ii) the sum of all the elements in each Ai is the same.

2. In an acute-angled triangle ABC the internal bisector of angle A meets
the. circumcircle of the triangle again at A

l
• Points B

1
and C

l
are

defined similarly. Let A
o

be the point of intersection ·of· the line

AA
1

with the external bisectors of angles B and C. Points B
o

and

Co ar~ defined similarly.

Prove that
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(i) the area of the triangle ABC is twice the area of the
000

, hexagon AC BA CB 1 ;1 1

(ii) the area of the triangle ABC is at least four times the
000

area of the triangle ABC.

3. Let n and k be positive integers and let S be a set of n points
in the plane such that

(i) no three points of S·are collinear, and

(ii) for every point P of S there are at least k points of S
equidistant from P.

Prove that
k < 1/2 + 12il.

Time: 4.5 hours
Each problem is worth 7 points.

SE<X>ND DAY

Braunschweig. July 19th 1989

4. Let ABCD be a convex quadrila·teral such that the sides AB. AD. BC
satisfy AB = AD + BC.
There exists a point P inside the quadrilateral at a distance h from
the line CD such that AP = h + AD and BP = h + BC.
Show that

1 . 1 1
-~-+-- .
Ih lAD .(BC

5. Prove that for each posi t i ve integer n there exis t n consecut i ve
posi tive integers none of which is an integral power of a prime number.

6. A permutation (Xl' x
2

, ••• • x
2n

) of the $et {I. 2. 2n}, where

n is a positive integer. is said to have property P if

IX
i

- X
i
+

1
1 = n for at least one i in {I. 2, ...• 2n-I}.

Show that. for each n. there are more permutations wi th property P
than wi thout .

Time: 4.5 hours
Each problem is worth 7 points.

* * * * *
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I received the following letter from Mr John Barton.

. No.r th Car 1ton
16 July '1989

Dear Perdix.

Herewi th one trigonometric solution of Q. 4 •.p. 96 (vol. 13. No.3).
There are several others. of similar style. in which Ceva's theorem is not
explicitly used. The frustrating thing. however. is that a ~pure euclidean'
demonstration eludes me. In principle, I suppose, every trigonometric
solution has its corresponding pure geometrical parallel solution, but this
trigonometrical solution, and the other similar ones, are hardly to be
described as simpJe.

Question 4. FUNCTION t VoL. 13. Part 3 (June 1989), p. 96

A

so that

1.

By the sine rule for a COX,

ex a/(2 ~in 0)
sin(~-2a) = sin(5a-~) ,

since triangles YBO and
AYX are isosceles, so that
YB = OB = R and XA = XY.
Hence

4sin 0 cos Q BM
a . MC . ex = 1.

AY Blf CX
YB . MC . XA

2XY cos Q BM CX
a/(2sin 0) . MC . XY = 1,

Draw the line ADM, as shown.
It is 'easy to .find the
angles. as· marked. in terms
of LBAC, denoted by a. If
BC = a, the radius R of the
circum-circle is
a/{2 sin a). We have. by
Ceva's theorem,

ex = -a sin 2a/{2 sin 0 sin Sa).

Hence BM = _ 2 sin 0 sin 50 1
MC sin 2a 4 sin a cos a

But BM sin LBOM sin 2(4a-~) sin Sa
MC sin LMOC sin 2{~-3a) = -sin eo .

sin 50
2 sin 2a cos a

Hence

sin 5a sin eo = 2 sin 2a: cos ex sin Sa

cos a - cos .11a'= 2 cos o(cos eo - cos 100)

cos 7a + cos 5a - cos 110 - cos 9a,
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so that
cos a - cos 7a

sin 4a sin 3a

whence, cancelling sin 2a,

2 cos 20 sin 3a

cos Sa - cos 9a

sin 7a sin 20,

sin 7a

sin 50 + sin Q = sin 50(1-2 sin2a) + cos 50 sin 2a.

Cancel sin~, and divide through by sin a to get

2(cos Sa COSa - sin 5a sin a)

2 cos 6a.

Hence 11"
50: = ± 3 + m. 211" (m an integer).

**
**

The first few posi tive solutions are 10°, 50°, 70°. 110°, 130°.
If a = 10° and we take 0 between Y and C. then AO) CO which
contradicts data. If a = 70°, X is not between A and C, which
contradicts data. Hence a = 50°.

There" surely must be some relatively simple construction to allow a
"pure euclidean" solution? Note that the points B. Y. 0, 11 are
concyclic, but how can one show this without first solving the problem?

Can anyone solve Mr Barton's problem: can you find a solution not
involving the trigonometric complications he has used? -

* * * * *
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