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The front cover exhibits a regular pentagon, and its "diagonals,
inscribed in a circle. The beauty of the regular pentagon, often remarked
upon by artists, architects, and mathematicians. partly stems from the fact
that the ratio of the length of any diagonal to any" side is the golden
section number (see The Front Cover, and Fun with Fibonacci, in this issue).
A rectangle, the lengths of whose sIdes have this ratio, has almost
universally been regarded as having the ideal proportions.

We have reproduced in this issue, under the heading TEN YEARS AGO, an
article on Black Holes, by ('JOlin" McIntosh, from Function of June 1979.
Research on this subject continues to be energetically pursued and Col in ~ s
article is as relevant today as it was in 1979.
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THE FRONT COVER
The regular pentagon is one of the figures that exhibits ,the golden

~+1 2section number T =~f the positive root of the equation x - x-I =O.

(See Fun with Fibonacci. by Richard WIli taker. pp. 73-79. for further
situations that involve the golden number.)

8

Figure 1

First let us calculate some angles associated with the regular pentagon.

Each side of the pentagon subtends an angle of
21f . 360 7205 radlans =5 degrees .= at its centre O. and consequently subtends

36° at its opposite. vertex: in Fig. 1. L ABO = 72° and L EBD = 36°. Thus
each of the base angles of isosceles triangle ABO is 54° and the angles
of the pentagon are each (2x54)o = lOSo.

The isosceles triangle determined by any two adjacent sides thus has
base angles of 36°:"in Fig. 2 triangle ABC has angles of 36°. lOSo and
36°. Let the diagonals AC and BE meet at K (Fig. 2). Then KC is
parallel to ED and KE is parallel to CD. so KCDE is a parallelogram.
Hence KC is of the same length as ED, a side of the pentagon.
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B

Figure 2.

Suppose lire take the length of a side of the pentagon to be 1 and each
diagonal to be of length T. Then AK = 1"-1 ::: KB, and since triangles ABC
and AKB are simi lar we have

AX/AB = AB/AC

i.e.

i.e.

so that

1"-1 1
-1- =:;

.,.2 _ l' - 1 = 0,

/5+1
l' =-2-' the golden number.

We can. also read off from our figures the sines and cosines of various
angles. In particular, from Fig. 1, we have

o 1 1 1
cos 72 = 2,ED/BE =2/1' = 21'

1 15-1=--=--:;r
15+1

and



68

15+1=--r .
How do we construct regUlar pentagons - using straight edge and compass

only? Here are two problems: (a) construct the pentagon when a side is
given; (b) construct the pentagon when a circle in which it is to be
inscribed is given.

Again. given a segment pf -.length 1, can we construct another segment
whose length is T, the golden number?

Send your favourite methods in to the Editors and await the next issue
of Function.

* * * * *

Problem 13.3.1, composed by Marta Sved

The importance of being earnest

Tom, Dick, Harry are three brothers,
Hearty t hale and· youthful.
And each of them is always lying,
Or - is always truthful.

"Most of them are truthful, though".
Claimed their doting mother.
So I went to ask the lads
To tell about each other.

Then Tom declared that Dick denied
That Harry always lied.
"Tom tells a lie, I tell you so";
Brother Harry cried. -

I am confused. I must confess,
And now I turn to you.
am you tell me who was lying
And who is always true?

* * * '" *

"Those who have ail excessive fai th in their ideas
are not. well fitted to make discoveries."

Claude Bernard, as quoted with approval by Jacques
Hadamard in "An essay on the psychology of invention in
the mathematical field", Princeton University Press,
1945.



Ten years ago

BLACK HOLES

CoB~Go McIntosh, Monash University

Black holes are objects which exert gravitational influences
but cannot be seen because they do not emi t light signals.
The first suggestion that such objects exist was made by the French
mathema..tician Pierre Simon de Laplace in 1798. Laplace said: "A
luminous star. of the same density as the Earth. and whose diameter
should be two-hundred and fifty times larger than that of the Sun.
lfould not. in consequence of its at·traction. allow any· of its rays
to arrive at us; it is therefore possible that the largest luminous
bodies in the universe may. through this cause, be invisible."

Laplace' s prediction l'faS made on the basis of -Newton' s theory
of gravi tation: he suggests that the gravi tational field of the
concentrated object is so strong that light emitted by that object
would not have sufficient energy to escape the surface of that
object. Thus the object wouid be invisible to an external
observer.

I t is Albert Einstein' s gravitational theory. the general
theory of relativity. dating from 1915. that fully predicts and
describes black holes; thus"i tis in terms of this theory that
black holes are discussed in this·article. .

General relativity describes gravitation in terms of the
geome~ry of 4-d·imensional .spacetime and Einstein gave a set of
equations. the "Einste.in field equations" of general relativi ty.
which describes the geometry for the spacetime. These field
equations have the form .

[

Function of the geometry] [Function of the matter....]
of a given 'region of = energy content of that
spacetime region of spacetime

A solution of these equations in a given region thus gives a
description of the geometry of that region for a given' type of
matter-energy content. One of . the first solutions of these
equations is one given by Karl Schwarzschild' in 1916. This
describes the geometry of the region of spacetime ·in vacuum (i.e.
the matter-energy content of the region is zero) surrounding a
spherical star. Even though this solution has been known for such
a long time. it was not until the 1960' s that many of its basic
physical properties were understood; indeed, it was not until the
1960's with the discovery of quasars s cosmic background radiation
and neutron stars that much. work went into understanding -general
relativity and its implications for astrophysics and other areas of
physics.
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In 1963. Schwarzschild'ssolution of Einstein's equations was
generalized by Roy Kerr (a New Zealand mathematician) to include
rotation: the geometry is no longer spherical but it is symmetric
about the axis of rotation. This was generalized in 1965 oyEzra
Newman and co-workers to account for the possibility of the star
having a net electric charge. It can be shown. under reasonable
assumptions. that this solution with three parameters. H. a and e
(for ma.ss~ angular' momentum and electric charge) is the most
general solution of' Einstein's equations which has the properties
of a black hole.

Many questions now arise: In what ways do these solutions
represent black holes? How big are black holes? What other
properties do they have? How do they fQrm? How can a black hole
be detected? Has one been detected?

Mathematically. then. a black hole is a certain type of
solution of Einstein's field equations. Physically. a large black
hole is formed when an object such as a star has undergone complete .
gravitational collapse. Small ,black holes may have been formed in
the big bang at ~he beginning of the Universe. No light can be
emitted by a black hole. No matter can be ejected. Anything that
falls into the hole loses its identity.

Consider a black hole of mass 11 but without angular momentum
and electric charge (this is just Schwarzschild' s solut.ion).
Surroundipg this black hole there is a spherical surface of radius
r =2MG/c

2 (where G is the gravitational constant and c is the
speed of light):, this radius is known as the Schwarzschild radius.
The formula shows that a black hole of the mass of the sun would be
about four miles across! The surface at this radius is lmown as
the event horizon. The word horizon is used because objects such
as light rays. radio signals. rocket ships or other stars can cross
the surface from the outside to the inside'but nothing can 'cross in
the other direction. If you are watching a spaceship go towards
the ,black hole. you will see itd,isappear f,romsight; you will
never see it again! It goe,s over the horizon! There is no:way in
which it could turn round and escape. The people in the spaceship
cannot tell you what it is like inside the event horizon because
their radio or other signals cannot cross back over the horizon.
The spaceship and its occupants would. however. be acted upon by
the extremeiy strong gravitational ~ieldfrom the black hole. They
would be torn apart by the force from this field in the direction
of their motion and then the constituent parts would ev~ntually be
crushed by the extremely large forces near the centre of the black
hole. Thus· the occupants could not examine the black hole for very
long.

Black holes are thus invisible to someone looking through a
telescope. Not only are they black. but their small size means
that their resul ting angular diameter in the sky would be of the
order of magnitude of a million millionth of a second of arc.

, The only qual i ties of a black hole that can be measured are
its mass. its angular momentum and its electric charge. We cannot
even a,sk. in a meaningful way. from what elements it is made. Two
different stars of equal mass. but of differing composition. can
form identical black holes.



The physicf-! of it. black hole to ~ observer thus depends· on
where he or she is~ An observer' "\111.0 chooses to follow matter
through the horizon wi 11 see it crushed to· indefin! tely high
density; but will t?tlso be crushed by indefinitely high forces.
This crushing will take place at a· finite time (as measured by that
observer) after the matter (or observer) has crossed the horizon
and is inevitable. The observer has no more power to return to a
larger r value (outside the black hole r is the radial distance
from th~ centre of the hole) thaI'"! we have the power to turn ·back
the bands of the clock of life. The tidal gravitational forces
experienced by an object or observer resulting from the black hole
are proportional to 1/r3

• (Tidespeven on earth. result from
forces of this character.) For'a black hole of one solar mass~ the
force at the' event horizon (or Schwarzschild 9 s radius r =2HG/c2

)

is about a thousand million times the force due to gravitational
acceleration on the surface of the Earth. An observer who. was near
a black hole of this size would be g'tretched lengthwise in the
direction of motion. and crushed sideways by such tidal forces weil
before he or she reached the event horizon. For' a massive black
hole (many orders ofmBgnitude greater' than th.e mass of the sun) an
observ~r can cross the event horizon and experience very' little
force - but. can ,never escape! Inside a bl~ck hole of about ten
million times the mass of the sun, the obs~rver could last about a
day as measured by an atomic clock he or she might be carrying.­
But then crushing is inevitable.' This crushing means that objects
and then the atoms that once formed those objects would be ripped
apart by the tidal .forces.

On the other band. an observer who sta..ys a long -way from the
black hole to watch an object falling through. the horizon does not
actually see it cross the horizon; he or she measures that it would
take an infini te time to do so! However t the object does almost
suddenly disappear from sight (and from ether means 'of contact)
after a fin! te time as the light from the object is red-shifted
enormously and can no longer bes~en by the. distant observer.
(This means that the wavelength of the 1ight emi tted becomes
progressively longer, and therefore the light appears redder p until
the wavelength is so long that the light cannot be seen; Th-18
process can take place in extremely short times.)

Black holes more massive than the SlID. are formed from the
gravitational collapse of large stars. When the sun will have' used
up a lot of its hydrogen iIi thermonuclear reactions. present theory
suggests tbatit wi 11 expand into a red giant and later f af ter
using up more fuel. will contract ~nto a white dwarf of about one
hundredth of its present radi.us. A larger star .• say one of twice
the solar mass, will probably eventually explOde as :a supernova and
its core will collapse into a neutron star. A neutTon star ot "mass
equal to that of a solar mass would have a radius of about Qne
seventy thousandth of the 'sun·s radius!

However~ there is no stable equilibrium stat~ for stars of
more than about three solar masses. So after gravi tational
collapse it is expected that such a star will collapse into a black
hole. The mass of such black ,holes may increase by the accretion
of other material D by the swallowing up of other stars j) or 8bfter
the colI i sion wi th another black hole; but it may nev~I' d~!"ea~e,.
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Small black holes may, however. have been formed in the big
bang at the beginning of the Universe. A black hole of about the
mass of a fair'"!"sized mountain would have a radius of about
10-13cm! Such black holes cannot be created today, as there is no
way that there could be the necessary forces to compress material
to form such an object. Stephen Hawking in 1975 showed that such
black holes will radiate like a black body due to, quantum
mechanical processes and that the smallest black holes would have
radiated away by now. However. this is too complicated a story to
go into here. Large black holes also radiate but at such a slow
rate that they virtually seem not to radiate at all.

And detection? Black holes' canno·t be detected in isolation;
but one hope is that one can be found as a partner of a "live" star
in a binary.system in which the hole and the star rotate round each
other. There is good reason to believe that the X-rays from a
source known as Cygnus X-1 result from material being torn apart
just before it plunges into a black hole. an unseen companion of
the massive starHDE 226868. The ,probable black hole has a mass of
about four solar masses; big enough for a collapsed star of this
mass to have formed a black hole. There is also evidence that
there is a black hole at the centre of the galaxy M87.

The theory of black holes is thus an extremely interesting
one.' Some ideas of further properties can be found by reading some
cIr all of the following references. More properties remain to be
discovered. We must also wai t for news that one or more black
holes have be~n discovered. Theory predicts them; there is a very
good chance that they exist - but don't go and visit one!

References for Easy Reading

Roger Penrose. "Black holes". Scientific American. May 1972 s 226.
38.

Kip S. Thorne. "The search for black holes". Scientific American,
December 1974. 231. 32.

Stephen W~ Hawking. "The quantum mechanics of black holes".
Scientific American. January 1977, 236. 34.

Also Recommended

Reno Ruffini and' John A. Wheeler.' "Introducing the black hole".
Physics Today, January 1971, 30.

Charles W. Misher, Kip S. Thorne and John A. Wheeler.
"Gravitation". W.H. Freeman and Co •. , San Franc'isco. 1973.

Function, June 1979

* * * * *
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FUN WITH FIBONACCI

Richard Whitaker,
Bureau of Meteorology,NSW Regional Office

Leonardo Fibonacci (circa 1170-1230) was an Italian mathematician who
lived in the famous city of Pisa, and is generally r~garded today as one of
the outstanding mathematicians of medieval times.

He published several important works, perhaps the best mown being LIBER
ABACI (1202) in which the famous 'Fibonacci sequence' was postulated, in

order to explain the breeding pattern of a family of rabbits. t

This sequence of numbers, I, I, 2. 3, 5, 8. 13, 21, ... , can be obtained
by beginning wi th i and 1, and then adding progressively t so that each term
is the sum of the two previous terms.

We wri te f = 1 t f = 1. £ = 2, ... " where £ = f + f
1 2 3 . n+l n n-l

(1)

This deceptively simple sequence does not, at first glance, appear to be
much more than. a mathematical trivia'li ty, but nothing could be further from
the truth. In fact, the hidden depths and intricacies surrounding the
Fibonacci- sequence [or F-sequence] have intrigued and fascinated
mathematicians of all persuasions down the centuries.

Appendix 1 is a simple program in BASIC for calculating the Fibonacci
sequence. This is suitable for use on such computers as the Commodore 64.

The Fibonacci sequence crops up in unusual places in nature as a type of
biological growth patt~rn; ~swell as. the ra'bbi tpopu,lation c:liscussed by
Fibonacci. himself, the F-sequence can be found in the branching habits of
trees and the arrangements of leaves on various plants. (There is quite a
fascinating Ii terature available which discusses the F-sequence in nature.
See e.g. references (I), N.N. Vorobev, Fibonacci numbers, Pergamon Press· and
(2), Fibonacci -Quarterly (Journal of Fibonacci Society)} . Perhaps the most
interesting aspect of the F-seque.nce is revealed when the ratio of
successive terms is· calculated (larger over. smaller) to produce a new
sequence:

1 2 3 5 S 13 21
I' I' 2' 3' 5' S' 13'

f
n+l
~, ....

n

Experimentation wi th a calculator, or by using the program in AppendiX 2,
will illustrate that this new sequence tends to a llmi t of approximately
1.6180339 ... as 'we move up the F":'sequence.

t Fibonacci assumed that his rabbtts lived for ever. Initially he had one
pair of rabbits who produced their first pair of offspring after 2 months,
and thereafter a pair each month~ Each pair consisted of a male and· female.
and followed the same pat~ern of reproduction.
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The way in which this limit is reached is interesting in its own right,
as the approach is made by successively "overshooting" then "undershooting"
the limit, each time by a progressively smaller amount.

It is a fairly straightforward matter to prove (and a proof is offered

below) that this number (we-Ii call it r). is equal to 1~~ which to nine

decimal places is - 1.618033989.

This number 1" is the famous "'Golden Section". "Golden Number" or
"pivine Proportion", which in the past was accorded almost holy status by
various branches of early mathematical philosophies.

I t was Eucl id who posed the question: If we have a rectangle of long
side x and short side 1, can we cut from it a square of side 1 such that
the remaining rectangle has the same ~hape as the original?

x

1

positive root

r

Fig. 1

x 1The answer is yes, provided. I =x-l' i.e.

1+15
x = If = -2-.

x-I

x
2

- X - 1 = 0, which has as its

Another geometrical problem which leads to
We have a line AB. We are to find a point
AB/AC =ACjCB.

1" is as follows:
C - on this line such that

A C

Fig. 2

B

It is readily shown that for this to-be so. AB/AC = r. This divisiC?n of
the segment AB is said to be. a golden section of AB.

A simple algebraic consideration shows the connexion between Fibonacci
numbers and the golden ratio T.

As seen above, the equation leading to 1" is

xl. - x-I = O.

Its two roots T and ~ satisfy
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'T + 'f =
r (2)

[They are 'r::: 1;15 and 1-/5
r =-2-. Notice that

1/.,. = _2_ =
1+15

in line with rr -1.]

2(15-1) 15-1= -2- = -'T.

(/5+1)(15-1)

Look now at the sequence defined by

n -n
U =.,. -.,.

n

so that

and

COnsider the identity

n+l --n+l
U = r - r

n+l

From this. by using (2), we obtain that

u = u + U
n+l n n-l

COmparing this with (1) and (3). it follows that

u =/5f a.nd u =..(5£,
1 1. 2 2

} (3)

so

and generally,

f = u /15.
n n

Thus we have an explicit formula for Fibonacci numbers, in terms of the
golden ratio 'T.

From this we can deduce the value of the limit of f /f as n ~ w.
n+l n

For
f

n+l
-r- =

n

n+l -n+lr -.,.
n -n

'T -.,.

.,._(r/.,.)n

l-C;/.,.)n



as n -7> ~; whence
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and since -1 <T/1' < 0

1-15 - n-1 < r =~ < 0); (r/r) -7> 0

(indeed'

f
lim n+l

f
n~ n

1/1' =

r.

so T/1' and

In'these days of the personal computer, it is always interesting to try.
and construct an iterative sequence to derive various numbers, and the same
temptation exists with 1".

An iterative sequence

a,a, ... ,a, ...
1 2 n

is a sequence, where each a is constructed as a fixed function of the
n

previous term, i.e.

A simple example is

Thus the sequence is

a = a
2 where

n. n-l
a.

1
3.

3, 9, 81, 6561, ...

which is a fast-growing sequence: "going to infinity". It is more
interesting to consider convergent iterative sequences, where the terms tend
to a limit as n goes to infinity, which means that a number A exists such
that the difference between A and any of the terms a can be made as'

n

small as we wish, provided that n is large enough.

One well-known iterative sequence which generates r is

((( ]

1/2 ] 1/2 ] 1/2
lim. .. 21/2+1 +1 +1

n~ n roots

This sequence was begun, or "seeded"; with the number 2, that is, a
1

= .(2,

a =h+1 • a:Qd generally. a· = I a +1; other numbers will do as well. but
2 n+l. n

2 will be used for the sake of this discussion.

To show that the limit of this sequence is T, consider more generally
the sequence

((( ]

1/2] 1/2 ] 1/2
. . . 21

/
2+a +a +a



We have a = 21/2 , a = (a +a)1/2. . . .• a = (a +a)1/2 • •..
1 2 1 n+l n
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Suppose that

lim a =A; then it is intuitively clear that
n

A = lim a
n+l

lim(a +a)1/2
n

n-7CO

{A+a)1/2
•

Thus A
2 = A + a. In the case considered. in which a = 1. we get

A
2

- A :- 1 = 0, and so A. the posi tive square root of this equation,
equals 1".

More generally. we obtain by considering in a similar manner the
sequence generated by giving a

1
, and for some fixed a, b, k having

a = (a+b8 )l/k
n+l n

tha t .8 + bA = A
k

•

(5)

(6)

This is rather handy, because it ties in neatly with a special property
of 1', namely:

1 + 21" = '[3 2 + 31" It" ; 3 + 51' = 51" ; 5 + 81' = .,6 etc.

Notice the F-sequence running through these. equations!
induction to prove that "n = f + f 1".

n-1 n

You may use

Referring back to (1) and (2), we can now construct an infinite number
of iterative sequences which generate r, some examples of which are:

:~ .. .2[2[2.2113+1f/\lf/3+1f/3 ... = 'T

(n operations)

:~ .. .3[3[3[3.21/4+2) 1/\2)1/\2) 1/4 'T

or, if 'b'· is the kth term of the F-sequence. 'a' the (k_1)th, then

[ [ [ )

11k ) 11k ) 11k
lim ... b b b b.21

/
k+a +a +a ... = 1".

n~

Appendix 3 is a program for calculating such sequences.

You will find that the larger the values for a, b chosen, the more
rapid the convergence to 1". For the student who wishes to ask "how rapid is
more rapid?", the following line of argument may be of some assistance.
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Consider the sequence

( ( ]

11k ] 11k J
- ... b b b.21/k+a +a ...

where geT) is some function of r. Now the second bracket is. of course.
approaching ~ero at a' certain rate, and if we can choose g( r) such that
(g( T»n is increasing at the same rare. intui tively we can see that a'
finite, and in general non-zero number will be generated. Without going into

krk~l h
detail. it can be shown that' geT) must equal -b-; and if we replace t e

"seeding value" of 2 with a variable x, then the folloWing function may be
'defined.

rex) = ~.::[k1·:-T[r - ...b(b (b.x1/k+ar\af'k.. .J
(n operations)

Appendix 4 is a program for calculating an example of a function of this
type. [Unless you are using double precision, let the program run for only 7
or S iterations, because rounding error takes over -soon after. This is
because we are multiplying a number that is gettir~ smaller and smaller (the
second bracket term) wi th a number becoming larger and larger (the first
bracket).]

If you can find the time to plot a family of I(x) curves for different
a, b values you may be pleasantly surprised at the symmetry produced.

(
krk

b
- 1]nAnd the final observation is that may be thought of as a rate

of convergence of .. ,b[b [b .x1/k+aJ 11k+a) 11k to r.

The Fibonacci sequence is a fine example of the principle that what may
appear simple can be far morecomplieated than we first believe. Or, put
another way, you can never judge a book by its cover.

1.

10 N=l
20 A=O
30 B=l
40 C=A+B
50 PRINT N;B
60 A=B
70 B=C
80 N=N+l
90 GOrO 40
RUN

APPENDICES
2.

10 N=l
20 A=O
30 B=l
40 C=A+B
50 PRINT N; CIB
60 A=B
70.B=C
SO N=N+l
90 GOTO 40
RUN



3.

10 N=l
20 X=2
30 Y=X1'(l/6}
40 PRINT N~Y

50 N=N+l

60 X=8*Y+5
70 GOTO 30
RUN

(This calculates the sequence
.. .S(8(8(S.21/6+5)1/6+5)1f6}+5)1/6) ... )

* * *

4.

10 N=l
20 X=2
30 A:l.618033989
40 Y=X1'(1/6}
50 PRINT N;«(6/8}*(A1'5)}1'N}*

(A-Y)
60 N=N+1
70 X=8*Y+5
SO ooro 40
RUN

(This will generate the number
4.6269.... By taking different
X values~ a curve can be plotted)

* *
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.THE MATHEMATICS OF
'FAMILY·PLANNING.INSURANCE

Shafat Ae Chaudhuri, FIA, Delta Life Insurance Coo Ltdo,
11, Dilkusha C/A~ Dhaka-l000 , Bangladesh

At a recent UNESCO conference in Dhaka, Bangladesh, Mr
Shafat A. Chaudhuri, an actuary with the Delta Life
Insuranc~Company1 pres~nted his concept of Family
Planning Insurance. One o~ Function's editors (I1.A.B.
Deakin), who wa.s alsoa.t the conference, sought and
obtained Mr Chaudhuri's permission to publish an edited
version in Function. Mr Chaudhuri greatly assisted in
this process' by supplying not only the text of his
conference talk, but also a copy of a much longer paper
he has written on the subject. He tells us that his
scheme 'is reaching the finaL" stage of preparation of a
pilot project. We thank l1r Chaudhuri for allowing us to
use this material in Function and wish his project the
success it most' certainly deserves.

A family planning programme, aimed at curbing the rate of population
growth. is currently receiving the Bangladesh government's most urgent
attention. But despite all the efforts made and all the money spent, targets
are not being met. This is frustrating. but not really unexpected in the
circumstances. The problems are many and complex. and no-one would dare to
prescribe an easy solution. But two problems can easily be identified. both
relating to financial motivation.



80

First, the government field workers have no financial incentive to work
hard. and second, the individual couples (the progranune targets) have no
inducement to limi t fami ly size. If these two deficiencies could be
remedied, the success of the programme would surely be greatly enhanced.
This paper describes an administrative framework wi thin which this could
occur.

Three suggestions are here put forward.

L. The field-worker's income (at least in part) should be linked to his
success in achieving birth-preventions.

2. The target couples who succeed in achieving birth-preventions should
have their old age secured.

3. The present programme should be restructureq as an insurance scheme.

To elabor~te these suggestions, consider first insurance on mortality.
In this case. a claim arises in the event of mortality, i.e. death. But. on
the other hand. there is pension life insurance in which a ~laim arises with
the non-event of mortality, and payments are made as long as death does not
occur. Similarly, there are policies which fall due, i.e. a claim art-ses, in
the case of an event of fertility, i.e. a birth. What is here proposed is
the opposite of this: a claim that arises with the non-event of fertility. A
fertility-based family planning insurance works with probabilities of
non-fertility. exactly as a pension 'Works with probabilt"ties of
non-mortality. Claims would- be paid to field-workers and target couples on
the basis of the pattern of births among the insured couples.

In essence, what is proposed is a contractsyst~m. The government would
opt to have its family planning progr8l1D1le carried out via insurance
contracts. Such contracts would have· two tiers. The upper tier would
involve the government and the insurance company. The government would pay a
premium to the insurance company and set a target of birth~reduction to be
achieved for this premium. In the event ofthecompany'-s-failing to achieve
the target. part of the premium would have to be refunded, the amount in
question depending on the extent of the shortfall.

The lower tier of the contract would be between the company on the one
hand and the field-workers and target couples on the other. The company
would pay to the field-workers and the target couples a remuneration directly
related to the birth-reductions acl;lieved. In measuring "birth-reduction".
note would be taken of both the number of births and "birth-deferment".
Thus. a worker in the scheme would earn an income directly related to
success, as measured by the lowering of births among the client couples
involved. Similarly with each couple.

Important to the whole 'concept is the measurement of birth-prevention
and birth-deferment. This latter is significant because it is found to have
a significant effect on the overall population growth rate.

It is not, in fact, a difficult actuarial exercise to calculate for each
couple a notional number of "birth-preventions" based on the number of
previous births, the age of the mother, the length of the marriage and so on.
This is what the family planning programme ultimately entails.
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Such calculations involve mathematics. which, although readily
understood by those with adequate training. is unfortunately too complicated
to be followed by most of those concerned with implementing the programme.

Thus. al though it would be ideal to have the scheme based on actual
births prevented (a BP-based scheme we call this). it is unrealistic" to
expect to be able to calculate this. and we have had to opt for a simpler
scheme involving what we term claim points, giving rise to a CP-based scheme
in the technical terminology.

Claim points are awarded to each target couple on the basis of their
success in postponing or preventing births as compared wi th the population
average. The aim is to derive a simple but reasonably fair and actuarially
sound formula which allows the ready calculation of the number of
claim-points. i.e. "the value of CP.

There are many possible ways -in which this might be done. Here is one
of them.

Multiply:

Months after marriage but
before the birth of the
first child

Months subsequent to the
birth of the first child but
before the bir~h of the second

Months subsequent to the
birth of the se~ond child but
before the birth of the third"

and then add.

}
}
}

by 6

by 5

by 3

This formula would give CP in the case of a couple with O. 1 or 2
children. If three or more children are born to a couple, then a separate
table of deductions would apply.

On this basis. tables may be constructed from which it is possible to
read. off the number of claim points from the history of fertility for each
target co~ple. The level of remuneration for each worker and each couple
would then be fixed by putting a monetary value on each claim point.

Whatever method of determining claims is employed (whether it use BP or
CP. or CP as measured by some other formula). a mathematical model will be
required to put the scheme on a sound theoretical basis - just as is the case

with the different forms of life insurance. t

Consider that case as background. If

t lex)
q(x)

d(x)

is the number "of living people x years old.
is the probability that a person aged x years dies before
attaining the age of (x+l) years.
is the number of deaths of persons aged x years,

t For more on life insurance, see Function, Vol. 5, Part 2.
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then

}"'ur thermore ,

t(x)q(x) d(x). (1)

f(x+l) = lex) - d(x). ,(2)

'The probability that a pension will be payable to a person, now aged x
years. t years in the future is t(x+t)/l(x). To pay for that pension we
invest the premiums at a rate R% (say) of interest. For each dollar we
need in the future we invest v

t dollars now, where

v = 1/(1+R/lOO). (3)

Life insurance companies gather data on q(x) and use these together
wi th equat ions {1} , (2) , (3) to determine the premiums payable f or such
pensions. Different companies approach the matter in, somewhat different
"Ways, and ulti,ma.tely a certain judgement must be exercised. However. the
main outlines of the approach are clear.

In the case of family plarming, the mathematical model is necessarily
more complicated. While each person dies only once, a woman can and usually
does give birth to several children and we need to consider not merely how
many of these there are but also how they are spaced.

Analogous to the function q(x} in the life insurance case discussed
above is a, more complicated function q(y,i}. d'efined as being the
probability that a woman who has been married for y years will give birth
to her ith child before her (y+l)th anniversary.

The theory then develops in analogy with the simpler case, via functions
d(y. i), l(y, i) corresponding to d(x), l(x).

Field surveys allow us to estimate q(y,i} and the challenge is to
produce models applicable to family planning insurance in the .way that the
more traditional models apply to pensions. My own company is active in this
area and hopes to run its first pilot study this year. '

* * * * *

Miscalculation wings Stealth

Any brilliant product of technology 1s only as good as the worst piece
of science that went into creating it. An error made by two aerodynamicists
43 years ago may have resul ted in the most brilliant product of modern
aeronautical engineering, the United States Air Force's new B-2 Stealth
bomber, being fundamentally flawed in its performance.

The 12 May edi tion of the journal. "Science" reports that Joseph Foa.
emeritus professor of engineering at George Washington University, has
accused those associated wi th the Steal th bomber project of a concerted
effort to cover up the facts about what he claims to be the inferior range of
so-called flying wing aircraft. as represented today by the Stealth bomber.
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The world's first "flying wing" bomber, Northrop's propellor-driven
YB-49, was cancelled in 1949 after only 15 airframes -- had been buil t,
ostensibly for budget reasons. Air force officials testified later that the
real reason was that its range was inadequate. despite calculations by two
Northrop aerodynamicists that the flying wing was the optimum configuration
for range and fuel economy. It was this assertion, emphasised' in their
report, that convinced the air force to experiment with flying-wing aircraft.

But in 1947, a young aerodynamicist working at the Cornell Aeronautical
Laboratory in Buffalo, New York, was performing theoretical work when·he came
upon a remarkable contradiction. The researcher was - Joseph Foa, and his
calculations indicated that not only 'was the flying wing shape inherently
inferior to a wing-and-fuselage design, aerodynamically it was the worst of
all possible configurations.

He found that the original Northrop researchers, William Sears and
Irving Ashkenas, had performed all their calculations properly, but had
accidentally reve-rsed their answers in a calculation [.of] the maximum and
minimum values for the ratio of total aircraft volume to wing volume. They
concluded - wrongly - that for an aircraft with almost its total volume !n
its wing, the range should be maximised, when the proper conclusion was that
it would be at a minimum.

He wrote to Sears and Ashkenas in 1947 to point out the error, and Dr
Sears replied, saying that while the error was embarrassing, nobody had taken
any serious action as a result. He dismissed the idea that the error should
be retracted, saying it was unlikely the air force would be excited by the
flying wing proposal.

In 1984, the Steal th bomber underwent a major redesign costing $1
billion, which changed its wing structure to decrease its weight. The air
force said it was to improve the bomber's terrain-hugging capabilities so it
could fly beneath radar - almost a contradiction of the original design
proposal, which called for ahigh~flying bomber that could elude detection by
being almost invisible to radar.

The redesigned Steal th has still not flown, al though it was rolled out
for public display last November. When it does, initial interest will
probably centre on its range, not its radar signature.

Taken from i'LEONAROO: TECHNOLOGY"
of The Age. 22 May 1989

* * * * *

Fermat's last theorem
"I have proved that the relation

xm + ym = zm

is impossible in integral numbers (x,y,z different from 0, m greater than
2); but the margin does not leave me room enough to inscribe the proof."

Found, after Pierre de Fermat's death, written (in Latin) in the ~rgin
of his copy of Diophantus' works.
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BOWLING AVERAGES

JoCo Burns, Australian Defence Force Academy

In a talk at the Canberra Mathematical Association, Neville de Mestre
discussed the following question relating to bowling averages:

Adams and Brown have each taken 28 wickets for 60 runs
before the last match of the season in which Adams takes
o wickets for 24 runs, while Brown takes 5 wickets for
40 runs. Which ends the season with the better

average?t

In the last game Brown performs much better than Adams, so it comes as a
considerable surprise that Adams with 28 wickets for 84 runs and an average
of 3 runs per wicket comes out ahead of Brown who has 33 wicke~s for 100 and
an average of just over 3.

It is ~ instructive exercise to analyse this problem in more
generality. The mathematics involved is of course entirely elemen:tary,
al though there is a useful emphasis on inequal i ties, an area which deserves
more attention than it often receives. The challenge offered by the problem
lies rather in plarining the investigation efficiently and expressing the
results simply. The discussion that follows may provide an opportunity for
students (perhaps in groups) to gain experience in these important aspects of
problem solving.

We suppose that as ,they enter the last match of the season, Adams and
Brown have each taken x wickets for X runs and that in the final match,
Adams takes a. .wickets f ot A runs and Brown takes b wickets for B
runs. The season' s averag~s for the two players are thus (X + A)/(x + a)
and (X + B)/(x + b) respectiv~ly.

It is sufficient to consider the condi tions under which a particular
player, say Adams, has the better average for the season. This will be so if
and only if

X+A < X+B
x+a x+b·

(To consider the case in which Brown has the better average, we simply
interchange A, a with B, b.)

A couple of special cases can be cleared up at once. If both bowlers
take the same number of wickets in the final game so a = b, then Adams has
the better average if he concedes fewer runs than Brown, i.e. A < B; and if
they 'both concede the same number of runs. in the last match so A = B, then
Adams.hasthe better average if he takes more wickets. i.e. a > b.

t The average is the total number of runs divided by the total number of
wickets taken. The lower. the better.
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.The interesting cases therefore are when a pll b and A 9' B. Decisions
are needed on how best to consider the range of cases in such a way that all
possibili ties have been included. We can begin by suppos~ng that Adams is
the player who takes more wickets in the last match. i.e. a > b and seek the
conditions under which he has the better average for the season. Do we need
to consider the opposi te case a. < b? No: this can be deal t wi th by
interchanging Adams' and Brown in the analysis that follows. We could equally
well start wi th the assumption that Adams concedes fewer runs in the last
match. i.e. A < B; we shall see that a comparison of the two approaches is
not without interest.

Adams. the player who takes the greater number of .wickets in the last
match. has the better average for the season if and only if

X+A < X+B
x+a x+b'

i.e. Xes-b) - x(A-B) > bA - a.B =ab(Ala-B/b).

Since s > b. this means that Adams has the better average if and only if

x > {x(A-B) + ab(A/a-B/b)}/(a-b). (1)

We now consider the condi tions under which this inequali ty (1) is
satisfied.

(a) a > b; A < B

If Adams concedes fewer runs in the last match than Brown so A < B (as
well as a > .b), his average 'in that match is better than Brown·s, i.e.
A/a < B/b. 'Thus, the right-hand side of (l) is negative. The expected
result 1-s therefore obtained that if Adams takes more wickets for fewer
runs in the last match than Brown, then he ends the season wi th the
better average.

Let us wri te C as a shorthand for ab(B/b-Ala)/(A-B), which
equals (a.B-bA)/(A-B).

(b) a > b; A > B, A/a < B/b; x :S C

If, on the other hand. Adams concedes more runs in the last match than
Brown so A > B. he may still have a better average than Brown in that
game. i.e. A/a < B/b. The sign of the r'ight-hand side of (1) then
depends on x. If x(A-B}:s ab(B/b-A/a) i.e. if x:s C the right-hand
side of (l) is negative or zero and Adams will have the better average.
whatever the value of X. For e~le, if a =5. b =3. so a > b;
A = 70, B = 60 so A) B and 'Ala = 14, B/b = 20. giving A/a < B/b,
then C = 9. Hence, provided ·x:S 9, Adams will have the better average
for any X.

Let us write F{x) for the right-hand side of (l).

(e) a > b; A > B; Ala < B/b; x > C and X > F(x).

When x > C. however. the right-hand side of (1), F(x); is positive and
(l) is satisfied, i.e. Adams has the better average. if and only if
X > F(x). Thus, in the example used in (b) above. if x = 25. then
F(x) =80 and Adams has the better average for the: season if X > 80:
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when X = 90, say. the averages for Adams and Brown are 5.33 and 5.36
respectively; when X = 80, each average is 4; and when X = 70, say,
the respective averages are 4.67 and 4.64.

(d) a > b; A > B; Ala ~ B/b; X > F(x)

Finally, we have the case in which Adams not on~y concedes more runs
than Brown in the last match but also has an average in that match which
is no better than Brown's. In these circumstances, F{x), the right-hand
side of (I) is positive for all x but even so (1) will be satisfied
for any given. x, provided X > F(x) w'hen Adams will then have the
better average for the season.

For example, if a = 3, b = 2, so a > b; A =60, B = 20 so A > B
and Ala = 20. B/b = 10 giving A/a) B/b; and x = 10, then
F(x) = 460. Hence. provided X > 460, Adams will have the better
average for the season: when X = 490, say, the averages for Adams and
Brown are 42.31 and 42.5 respectiveiy; when x =-460. each average
is 40; and when X = 400, say, the respective averages are 35.38 . and
35.

The analysis has revealed a surprisingly complex array of circumstances
in which the player who takes more wickets in the final game has the better
average for the season; this will be so if

(a) he concedes fewer runs in the last game;

(b) he concedes more runs in the last game but has the better average in
that game and the number of wickets taken (by each player) before that
game is not. larger than a numberC determined by the performances of
both players in the last game;

(c) he concedes more runs in the final game but has the better average in
that game and, al though the number. of runs taken before the last game is
greater than C, the number of runs 'conceded (again bY_e8.ch.player)
before that game is greater than a number F(x) determined by the
performances of both players in the final game and the number of wickets
x > C taken before that game;

(d) he concedes more runs in the final game and does not have the better
average in that game but the number of runs conceded (by each player)
before the final game is greater than a number F(x) determined as in
(c) .

The results can be summarised more briefly and perhaps' more strikingly.
but less precisely. as follows: the player who takes more wickets in the
final game will certainly have the better average for the season if he
concedes fewer runs in that game; but if he concedes more runs in the final
game, having the better average in it will not necessarily give him a better
average for the season; neither. however, will having the poorer average in
the final game necessarily prevent his having the better average for the
season.
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All of this analysis began with the decision to look at what happens
when a > b. As was remarked at the time, we could equally well have used
the condition A < B as the starting point and an exactly similar analysis
would have followed. Once the two analyses are comPlete. it can readily be
verified" that there is a dualism between them in that one can be obtained
from the other by interchanging symbols (and their verbal equivalents)
according to the following pattern:

a.b; x.X ~ B,A; X,x.

This transformation has the effect of interchanging runs conceded and wickets
taken both during the season and in the final match. At the same time. the
roles of Adams and Brown. in the last 'game are interchanged. It is
noteworthy, however, /that this double interchange leaves the relationships
between averages unaltered: the relations A/a >, =..< B/b become
b/B >. =. < a/A which are the same as the originals: and the same applies to
the relations (X+A)/(x+a) >. =, < (X+B)/(.x+b). One is reminded of duali ty
in .three-dimensional projective geometry: when points and planes are
interchanged, lines are left unchanged, e.g. "three points determine a plane"
has as its dual "three planes determine..a point", but the dual of "two points
determine a line" is "two planes determine a line" .

. Here are some examples of the effect of the transformation involved in
our problem: a < b becomes B < A (i.e. A > B); x ~ C = (aB-bA)/(A-B)
becomes X ~ D = (Ba-Ab)/(b-a);

i.e.

x > {x{A-B} + ab(A/a-B/b)}/(a-b) =F(x) becomes

x > {X(b-a) + AB(b/B-a/A)}/(B-A) = f{X)

x > {X(b-a) + ab{A/a-B/b)}/{B-A) = f(X); and so on.

I~

Finally. the folloWing brief summary of the analysis starting with the
assumption A < B can be compared with that given above for the analysis
starting with a > b:

The player who concedes fewer runs in ·the final game will certainly have
the better average for the season if he takes more wicket~ in that game; but
if he takes fewer wickets in that game having the better average in it will
not necessarily give him a better average for the season; neither. however.
will having the poorer average in the final game necessarily prevent his
having the better average for the season.

* * * * *

CALCULATING AGE BY FORMULA

Garnet J. Greenbury, Brisbane

The formula is 70x + 21y + 15z - l05n.

Suppose a friend is 36 years old. When this age is divided by 3.5 and
7 in that order, the remainders are O. 1 and 1. These remainders are x. y
and z in that order. From these remainders you can ca"lculate the age.
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Using the above formula his age is

70(0) + 21(1) + 15(1) - l05(O}

= 21 -(- 15

=36

where themul tipl ier of 105 is chosen to give the predicted age within a
reasonable range.

Suppose the age is 37.
substituting, the age is

The remainders are 1. 2 and 2. and

70(1) + 21(2) + 15(2) - lOS(l} (note multiple 1)

= 70 + 42 + 30 - 105

= 142 - 105

=37.

Suppose the age is 38. The remainders are 2. 3 and 3 and the age is

70(2) + 21(3) + 15(3) - l05(2}

:= 38.

Can a reader eXplain mathematically why this method works? Are there
any exceptions?

* * * (( *

PROBLEMS AND SOLUTIONS

Problem 12.5.1 Find all positive integer pairs of solutions x. y of

where k is a positive integer.

There has been a number of letters from readers on the solution to this
problem. Before announcing the problem, we had the solution of Dr
Strzelecki, the leader of the 1988 Australian Olympiad team. We first offer
the solution of Martin O'Hely, ·a member of the Australian Olympiad team, and
now a first-year undergraduate at Monash University.

Let x =8
1

generality, that

and y = 8
2

a ~ a .
1 2

be a solution. and assume. wi thout -loss of
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Then

which is equivalent to

Consider the quadratic in x

X
2

- k
2
a x + a

2
- 'k

2 = o.
2 2.

(l)

One solution of it is a.
1

quadratic,

or

The other one is (say)

a + a. = k2.a
1 S 2

a = k
2
a - a .

3 2 1

a .•
3

By the theory of the

Clear ly a
3

is an integer, since

that a ~ a • then
3 2

a • 8 and k
2 are.

1 2
If it· were true

by the theory of the quadratic, and

(2)

(3,>

since a
1

;:: a
2

and 8
3
~ a

2
and these are positive integers (by

assumption). But (2) and (3) toge'ther mean

which is impossible as k2 is positive. Thus it must be the case that

a < a .
3 2

Notice that, if

a > a; so it
2 3

8 = k
2

81+1 i - Si_l'

8
3

) O. X = 8
2

, y::. 8
3

is also a solution to (1) wi th

is possible to construct 8
4

, a
5
,... (where

which satisfy

and a < a
i+1 i

(4)

whenever a > O.
i+1
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Since th:L~ 8. Q a: :; ... ~ !>1 2
last!) a non-posj.ti:ve terua
].ntegral Fa~eans tlJat SUe!l s. B

is rea.ched B • the fact that all these
e:1"lists.

i:l.
i

(at

are

If
AB :S o.

a = Aoj-l Then A)O and B :s o. This means

NoW if -2:; 1 s -1 A
2
+B

2

(as A
2

B2
2: 0). But

All ::;; f-!B ~~. so AB+l :s 0 +A2
+B 2

k2 > 0 .. So AB > -2. If ~..B =-l Q

A 2
+B

2

is undefined, and
Al3+f~ =

AB+l
certainly not equal to k 2

as (4) require3~ Hence jl~ ~ -1 ..
Tnis leaves (~_s A and B are integers) only the possibility for ABof

AB = 0
a..'t1d. so

B =0 (since A > 0).

Consequently k
2 A2

+B2
2

i.e. A=a = k~ and the entire
== AB+l == A t soj-l

sequence a. ~a ~ .... "a1 2 j
transposition of (*)}.

is obtained from - a
i+l

(this is a

Conse!j.uently it" must be the ca.se, for any solution x == s, y = b, thata and bare consecut i.ve tenns of the sequence bi' i = 1.2 t ... "G deline~by

b :; k,
1
. 3

b2, =k,

b k 2
b - b (i :::: 2~3p ••• ). .i+1 i i-1

The above ·solution of OSHely shows how successive solutions areobtained, but does not give a formula for the solutions. We now show thatthe constructed sequence is of length 1 when k = 1 11 is infini te whenk > 1, and then give Dr Strzeleckills formula for k > 1.
Let us ·deal with the slightly troublesome case. when k = 1. Thenstarting, as in the previous solution. with a solution x = Sit Y = 8

2
, witha ~ a II1 2

and hence. since 8.
1
~ 8

2
, a. S o. So the downward sequence3

I
a ~ a. > a ..... >a, of positive integers" stops at a . Moreover,

1 2 3

2a = a. 1 .. For this is clearly a solution and we qUickly check that there
1 2

is no solution x=n >1 with y an integer ..
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If k > 1, we never have a solution with x =y. for this would give apositive integer solution to

2 k
2

i.e. to x =---- < 0, if k > 1.
2-k2

Hence. applying the argument of O'Hely. we have an infinite sequence
b

1
< b

2
< .' .. such that all solutions. with x::s y. are gIven by x = b

n
,

y = bn+l' n = 1,2,... .

As just established, any pair of solutions x = ao < a :s b, are, when k > 1. successive terms
b < b < < b < wi th b = k. b = k

3
and1 2 n 1 2

and y = b, .with
of the sequence

(5)

for i =2,3, .-.. . Note that x =0, y = k is also a solution of (I); and $setting bo =0, (5) also holds for i = 1.

The general solution of the recurrence relation (5) is of the form'

where zl and z2 are the roots of the equation

Thus

Hence

for n = O~I ..... Set n =0 and n = 1- and we get

bo =0 = 0 + P

k 2+1k4-4 k2
_ffc4-4b

1 = k = O 2 + f3 2 .

Solvi~ these equations for 0 and p gives

ka=-- .
.(k4_4
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Hence.

(6)

and hence~ any positive integer solution of (1). with x ~ y. and k > Ie is
of the form x = b

n
, Y = b

n
+

1
, n = 1,2•.. 0 ~ where the b

n
is given by (6)"

Problem 11.3.10 If a and b are positive and a + b' 1. show that

2 2 25
(8 + 1/a) + (b + lib) ~ 2"

A solution to this problem, using the calculus. appeared on p" 128 in
Part 4 'of Function. Volume 11. A second sQlution•.just using the algebraic
manipulation of inequalities. appeared on pp. 31£. in Part 1 of Function,
Volume 12. .Anoth~r elegant algebraic solution was published in Part 2 c

Volume 12. pp. 37f. This was followed by two further algebraic solutions in
Volume 12, Part 4. pp. 123-4. He:reis a sixth algebraic solution sent to us
by Andy Liu (Universi ty of Alberta. Edmonton, Canada) " Used in Liu' s
solution is the arithmetic-mean geometric-mean inequality (A-G inequality):
for any non-negative numbers u and' v

r=. u+v
l'UV ~ 2'

Here IUV is the geometric mean of u and v.

while u+v is the arithmetic mean of u and v.2

Andy Liu makes the following sequence of observations which combi~e to
provide the solution.

1) If 0 < x ~ y < 1. then

(x + !) - (y + !)
x y

i.e. x + !. 2:: Y + .!..
x y

(y-x)(l-xy) ~ O~
xy

2) By the A-G in~quali ty •

i.e.

3) By 1) and 2) t

4) By the A-G inequal i ty

r:L a+b 1
l'ab :s 2" = 2'

1
s.b ~ 4"

ab +a~ ~ ~ + 4 = 1~.

a b ~,
b + a ~ 21 ~ i = 2.



6)

5) By 3) and 4) and the A-G inequality

(8 + ~)2 + (b + i)2 ~ 2(8 ~ ~)(b + i)
=2(ab + -! + ~ + ~)

ab b 8

17 25
~ 2(~ + 2) = :2"

It is easy to verify that equality holds if and only if a b.
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A seventh solution was prOVided by J .A. Deakin in which he used the
so-called method of Lagrange multipliers to show that the minimum value of

{a + !)2 + (b + _b1 )2. subject to' the condi tion a + b - 1 = 0. occurs when
a 1

a = b =2.

Mr Deakin observes that his
demonstrate that. if a.8, " .. •a

1 2 n

a + a + ... + a = 1. then
1 2 n

method can be immediately used to
are posi tive real numbers such that

with equality only if a. = a
1 2

1=a =-.
n 11

We also received the following letter:

"De~r Sirs,

I seem to recall seeing four solutions, all sweet. of the inequality
(8+8-1

) + (b+b-1
)2 ~ 25/2 for a > 0, b > 0, a+b = 1 in recent numbers, but

none using calculus. Calculus is under attack from the computer monstrosity
which technologists have. unleashed, 'and FUNCTION has a tendency to lean
towards the static, algebraic. logical. set-theoretic sort of mathematical
thinking as contrasted'with the dynamic. calculus, variational sort, that-it
might provide a little balance if you were to publish a calculus solution of
the above inequality. Anybody could supply it; the main thing is, probably,
to keep it neat. I try to do this below, but. before embarking on the
details I remark that 'it is not unrelated to the old results that the sum of
two numbers, whose product is constant, is least when they are equal. and its
companion, that the product of two numbers, whose sum is constant, is
greatest when they are equal.

Let us then take the function, of x,

The domain is {x: 0 < x < .I}.
We have
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so that. using the chain rule for differentiation.

u' = 2(x-x-3
) + 2(y-y-3)(-l.}

= 2(x-y} ~ 2(X~3_y-3)

= 2(X-Y){1 + X
2
+Xy+

y2
}

. 3 3xy

which has the sign of

Hence u; < 0 for

x - y = 2x - 1.

o < x <.! and2

u,. > 0 for 1:2 < x < 1.

Hence u is (absolute) minimum for 1
x =:2 and then

121 2
U = (:2 + 2) + (2" + 2) = 25/2.

and the result is established.

J.e. Barton"

Problem 12.4.2. The game NORTII-EAST is played on the rectangular array of
points in the plane wi th integral coordinates (n. m) where 0 ~ n ~ N.
o ~ m ~ M. Player A selects a point (p.q) and removes all those points for
which n ~ p. m ~ q. Player B then selects a point (r.s) and removes all
those points still left for which n ~ r. m ~ s. etc. The loser is the
player who takes (OrO). The problem is to show that A has a winning
strategy.

Solution (by J.e. Barton).

We consider various cases.

(i) N= O. H = O. There is one point (O.O) only.
A loses. We reject this case.

(ii) N =O. M > O. There is a single line q points (O.m).
A selects the point (0.1) leaving the single point (0,0).
A wins~

The sub-case N > O. M=0 is dealt with similarly.

(iii) N = 1, M ~ 1. A selects (1.1) leaving the three points (O,I).
(l.O), (0,0). Whichever of (1,0) or (0,1) B chases, A
selects the other. A wins.
Similarly if N ~ 1, M = 1 .

. (iv) If N > 1. M > 1. A selects (1.1) as in (iii).
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Problem 12.4.3. (Proposed by a puckish Lewis Carroll in The Monthly Packet
begirming in April, 1880). Place twenty-four pigs in four sties so that., as
you go round and round, you may always find the number in each sty nearer to
ten than the-number in the last.

Solution (by J.e. Barton)

6, 8, 10, 0 will work if we agree that "nothing is nearer to ten than
10".

Problem 13.3.1 (suggested by Esther Szekeres)

Given a circle centre 0, radius R, ·and a point P outside of it.
Constru~t a straight line pa~sing through P that meets the circle in points
A and B such that PB = 2PA. '.

* * * * *

PERDIX

IBM Olympiad Training School, 1989

The following questions formed the trial Olyinpiad examination set in
April this year to contenders for places in the Australian International
Mathematical Olympiad team. Try your hand at' them. Let me have your
solutions and comments.

Question 1

Find. with proof. all solutions of the equation

.!+~-~=1
x y z

in positive int~gers x, y. z.

Question 2

(i) Decide whether or not the squares of an 8 x 8 chessboard can be
numbered by theriumbers 1, 2, 3, ... , 64 in such a way that the sum of the
numbers in each of its sections of one of the shapes

is divisible by 4.
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(ii) Repeat with the shapes

Qth;;St.~.Oi:1 3

Lst £(11) be a function def.ined on the set of all positive integers and
r~ving its values in the same set. Suppose f(£(n) + f(m») =m + n for all
positi.ve integers no m. Find all possible values of £(1989).

'Question 4

Let 0 be the circumcentre of the triangle ABC. mid, let X
points en Ae and AB respectively such that BX intersects
Suppose L bii.D = L AY:X ::: L XYC; determine the size of this angle.

Quest.ion 5

and
Cy

y. be
in o.

Let K denote the set {a.brcsd.e}. F is a collection of 16
different subsets of K 3~d it is known tha.t any three·members of F have
~t least one element in common. Show that there are exactly 5 possibi.l i·ties
for F.

Question 6

Let a be the greatest positive root of the equation x3
- 3~2 + 1 = o.

Show that [a1788
] and [a 1988

] are both divisible by 17. ([x] denotes
the int~ger part of x.)

Questi.on 7

Let ABCD be a tetrahedron having each sum of opposite sides equal to
1. Prove that

r +r +r +r ~13/3
ABC D

'ffhere rAt ZOE' r
e

, r
D

are the inradii of the faces s equality holding only if

ABCD is regular.

Ques.tion 8

functions' f.f •.... f'
1 2 ri

Prove: for every integer n'~ 2 and for any n

tootare def ined for

such that

o ~ x ~ 1 ~ there exists real numbers a .a ' ... 08
1 2 n

(i) o :5 a :::; 1
i

for i ::: 1, ... ,n;
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