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FUNCTION

February 1989

Welcome to new readers and to continuing readers! We hope you enjoy
reading Function this year. Please wri te to the edi tors telling us what
articles you would like to see in Function. Send us articles you have
written. or ideas for articles.

The articles by Garnet Greenbury on determining the day of the week on
which a given date falls, and his interesting observation about Fibonacci
sequences, both 0 touch on subjects that have been discussed ~n 'Function
before, as does' the article by Michael Deakin, providing interesting
historical detail about the famous Konigsberg bridge problem. The article by
Esther Szekeres provides yet another elegant al ternative solution to the
three solutions provided· by John Burns (Function, volume 12, part 4, p. 99)
to the problem of constructing an equilateral triangle wi th a given vertex
and the other two vertices lying on a given pair of lines.

We also have articles on the greenhouse effect - is Melbourne getting
warmer? -, on 16th century arithmetic, on random numbers and on the effect of
round-off errors.

Take your pick!
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Stephen Murphy. See also his qUintuple binary magic square overleaf.
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. BINARY MAGIC ·SQUARE

Stephen Murphy, Year 9, Haileybury College

A magic square is a square array of numbers such that the sums of the
numbers in each column, in each row, and in each diagonal are all the same.
Their common sum is called the magic number for the square. Below is a
binary magic square.

0010 1111 0100 1001

0101 1qoo 0011 1110

1011 0110 1101 0000

1100 0001 1010 0111

It remains magic when:

(1) read as printed above;
(2) reflected in a mirror;
(3) turned upside down;
(4) turned upside down and reflected in a mirror.

The magic number is 11110 (in binary).

Note also that this magic square is effectively made up of 4 component
magic squares, namely those made up by the square of 1st digits of the above
numbers;

First digits

0 1 0 1

0 1 0 1

1 0 1 0

1 0 1 0

the square similarly made up by the 2nd digits; that made up by the- 3rd
digits; and that made up by the 4th digits. The magic number for each of
these squares is 2 (or. 10 in binary). We have five magic squares in one.

* * * * *
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HOW TO FIND THE DAY OF THE WEEK
OF ANY DATE IN THE 20TH CENTURY

Garnet Jo Greenbury, Brisbane

This method is valid from :March 1, 1900, to February 29, 2000.

One need not !mow if the date is in a leap year or not. The only
assumption is that the first day of the year is March 1, rather than
January 1.

March through December are respectively the first month through the
tenth month; January and February are the eleventh and twelfth months of the
previous year.

(l) Denote 'by D, M and y the number of the day in the month, the
number of the month counted as explained above, and the number
given by the last two digits of the year, respectively.

For example, March 30, 1988 gives D = 30, M = 1, y =ss.

(2) Compute the sum N by/substituting in the following formula

N =D + M + Y + [0.8{2M+1)] + [Y/4].

The square brackets mean the integer part of what is calculated.

For the example just given,

N = 30 + 1 + 88 + [0.8{2+1)] + [88/4]

119 + 2 + 22

143.

(3) Divide the sum N by 7. The remainder gives the day of the week.
Count 0 .as Sunday, 1 as Monday, and so on.

Continuing our exalJlPle we have
Wednesday.

Examples Co Cest

N = 7 x 20 + 3, so the required day is

July 4, 1976 was a Sunday.'
February 29, 1980 was a Friday.

On what day of the year were you born?
What is the formula for the twenty-first century?

* * * * *
IEDlTOR'S NOTE. I have not seen the expression [0.8(2.'1+1)] used for

this calculation before. It really is very clever. It gives a single
formula for all months in the year and so saves you having to remember, or
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individually work out, a table of values. such as given by Liz Sonenberg in
her article in the first issue of Function (Vol. 1, Pt 1. p.21). a table that
gives the change in the day of the week, compared with January, corresponding
to each JIlonth. Beginning the year on March 1 also ensures that you need make
no special changes in this table for leap years.

Function has had several articles on the calendar and its history.
Volume 12, part 4 featured on its cover a Central American Maya Calendar. In
Volume 1, part 3, pp.24-5, Mark Mi'chell used Liz Sonenberg's formula to show
the surprising fact that Tuesdays, Thursdays and. Sundays cannot occur as the
first day of a century. In volume 11. part 1, pp.4-5, David Johnson gave an
account of John COnway's Domesday method of determining the day of the week
that a date falls on. . The Domesday method also avoids having to give a
special treatment to leap years. Effectively the Domesday method starts the
year at March 1 as does Garnet Greenbury's method. We start with declaring
the last day ·of February to be ~ domesday. Then a domesday' is obtained for
each other month, all domesdays throughout the year always falling on the
same day of .the week. Knowing what day of the week is "the domesday for a
given year makes it easy to calculate what day of the week any date in that
year is.

* * * * *

THE GREENHOUSE EFFECT

G.A. 'Watters~n, Monash University

Some scientists believe that the temperature of' the earth's atmosphere
is gradually increasiung. This could be due to increased pollution from
factory chinmeyst car exhausts, etc., causing the sun's rays to be trapped in
our atmosphere rather than being reflected out again, much like heat is
trapped in a greenhouse (or glasshouse) for growing tropical plants. If this
Greenhouse Effect is operating in our atmosphere, it could cause the melting
of the polar ice caps, and hence the flooding of low-lying cities and even of
whole countries. So the Greenhouse Effect is important.

I happened to have access to the Bureau of Meteorology» s data for
average yearly temperatures in Melbourne. So I wondered whether the
Melbourne temperatures showed any change over the years, and in particular,
whether they tended to increase over the years_.
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Fig. 1

In Figure 1 is plotted the yearts average maximum temperature (i.e. the
average of the maximum temperatures over 365 or 366 days) for each of the
years 1856 to 1987. [A figure "2" on the plot indicates two overlapping
points.] You will see that the averages are usually about 20°C, but they
jump about from year to year. To the naked eye, there doesn't appear to be
any discernible pattern to the temperatures t and Ii ttle to hint that they
have been increasing.

But perhaps the "naked eye"- is deceiving us. Suppose"'\ we try to fi t a
straight line, with equation

y = mx + C t

as best we can through those data points in Figure 1 where y = year's
average maximum temperature and x = year. Then if the slope" mt turns out
to be posi tive, it will indicate the rate at which the temperature is
increasing per year. Of course, if m -turns out to be zero or negative we
can conclude that the temperature is not increasing but is either stationary
or actually decreasing.

There are many different-ways of fitting a straight line through data
points. Of course, if all the data points happen to lie exactly on a
straight line ther~? is no problem, b~t that is not the case wi th Figure 1.
Whatever the straight line we draw through those points, at least some of the
points will not lie exactly on the line. Which is the "best" straight line
depends on what you mean. by "-best". There is a computer program called
MINITAB. which £i ts "best" straight lines by wllat is called' the "-least
squares" method. Roughly speaking, the "least squares" metho~ ensures that'
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the sum of all the squares of .the distances, parallel to the y-axis, of the
points from the line, is not exceeded for any other line. Without going into
detail$, I wIll just quote the results.

The least squares fitted line, for the data in Figure 1, is

y =O·OO2351x + 15·i8. (1)

Thus we might conclude that Melbourne is, indeed, warming up but at the very
slow rate of O·OO235°C per year..

There is even some evidence in the data that the rate of increase hasn't
been constant over the years, but that temperatures. are a<;tually
accelerating. The MINITABprogram will fit a curve to the data, if it is
commanded to do so. I asked it to fit a quadratic (parabolic) curve, and the
least squar.es fitted curve turned out to be

y = O·0000538199x2
- O·204479x + 213·812._

The rate of increase in temperature.at year x is then
d .
d~ =. O·OOO10764x - 0·204479.

(2)

In x = 1987, this rate of increase is equal to Q·OO94°C per year, a rather
faster rate than predicted using the constant-rate model (1).

There are, of course, many possible explanations for a ,gradual increase
iIi temperature in Melbourne. It may be that temperatures, in cities
generally, increase~s the 'population gets larger. Perhaps this warming does
not apply elsewhere in unpopulated areas andover the. oceans. See if you can
find 'out more about the Greenhouse Effect.

** * * *
IS IT JUST "SMALL"·

OR
IS IT "NEGLIGIBLE"?

King-wah Eric Chu* ,. Monash University

Abstract

'In this paper, we explain why some classical
"black-and-whi ten concepts like invertibili ty and rank
in linear algebra are meaningless in practical
applications. Analogous continuous or "distance" type
concepts will be discussed briefly. -Asimple 2 x 2
example, which" can easily be interpreted geometrically,
is used throughout the paper for illustrative purposes.

*Dr Chu's research interests include numerical analysis, especially
numerical linear algebra, and mathematical control theory.
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1 A TALE OF TWO LINEA...JZ EQU...4TIONS

Let me bore you with the following simple catering pro~lem:

A half-mad Chinese restaurant owner fixed the prices (Pi) on his menu

based on the prices of sal t (S) and mono-sodium-glutamate (11) I using the
formula.

P.=a.S+b.M,
1. 1. 1.

where a. and
1.

in cooking the

b
i

measure respectively the quantities of salt and MSG used

i-th dish, in some funny units.

One day, he went walk-about and his number-one-sonl took over as boss.
Aware of number-one-son's inexperience, the supplier of salt and MSG
presented the new boss an inflated bill. Being a Monash Mathematics graduate
(2nd Class Honours, Upper Division), number-one-son tried to estimate S and
11 (and thus the unfair increases in prices} by cooking a couple of dishes,
weighing the ~ount of salt and MSG used (a

i
and b

i
, i = 1,2;), and then

looking up the ,corresponding prices PI and P2 on the menu. The problem

was then reduced to solving for S and 11 th~ two linea~ equations

Substituting in 'the numerical values from the cooking experiment, he had to
solve the linear equations

chu.chi

lOs + 1011 ='2,

5S + 411 = 1;

or in ~trix-vector notation,

(1)

Note ·that a matrix equation Ax = b like (1) is solvable provided that the
matrix A is invertible, or, equivalently, the determinant of A is
nonzero. When a matrix is not invertible, it is said to be singular.

Geometrically, the two'linear equations in (1) define two straight lines
on'the S-11 plane (analogous to the x-y plane in the usual notation), and
solving equation (1) is equivalent to finding the intersection point of the
straight lines. The matrix equation (1) is solvable; i.e. the matrix
is invertible, if and only. if the two straight lines are not parallel. The
singular matrix thus corresponds to the parallel situation. '

The solution to (1) is easily found to be S = 0.2, M = O.

1 Mr Charlie Chan.
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Recogni s ing toot MSG cannot be free ( i . e. ,M cannot be zer~) ,

number-one-son repeated the "experiment, obtained a new set of data (i.e. ~ew
values for a

i
and b

i
, i = 1,2, of the linear equations) and ended up with

the new set of equations

(2)

the solution of which is S = 0 and M = 0.2.

Knowing that sal t cannot be fre'e ei ther (i. e. 5 cannot be zero),
riumber-one...;.son could not accept the resul t 2

• What went wrong?! His old
notes on Numerical Methods did not,help at all!

What went wrong was, being not a very good cook, he put in the wrong
amount of salt and MSG, and the correct amount should yield the equations

(10 . 10, ( S J ( 2 J
5.5 4.~ M =~ 1 '

with the correct solution being S ~ 0.1 and M = 0.1.

(3)

The story is ficti tious, but' the mathematics is real. The solutions
from the slightly perturbed data vary wildly from one physical impossibility
to another, and the solutions S and M of Equation (1) differ totally, from
those of Equation (2). Using the correct equation in (3) as'reference, the
solutions of Equations (1) and (2) went wrong by lOO%!. The shocking thing is
that the maximum error in the data or the elements of the matrix in Equations
(i) or (2) is only' 11.1%!

2 CONDITIONING, CONDITION NUMBER AND SCALING

The trouble with number-one-son's experiment is that he chose the wrong
dishes to cook, and ended up haVing to solve a set of badly-behaved or
ill-conditioned equati?ns.

Notice that the linear equations in (3) can be written as

lOs + 10M = 2, 5.55 + 4.5M = 1, (4)

and ·the two equations are nearly linearly dependent, with the second equation
in (4) nearly the same as 55 + 5M = 1, which is just the first equation in
disguise.

. Geometrically, the two linear equations in (4) correspond to two nearly
paralfel straight lines. Using' graph paper to find the intersection point of
two such straight lines, it is easy to demonstrate the ill-conditioning or
the sensitive nature Of the intersection'point with respect to the changes in
the data -- tilting one line slightly (using the edge of a ruler, to represent
it) while keeping 'the other one fixed, the 'intersection point can jump off
the graph paper easily! In contrast, if the straight lines are perpendicular
to each other, moving the lines will move the intersection points by the same
distance and the problem of finding the intersection point is thus
well-conditioned.

2 not even wi th a pinch of salt.
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In terms of the cooking experiments. the ill-conditioning of the matrix
equation indicates that the two dishes" are very simflar (for the purpose of
determining S and M$" if nothing else) and the experimental resul ts do not
contain enough information for the solution of S and' M. "Two quite
different dishes should have 'been cQoked to yield two independent pieces of
information for the problem to be solved.

The conditioning of the problem can be characterised by the condition
number ~,where

relative error in the solution
relative error in the data

(5)

Without getting into details3
~ the condition number is always greater than

or equal to one, and can be calculated for a given problem. A large
condition number indicates ill-conditioning for the problem, and a small
error in the data of the problem will be magnified to an unacceptabl~ level
in the solution. Note that errors in the data can be the resul t of human
fallibili ty, "·inexact representations of data in computers. bad progranuning
techniques, nature of the data collecting process, etc ..

In geometrical terms, ~ is related to the quantity Icot ~I, where

is the angle between the two straight· lines defined by the linear

equations
4

• Note that limo-*> Icot ~I = co, indi,cating ill-condi tioning for

nearly parallel straight lines.

For the example in Equation (3), the condi tion number5
K, is 25.01.

al though from the discussion ·from the last paragraph in Section 1, we have

relative'error in the solution
relative error in the data

100%
= 11.1% = 9,

for the perturbed systems in Equations (1) and (2).

The different results of the two calculations result from the fact that
the condition number ~ is defined to be the maximum of the quantity on the
right-band-side of Equation (5), taken over all possi~le perturbations in the
data.

In the case of Equation (3). we know the extra information that prices
of things have to be posi·tive, and thus recognise the unacceptable solutiQ:rls·,
despite the comparatively small condition number. In general and without any
extra information, it will be difficul t to judge whether an answer is
acceptable or not.

3 See [1] for details.

4 The formula p; = ~cot ~I holds after we scale the rows of the matrix so

that the sum of squares of elements on each row equals to unity.

5 which can be calculated from the angle or by other methods in [1].
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Mathematically, Equation (3) is ill-condi tioned because the matrix is
near ly singular. In general, it can be the resul t of near ly-dependent
equations (like in Equation (3», or badly scaled data. e.g. as in

100000o
o

The matrix in the above equation is approximately

singular.

3 INVERTIBILITY AND RANK

loogooo gJ. which is

The example and the di~cussions in the previous sections can be
interpreted in a different way -"the classical discrete or "blac~-and-white"

concepts like' invertibili ty6 and ranIl are really inadequate in practical
appl ications. As in the catering example in Section 1, the matrix in
Equation (3) is clearly invertible, but modifying it slightly will make it
singular. It will be far more sensible· to consider the size of the smallest
possible perturbation which will make the matrix singular. Similar
perturbations which change the rank of matrices can also be considered.

If we imagine dIfferent matrices are just different objects (or points)
floating around in space, we can create the notion of a "distance" between
different matrices. Given two matrices, the distance between them can be
calculated.

The size of the smallest perturbation which makes a matrix singular can
be considered as the distance of a matrix (and the problem it defined) from
its nearest ill-condi tioned neighbours. (For the example in Equation (3),
the distance from the nearest ill-conditioned neighbour is

15.811C-1 = 0.6323, thus this distance behaves like the reciprocal of the
condi tion number.) Similar distances can be defined for problems of the
change "in rank or other structures for matri~es.

6 You can only· have matrices which are invertible 01" singular, but not in
between.

7 Rank. of a matrix is the number of independent pieces of information
contained in the matrix. For the 2 x 2 case, it is the number of straight
lines defined by the related linear equations - 0 for the matrix with only
zero elements, 1 for the matrix which defines two parallel li.nes, and 2
for the matrix wh~ch defines two intersecting lines. Obviously, rank can
only be of integer value and cannot distinguish ill-condi tioned cases wi th
nearly parall~l lines from other rank 2 cases.

8 It is easy to prove that any singular matrix has invertible neighbours
which are arbitrarily close, but an invertible matrix can be quite distant
from its nearest singular neighbour. In other words, a randomly selected
matrix is likely to be invertible - as a resul t, the set or subspace of
invertible·matrices is said to be dense in the space of matrices.
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More generally, one can only determine most quanti ties in mathematics
"theoretically". In practice, we can only do so llumerically, and only if
equipped with information about the size, i.e. the level, at which a small
number is negligible and can be tgnored and treated as ze*o. Th.~s, we have
to know the reliability of the data, the noise level in our physical- model
etc., before we can tell what a particular q\.fantity is "most likelytt to be.
The details of the determination of inverttbili ty and rank of matrices
involve the use of Singular Value Decomposition, and can be found in standard

"advanced texts on numerical linear algebra (e.g. [1]).

4 AN UNCERTAINTY PRINCIPLE

The discussion in Section 3 on invertibility and rank ~~ be extended to
other discrete or "black-and-whi te" concepts in linear algebra (and for
general matrices of appropriate dimensions), e.g. the signature of a matrix,
various indices in the Jordan canonical form, nilpotency, whether two
subspaces have empty intersection. etc. 9

. The list is endless.

Similar philosophy can also be applied to other branches of mathematics.

We can now present an Uncertainty Principle in Linear Algebra for these
concepts or properties:

One cannot analyse a "black-and-white" property for a given problem in
linear algebra with accuracy better than the level of error, noise or
resolution in the data allows.

When analysing a property or structure (say condi tioning of a problem)
in practice, it is better (or 'numerically more stable) to consider the
distance between the given problem and its nearest neighbour with a different
property or structure (ill-conditioning). Such philosophy is sound, and the
corresponding problems of estimating these distances constitutes an exciting
area for future research.

5 CONCWSIONS

How small is small?
Is it just small or is it negligible?
These are the seemingly trivial but" crucial questions we keep on asking

ourselves in some applications in mathematics.

Personally, I find it is the uncertainties~ like the ones related to ,the
above questions and discussed in this paper, which make the supposedly exact
science of mathematics such a fascinating subject, making mathematics on its
highest level an art as much as a science. It takes a lot of exper,ience and
problem-solving-sense to determine whether a ttsmall" number is. just small or
in fact negligible. whether a 3% significant level is good enough for a test
of a hypothesis. or whether 3 is a good enough safety factor or a good enough
redundancy factor' in" an engineering design. These uncertainties and
limitations of mathematical models, _> as well as the ever-growing area of
future applications, make mathematics an evolving. dynamic system and a
really challenging and interesting subject.

9 Cf. [1].
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So, you see, there is life after Mathematics at school!

Bonne Chance, Bon Travail,et Bon Courage
10

/
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ARITHMETIC - 16th CENTURY STYLE

~argaretJackson

THE
Grounde'-'of Artes

teaching the work and pra-
ctife of Arithmetike both in whole numbers

and Fractions, after a more easyer and
exacter rorte than any like hath hither­

to bin fet forth :

Made by M. ROBERT REO>RD
])petor in PhYfike·, and now of lat~ diligently

overfeene and augmented with newe
and necefrarie Additions.

The above wording forms part of the ti tIe page of a book printed in
1575. The earliest edition of the The Grounde of Artes was published in 1542
and is .thought to have been the f{rst book of arithmetic printed in English.
Except for the occasional use of block letters and modern style lower case
type, Old English script is used throughout. Its 508 pages are unnumbered
and the spelling is arbitrary. Several poems are included.

The author is the mathematician credi ted wi th devising the familiar
"equals" symbol. His colourful life included posts as Controller of the Mint
at Bristol and physician to both Edward VI and Mary Tudor. He died in 1558
while in prison for debt.

As behoved a wary 16th Century writer, Recorde begins his work with a
16-page fulsome de9ication:

"TO THE' MOSTE mightie Prince Edwarde the fixthe, by the grace of God
King of Englande, Fraunce, and Irelande", etc.

10 Good Luck, Wish You [-Jell in Your Future Work, and, wait for it, Wish
you be Cheerful in Your Coming Ordeals!

* * * * *
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This chapter is followed by a lengthy commendation addressed

"TO THE LO­
ving Reader

The Preface of M. Robert Reeorde".

reminding him among other things that "EnglYfre men are inferior to no menne
in mother witte".

The contents of the book are listed and the' reader is warned that
"Before the Intr'oduction of Ari thmetike, the re Figilres murt ·be learned.

1 2 3 4 5 6 I 7 8 9

Figures of i ii iii iiii v vi 'j vii viii ix
Number I
10 x
20 xx
30 xxx
40 xl
50 1
60 Ix
70 Ixx
80 I xxx
90 xc

100 c

Figures of Money

par t of a penny}
c

9­
q

a cee the xvi ,
akewe'the viii
a farthing the iiii
ob. an balfe pennie

a ,a pennie
$ a rhilling
Ib a pounde

Thou (0 God) harte ordered all things in Mea{'Ure, 'Number, and weyght."

The text proper takes the form of "A DIALOGUE BETWEENE THE Mayrter and
the ,Scholer, teaching the arte and ure of Arithmetike with the penne". The
"scholer" is convinced of. the necessity for a knowledge of arithmetic by such
arguments as:

MaYfter: How many dayes in a weeke? how many weekes in a yeare?
landes hath your father? How many men doth he keep~?

long is it fithe you came from him to mee?

What
How

Scholer: Mum.
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Mayrter: So that if number you want, you anrwere all by Mummes= Howe
many myle to London?

Scholer: A poke full of plumrnes.

Arithmetic with a pen. in contrast to that using a counting board or an
abacus requires· an uhderstanding'of the Hindu-Arabic system of numeration and
the use of algori'thms impossible to perform using the then familiar Roman
numerals. Recorde teaches the Hindu-Arabic system using the labelled columns
familiar to many modern primary. school children. The general emphasis is on
the learning of rules of operation rather than on the whys and wherefores of
each algorithm.

Now for a 16th century version of long division - omitting ·the lengthy
instructions given at each stage. See whether you can follow it.

It is required to' divide 263 845 by 64.

2 1,7
263845) Z"3845(4 t~.b845(4

64 64 ~

1 1
t7 ·tJ Z14

Z"Z845(4 ti.6845(41 Z~45(41

U4 614 'U~
6 ~ 6

1
1 12 lZ

Z/4 'l1~ ·21;6
l{/J$45(41 .l6ZZ45(412 tf/1$~5(412
Ul4 ~14'4 f,M¢
~ "" ~

1. J3
124 114 Thus the quotient

Z7~iJ Z1;fi7 is 4122
.ir;.zg~5(4122 Z(JJY,~$(4122 "an~ 37 remayneth:'
HH4 aflM
~llfJ ~q~
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Of course a problem arises if the divisor is a number such as 29. and the
way to tackle these cases is prescribed in detail.

As well as the four operations on whole numbers and fractions, The
Grounde of Artes has chapters on money, length and we·ight. proportion,
progressions and many problems to be solved. How would you solve this one?

"A man lying uppon his death bed, bequeatheth his goodes (which were
woorth 3600 crownes) in this rorte. Bicaure hys wyfe was great with chi Ide.
and he yet uncertaine whether the chi Ide were a male or a female, hee made
his bequert conditionally, that if his wife bare a daughter. then rhould the

wyfe have balfe his goodes, and the daughter ~ , but if fhe we~e delivered of

a ronne, 'then that ronne rhoulde have ~ of the goodes, ~d his wife but ~.

Now it chaunced hir to bring forthe both a ronne and a daughter, the quertion
is: How rhall they par te the goodes agreeable to the te rtatour his wi 11" .

The scholer shows some knowledge of the world and replies that:

"If romme cunning Lawyers had this matter in rcanning they woulde
determine this Tertament to be quite voyde "

However, af ter some long-winded reasoning, the may rter cone1udes that

the son receives 170~ crowns, the wife 113~ and the daughter 757i~, I
1 1leave you to discover how he reaches this conclusion. (Hint: 2' 3 shares are

taken to mean a distribution in the ratio of ~ to ~.)

I thought an appropriate ending to this article should be the final
stan~ of the poem which graces the title page of Recorde's Grounde of Artes.
Here. it is.

Of Numbersvre, the endlerre.might,
No wi t te 'n9r language can "expre r re ,
Applye and Trie, bothe day and night,
And then this truthe thou wilt conferre.

* * * * *
William Pi tt (1759-1806) was .prime minister of England

from 1784 (when he was 25) until 1801. The 9th Edition
(1885) of the Encyclopaedia Britannica, in its article
devoted to Pitt at one stage conunents: "This narrative has
now reached a point [1784]. beyond which a full history of
the life of Pitt would be a history of England, or rather of
the whole civilised world;

This article also comments about Pi tt in his
undergraduate years at ~bridge: "The work in which he took
the greate~t delight was Newton's Principia. His -liking for
mathematics~ indeed, 'amounted to a passion.... The
acuteness and readiness wi th which he solved. problems was
pronounced· ... to be unrivalled in the university".
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THE MIDDLE SQUARE
RANDOM NUMBER GENERATOR

Robert Du·nne, Murdoch University

What are random numbers? Clearly there is no sense in which any given
number is random, 2 is not a random number, it' is always equal to 2.
Randomness is a difficult concept to define, but we all think that ~ecan

recognise it in practiGe. It is clearly a property of sequences of numbers
rather than of individual numbers and is recognised, in the first instance,
by a lack·of pattern.

For example, consider that standard of examples in probability, a single
die being thrown repeatedly, however in our case we use a die with 10 faces 1

numbered 0 to 9. If you recorded the numbers on the successive faces of
the die you would obtain a sequence or random numbers. It might seem the
least interesting of all possible. sequences of numbers in that it has no
order or structure, but this is not the case. If you were to try to write
down a sequence of random numbers it would probably not be too hard to
distinguish your sequence from the true random sequence.' ~en people try to
write down random numbers they tend to get the proportions correct, i.e.

about 1~ of them will be 1 's and about 1~ will be 2's, etc., but

generally they don't include enough runs of the 'same number. In a genuine

random sequence about Ib of adjacent pai~s of random numbers should be the'

same. In addition a number of patterns, grOQps of high or low numbers,
ascending' or descending numbers, etc., are likely to' occur with a certain
regularity in genuine random sequences. As various people have noted before,
global randoJnness must include a certain degree of local order. It is this
aspect of randomness that leads to many of the misconceptions of people who
think that they can derive systems for winning at games of chance. For
example, contrary to at l~ast one piece of commercially available software
for designing such systems, the fact that a number has appeared in a "lotto
game does not mean that it is less likely to appear again.

I will use the word "random" to mean a sequence with the same properties
as such a die genera'ted sequence, reg~rdless of how it is produced. This
leaves a large number of questions unanswered, as we ~ve barely looked at
these properties; however, 'it will do for the time being, and is. in any
case, not totally unreasonable. If we went on to explore, and understand the
properties of .a truly randomly generated sequence, we would still want any
sequence we called random to share those properties.

1Such a die could be constructed as a diamond shape with 5 triangular faces
meeting in a point Qn the upper half and .the lower half a mirror image of the
upper half; alternatively it could be made like a "pencil" with 10 flat
facets and a curved surface at each end. Either way, we would have a figure
that had 10 facets each wi th an· equal probabili ty of being selected by vir·tue
of the symmetry of the object.
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A source of random numbers, bel ieve it or not, has many uses. Random
numbers are used in areas as diverse as games and nuclear physics. Anywhere
that we want something different and unpredictable (Within 'a range) to happen
on successive trials may be a potential place to use random numbers.

,The earliest use of random numbers;' apart from their widespread use in
games of chance, was in the area of statistical sampling. Imagine the
situation where you hav~ 1000 objects and you can afford to test only 10 of.
them for' some proper'ty. How do ·you pick out the 10 without introducing some
bias? If you just take the ten' that you come to first, you might have an
unrepresentative sample.' One approach is to number the objects 0 to 999,
a-~d then consult a list of random numbers between 0 and 999, take the first
10 numbers from the list and sample those objects.

Other uses of random numbers are largely tied up wfth computing.
C-omputers have given us both the abili ty to generate sequences of numbers
wi th random properties, and also the need for them. The development of
modern high-speed computers has made it possible to simulate many real events
on a computer, so that processes that cannot be subjected to direct
experiment can now be·explored.

I t ,is now almost routine' in many areas of science to produce a computer
simulation of an event before or instead_ of trying to produce the actual
event . The avai labi I i ty of thi s too I has been of great benef i t to such
people as astro-physicists and cosmologists who can now use a mixture of
computer simulation and observation in their work. For example, current
theories about the early stages in the -evolution of the, universe can now be
used as the basis of computer simulations to see if they lead to the sort of
distribution of matter that we observe around us.

Clearly, such a theory cannot specify the position and velocity of every
particle. What it does is to give the general range within which they lie,
and 'then the simulation uses a random number generator to give reasonable
values to each particle~

How do we go about the task of picking random numbers?
several possible approaches:

There are

1) one could use a roulette wheel, or a die, and record the results of
successive trials. One could then use this record as a source of
random numbers.

2) one could abandon the truly random numbers and generate a sequence
of numbers wi th properties "random" enough to sui t the particular
application.

~oth of these approaches have been used in the past. The most famous
example of the first' approa.ch is contained in a book published. by the Rand
Corporation in 1955, called' "A million random digits with 100,000 normal
deviates", and which contains just what it says. The problems wi th th.is
approach can be appreciated just by looking at the book - it takes a lot of
space to store such a large list of numbers.

The second approach has a number of attractions. If we could find a way
to generate random numbers (or more correctly, "pseudo" random numbers) as we
needed them, we would. have as many random numbers as we needed without any
storage problems.
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Note that the desirable qualities of a random number generator depend on
the use to which it will be put. The sort of generator used in a video game
only has to be random enough to stop the player predicting what will happen
next, whereas one used in a cosmologist's simulation would have to be a much
more convincing generator.

There is a number of possible approaches to generating pseudo rand~m

numbers. 'One is to take a number like 1r and calculate it to the
apprQpriate number of places, 1l" z 3.1415926536 ... ; the digi,ts appear to be
random and exhibit no discernible order for as far as they have been
calculated. The problem with this method is that it takes a lot of computing
effort to calculate a number like 1r to a very large number of places.

An alternative method, and the one generally used, is to use a recursive
function on the integers. Thi·s is a function that takes integer values such

that its (n+l)t~value is defined in terms of its 11
th value, e.g.,

so that given Xo we can calculate X
l
,X

2
"" etc.. Recursive functions

form a rich and important area of mathematics wi th many appl ications, .
part~cularly in the area of computing. It is clear that as the X

n
+

l
term

depends on the X term, if our random number generator ever picks the same
n

number twice, it will repeat the, same cycle ofnunib.ersindeffnitely. This is
not what occurs in a sequence oft;rue random numbers and is' a serious
limitation of the pseudo-random generators thatwe.are considering. Clearly
all of thesegener.ators are going to give a recurring cycle eventually. The
only' defence aga.inst this is to make the range of the generator as large as
possible. For example, consider a random generator giving the integers
O,I,2,3,4,5,6,7~8,9. This can give at most 10 digits before starting to
repeat a cycle, and it iSUIilikelythat a list of tenor fewer random digits
would have wide applications. We call the length of t~e run the period of
the generator.

The Middle. Square

One function that can be used for this is the middle square function,
first suggested by the noted mathematician John von Neumann in 1946. This is
readily illustrated wi th an example: suppose we were looking for random
numbers between 0 and 100. We would start wi th a "seed" (an X

o
value),

for example 57 t we would then square it to get 3249 and our next random
number would be the middle digi ts 24. We would then simply repeat the
process.

If you try to continue thisexample t you will discover a major problem
with this sort of generator is that it may have a very short period, in this
case only two numbers" 24 and 57 . Of ten thi s method wi 11 give a sequence
of apparently random humbers before falling into a very short repeat~d cycle,
in some cases the same number over and over again. I wrote a short program
to calculate ·the middle square repeatedly and found that the method has a
number of problems. The best "run" I found started with a "seed" of 69 and
proceeded like this: .
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69,76,77,92,46,11,12,14,19,36,29,84,5,2,0.

When a 0, 10, 50 or a 60 appears the sequence repeats that number
endlessly, and all the "se~d" values between 1 and 99 degenerate to the
24, 57 cycle or to one of these numbers very quickly, most commonly to o.
If the middle square is 09 or less 'then the sequence will go to 0 (try an

1example to see why), and we would expect t~t about 10 of the numbers

generated will be in this range if the sequence is mimicking the properties
of random numbers adequately. Hence it is not surprising that many of the
.sequences end up at O. What is interesting is that for two digi t numbers
there is only one 2-cycle, namely, 24, 57 (this occurs just three times with
a seed between 1 and 99) and no cycles of longer duration.

Here is a program in the language TORBQ-PASCAL that you can use on your
PC. It prints out the seed, on one line, -and then on the next line the
successive numbers generated by this seed. You enter the seed of your choice
when asked to do so.

program MIDSQUARE (INPUT, OlITPlIT);

var
N,K : INTEGER;

end;

begin
,WRITELN ('Enter an integer between
READLN (N);
WRITELN (lSf,N);
K := 0;
for K:= 0 to 15 do

begin
N := SQR(N);
N := N div 10;
N := N mod 100;
WRITE (LST,N, , ,);

WRITELN (lSf)
end.

and 99:');

Numerous attempts have been made to modify ,the original "middle square"
method so that it gives better results, incluqing such things as adding a
constant before doing the squaring, and using larger numbers to reduc~ the
probability of tile sequence ending up at O. Some of these changes have made
improvements but in general this method Pas fallen out of favour as other
methods have been found to give-better results.

You might care to write your own program to do this and see if you can
improve on my results.

* * * * *
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A WALK ACROSS THE BRIDGES

Michael AeB. Deakin, Monash University

North of the eastern part of Poland and south and west of Lithuania is a
piece of land now part of the Russian Soviet Socialist Republic, although it
is not connected with the rest of that state. Before World War II, however,
this area was part of Germany and it was called East Prussia. In those days,
its principal. town, now called Kaliningrad, was known as Konigsberg (or
Koenigsberg) and (though other names like Queenisbrig and Ginsburg have also
been current), this is the name by which mathematicians commemorate it.

Konigsberg stood at the confluence of two branches of the river Pregel
(now called the Pregolya). The New Pregel and the Old Pregel joined together
to form the Pregel, but the geom~try is complicated by the fact that there
were two channels uniting ,the branches and cutting off an island'as shown in
Figure 1.

Back in 1735, the different parts of the city (the north, south and east
banks and the island) were connected by seven bridges, also shown in
Figure 1.

Fig. 1

Someone, we don't mow who it· was but it may have been carl Ehler, the
mayor of Danzig (now Gdansk), became-interested in a problem this geographic
situation posed for the inhabitants of Konigsberg. Interested enough to
write to Leonhard Euler (the name, incidentally, is pronounced Oiler), the
greatest mathematician of the day. Euler at this time was in St. Petersburg
(now Leningrad), then the capital of Russia.
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Th~ problem which so intr~gued 'the inhabitants of Konigsberg 'was this.
Was it possible to start from some point in the city and return to that point
after a journey in which each bridge was crossed once arid only once?

Euler was able to answer the question (the journey can't be done) and he
addressed the St Petersburg Academy ,.of SCiences .to present his analysis.
This wason the 26th of August 1735. Later, in 1741 (though the publisher's
date was 1736 -these discrepancies were common then and are not unknown
today), the Academy published 'a Latin text of his address' and this may ~ow be
read - the more.easily as an English translation was published in 1976.

In the paper, a slightly altered version of Figure lis presented. This
is reproduced here as Figure 2. Note that the apparent differences between
Figures 1, 2 make no difference whatsoever to the problem as posed. What is
important is that there are 4 distinct land areas - already Euler ·calls them
A, B,C, D -and 7 bridges (a, b, c, d, e, f, g) and that these stand in a
certain relation ~o one another. For example, it is important to the problem
that Bridge c connects land areas A, C, etc. But every point on the island
A is equivalent to. every other point, for these points may all be' reached,
the one from the other, without crossing any bridges. The same is true for
the banks 'B, C, D.

c

Fig. 2

We are not interested in the usual questions that classical geometry
posed but in a different' sort of 'question ~hat Euler characterised as
belonging to "posi tional" geometry·, a geometry of ~'wher'e we are". Euler next
generalised the problem. Clearly the specific problem of~the Konigsberg
bridges can be solved by the tedious, but quite practical,' method of trying
all available routes. But what interested Euler was the problem of finding
whether any such problem can be solved. Even here we could list all possible
routes and test each one, but Euler rejected this way of attacking the
problem.
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Rather, he considered journeys as sequences of capital and lower case
letters. So, for e~ple. the sequence

Ace. d A e D f B b A

'represents a journey from the island back to the island. visiting all banks
and crossing five of the seven bridges.

A

Fig. 3

We can use this same principle in other problems. Figure 3, for
example, shows a number of bridges spanning one river with two banks A, B.
Now if the number of bridges is even, we can set out from A, cross to B,
return to A, etc. by a route

AaBbAcBdAeBfA

for example, crossing each bridge exactly once and finally reaching A. If,
on the other hand, the number of bridges is odd, we end up at B and .cannot
return to A without violating the conditions of the problem.

But this now gives us a handle on the Konigsberg bridge problem." For
consider one of the areas, say A, and lump together all the others as
"not-A" . Then if an odd number of bridges leads from A to not-A, a
journey beginning in A and crossing all these bridges lands us in not-A
with no way of getting back. There must, therefore, if the problem is to be
soluble, be an even number of bridges connected to A, and similarly for all
the other areas, B, C, etc.

Thus in the case of the Konigsberg bridges, where A is met by five and
each of B, C, D by three, clearly no solution is possible.

But if we go back to Figure 3 {but wi th an odd number of bridges}, we
can make a journey crossing each bridge once and once only if we are content
to drop the condi tion about our journey's being a round trip - making ita
journey ttfromhere to there". Would this be possible in Konigsberg? .

Such a journey is in fact possible in the case of Figure 4. (Can you
find it?) It starts in D and ends in E (or vice versa). Here Euler
showed, and'it isn't difficult to reconstruct his reasoning (a task I leave
to the reader), that such journeys are impossible unless we have precisely
two regions met by an odd number of bridges (the count for all others being
even). Thus even this is not possible in Konigsberg.
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Fig. ·4

There are other things in Euler's paper, but I wi 11 not pursue these
except for the final remark it contains, on which I'll comment later.

It is clear from the tone of parts of Euler's paper (e.g. nI do not ...
think it worthwhile giving any further. details ... n) that he regarded the
question as a relatively trivial one, arid this is the atti tude adopted, by

and large, in his correspondence on the "topic, some of which has r~cently

corne to light. There is almost certainly more and it is quite possible that
further items may one day be discovered.

There are three letters in what has been found. First is a letter from
Ehler to Euler, dated 9/3/1736, and so later than Euler's solution. Ehler
had heard of that solution and asked for a copy. It is clear that Ehler and
Euler had exchanged earlier letters, but these are not currently available.
Ehler wrote not only on his own behalf but also on behalf of his friend
Heinrich Kuhn, a professor of mathematics.

We do have Euler's reply to this letter. He wrote on 3/4/1736, and he
rather dismisses the problem: this type of solution bears little>
relationship to mathematics ... the solution is based on reason alone
and ... does not depend on any mathematical principle ... n.

Similar thoughts occur in the third of the three letters, addressed to
the Italian mathematician Giovanni Marinoni and dated 13/3/1736, "This
question [the Konigsberg bridge problem] is so banal, but seemed to me worthy
of attention in that neither geometry, nor algebra, nor yet arithmetic was
sufficient to solve it."
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In this letter, however, he goes on to say that the other interesting
thing about it is its possible relation to "posi tional tt geometry, a topic
Leibniz had enVisaged, but .in a rather vague way~ This "positional" geometry
has developed into topology in today's mathematics and Euler's contribution
is now seen as the very first resul t in graph theory, a branch of that
discipline. '

[Oddly enough. Euler (in 1750) mad~ another contribution to graph theory
with his formula connecting the number of vertices (V), the number of faces
(F) and the number of edges (E) of a simple polyhedron. The formula reads
V + F = E + 2, and it is now basic to graph theory (see Function, Vol. 1,
Part 1, p. 12), but Euler did not relate it to his Upositional" geometry.]

Nowadays, we see the Euler analysis of the Konigsberg bridge problem as
being very much a part of graph theory - the origin of that theory, but more
than that, the source of its first clear theorem. To put Euler's result into
modern-day" terms, we take "to its "logical conclusion" the argument that
identified Figure 2 with Figure~. If the size or shape of the regions A,
B. C, D is innnaterial, there is nothing to stop us shrinking each down to a
single point.

c

A ~------r----'-""---""D

B

Fig. 5
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Figure 5 shows the bare "posi tional" geometry of the si tuation. (This
figure is not due to Euler as is often wrongly asserted. It first appeared
in W.W. Rouse Ball's book Mathematical Recreations and Problems, the first
(1892) edition.) It reduces the map of Konigsberg to what· we .would now
recognise as a graph in the sense in which that' word ~s used in graph theory:
i.e. a set of points some of which are connected to others by lines.

A journey traversing each of these lines once and once only and starting
and ending Cl..t the same .point is nowadays lmown (in honour of Euler and the

. Konigsberg bridge~ problem) as an Euier path. The existence or otherwise of
an'Euler line for any graph at all is easily settled.

We need two definitions:

1. A graph is connected if every point is joined (by one or more
lines) to every other point.

2. The degree of a point is the number of lines that connect to it.

We ,then have a theorem.

If a graph has an Euler path, Lt. must be connected and all its
points must have even degree, and vice versa.

As we have seen Euler proved half this theorem. His proof is not very
different from the ones found in standard t~xts today (see, e.g., Oystein
Ore's Graphs and their Uses). He did not, ·however, prove the "v:i.ce versa"
part,. which is rather harder.

If we check that a graph.is connected and that all its points have even
degree. this means that we can' t rule out the possibility of an Euler Path
(in the way that we can for Figure 5); we are not guaranteed such a path
unless we prove, as Euler did not, the ~econd half of the theorem.

Euler has some passages that maybe read as implying an oversight' of
this point - or it could be that subconsciously he intui ted the proof and
assumed that others would do so as well.

The missing part of the proof was not supplied explici tly till much
later by the German mathematician Carl Hierholzer, who proved the result in
1871. .In point of fact, Hierholzer discovered the resul t independently for
he was unaware of Euler's paper. Hierholzer died before he couidpublish his
work and the paper that finally appeared (in 1873) and supposedly was
authored by him was in fact wri tten jointly by two colleagues (though the
ideas presented are of course Hierholzer's).

That proof was in fact a method by which an Euler path. may be
constructed. A more accessible ·account appears in Ore's book, referred to'
above. It runs like this.

Suppose we begin a patl;l at some point A and continue as far as we can,
always leaVing a point by means of a line not travelled before. As the
number of lines is finite, sooner or later we must run out of lines. But at
each point there is an even number of lines and so there will always be an
exi t line corresponding to an entry line. Except at 'A, where one of the
even number of lines was used up at the outset, leaving an odd number. Thus
the path ends at A.
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A·
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Now either:

Fig. 6

\
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or
(a) All the lines of the graph have been traversed,
(b) There are some lines that have not.

In Case (a) our task is complete. In Case (b) there must be some point B
lying on the path we have covered but met by lines not so far covered. (This
is because the graph is connected.) In Figure 6 lbased ona diagram in'Ore's
book), for example, .the point B lies between the' 7th and 8th legs of the
journey. The rule is to modify the journey by interrupting the old route at
B and including a new round trip from B to B (along previously
untraversed lines) before resuming.

It may be necessary to add in several such adQ.i tional journeys, but
ultimately (because the number of points is finite) we cover the whole graph.

Euler does not mention this, although it is just possible he took it for
granted, and thus Hierholzer is today credited with the full proof of the
theorem.

Three points need to be made.

First, if the graph is connected and all points save two, B and ql let
us call them, have even degree while B, C have odd degree, then although no
round-trip Euler path can exi,st, there is a one-way path from B toe (or
vice versa) traversing each line exactly once and these. are th~ only
circumstances in which such a journey is possible. (This was .. ·in fact the
version of the theorem proved by Hierholzer.) .

Second, if an Euler path ~xists, it is' usually not unique - often there
will be many Euler paths, given that an Euler path can. exist. It'has become
a matter of some interest to see how many. However, I will not pursue this
here.
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Third, the proof of the "vice versa" part is actually a technique
whereby an Euler path can be found. Euler concluded -his paper by s~ying

"When it has been determined that such a. journey can be made. one s.tiI! has
to find how it should be arranged". He ,gives some quite useful guidelines.
but not the above details - this is the reason for our modern view in
awarding the credit for the more difficult part of the theorem to Hierholzer
rather than to Euler.

There have been other attempts to analyse the actual s1 tuation at
KoDigsberg. In 1984. Roger Cooke. an American' mathematician. pointed out
that in 1800 or thereabouts a ferry had·been in service between the southwest
point of the island and the north bank (traversing -the NewPregel) connecting
therefore (see Figure 2) A and c. By using this' ferry. therefore.i t
would have been possib.le to travel from B to D crossing each of the
bridges (and travel~ingon the ferry) exactly once.

Another "cheating" approach to the problem was reported in 1876 when it
was found that a new railway bridge had been built to connect B to C
i.e. rather downstream from Konigsberg proper., This too (supposing that one
could manage to walk across the 'railway bridge) enabled the one-way journey.

I t might be of some interest to ,know about the - situation today. but
alas~ "that is not possible. Konigsberg was bombed out of existence on
30/8/1944. It has been rebuilt. (as Kaliningrad)and from time to time the
claim is made that it was restored to its original state. This is almost
certainly not so - but it is a claim- thatc8.nnot easily be checked. as
Kaliningrad is now a naval base and subject to very tight securjty. Even
were this not so, accurate maps would be very hard to come by.. Recently, in
an exercise in. glasnost, Mr. Gorbachev admitted that the published maps of
all Soviet cities were falsified. The only correct map of Moscow is in fact
issued by the American CIA. The CIA would also have an accurate map of
Kaliningrad (from spy satellit~~J, but be~p~e:~lin~:qgr~gisaSQviet naval
base, it is uplikely that we mere mortals" could' get hold of it. So we don't
know if modern Kaliningrad has aD. Euler path or not.

Further Rea.ding

This article is based on a number of sources, all' qui te accessible in
that they are not especially difficul t and can be found in universi ty
libraries. A general article is ~obin Wilson's "An Eulerian Trail through
KaDigsberg". published in the Journal of Graph Theory, Vol. 10, No.3 (1986),
pp. 265-275. Euler's correspondence is described in 'the same journal, Vol.
12, No. 1 (19S8), pp. 133-139. An English translation of Euler·s paper is
given in the book Graph Theory, 1~36-1936, by N.L. Biggs, E.K. Lloyd and R.J.
Wilson (Oxford University Press, 1976). A good introductory text is O. Ore's
Graphs aild their Uses (New Mathematical Library, Vol. 10, 1963).

Background data on Konigsberg were supplied from,German sources by my
colleague (and fellow Function editor) Hans Lausch. To whom my thanks.

*****
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YET ANOTHER CONSTRUCTION OF'
AN EQUILATERAL TRIANGLE

Esther Szekeres

J.C. Burns (Function Volume 12, pt. 4. p. 99) in his interesting article
in the August 1988- issue of Function" discusses three different approaches to
solve the following problem:

Given the two axes of a rectangular coordinate system OX and OY. and
a point A "in the system, construct an equilateral triangle ABC. where A
is the given point. B is a point on OX, C a" point on OY •

. I would like to describe a fourth approach which solves the problem
without any calculations and can be easily modified to solve a more general
problem.

A

M
l

y

c

Clearly, thi~ method can be
appl i ed wi thout any change if the
given lines are any two arbi trary
lines, k -and m. If the rotation
of k produces a' line t," which
is parallel to m, then there is
no solution; if i tis coinciding
with m then there are. infinitely
many solutions.

Consider all equilateral triangles wi th one vertex at A, a second
vertex, P. on OX, and ask what is the locus of the third vertex, P

l
, as P

describes the line OX. For simplicity, take all triangles with negative
orientation (see diagram). Drop a perpendicular from A to OX, meeting it
in point M. Then l::.AMH

l
is the smallest of these triangles .. If APP1 is

an arbi trary equi lateral triangle in ~ the above posi tion, the triangle AMP
will be congruent to triangle AM1P

I
as both the sides AM and AP have

been subjected to' a clockwise
rotation 9£' 60° to reach the
posi tions AMI and API

respectively. That m~s that
L AH P "=90° for all positions

.1 1

of P1"so P1 describes a

straight line i, which 5.s simply
the line we get if we rotate OX
clockwise by 60° around the given
point A. Now t will intersect
OY in C and we find B on OX
by making AB = AC.
Symmetrically, we may rotate OX
anticlockwise around A by 60°,
getting an anticlockwise triangle
ABC•.
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It is not difficult to see that a small modification of this
construction w~ll enable us to solve the following .more general problem:

Given any triangle XYZ t construct a triangle ABC such that vertex A
should be at a given point t B and C should be on two given lines .t and
m respectively, and 8ABC should be similar to AXYZ.

* * * * *

.SUMMATION OF FIBONACCI TERMS.
AS DECIMALS

Garnet J. Greenbury, Brisbane

Consider the Fibonacci sequence

0, 1, 1, 2. 3, 5, 8, 13, 21, 34, 55, 89, 144. 233,397, 610, 987, 1599, 2584,

Summation of every term

Arrange successive terms under one another so that each one is moved one
pl~ce to the right; add them up, and interpret the sum, as shown, as a
decimal.

o
1

1
2

3
5

8
13
21
34

55
89
144

·011235955056

This is the decimal equivalent of 1/89.

Summation o~ every second term

Now repeat the procedure, starting "at Ot but now· using only every
other term. Sh~w that this time the terms add up to 1/71.

Can you discern a general pattern?
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Letter to the Editor

In Volume 10, Part 5 (October 1986) of Functi~n, I wrote about a number·
of mathematicians who were also active in the religious life of the Catholic
church and who might one day become candidates, for sainthood. The article
was prompted by the news that Francesco Faa. di Bruno, an Italian
mathematician who lived from 1825 to 1S88, had ip. fact progressed some
distance down this road. In the course of the article. I made reference to a
number of members of the Jesuit order who had achieved fame as
~thematicians.

The purpose of this letter is to give details of two more Jesui t
mathematicians. I inadvertently overlooked these when I wrote before and I
now rectify the omission.

One name I should have mentioned is t~t of Gregory St. Vincent
(1584-1667). (St. Vincent was his surname. He has not been canonised.) St'.
Vincent was a pupil of Christoph Clavius (1537-1612), who was'mentioned in
the .earlier article' (as the originator of. our modern calendar). St. Vincent
wrote on comets, mechanics and geometry and is best remembered for work which
is now seen as contributing to early versions of the integral calculus. He
was an. influential teacher and indeed taught sey-eral other Jesui ts who have
some small place in the history'of mathematics.

The second person I should have mentioned is Matt:eo Ricci (1552-1610)'.
Ricci was not perhaps as creative or as influential a mathematician' as
St. Vincent, but he is a much better-known figure.and his life' was certainly
a colourful one. The last 27 years of it were lived in China, Where he
,worked as a missionary.

He is reme~bered, both within and outside the Catholic church, for what
the Dictionary 9£' Scieriti:fic Biography (DSB) calls "his complete adaptation
to China". Indeed, hewr()te many of the standard mathematics texts used in
China at that time - often these were translations and adaptations of works
by Clavius.

His major contribution, however, was the project he b~ and partially
carried through: to translate the Geometry of Euclid into' Chinese. This work
was finally completed in 1865 by Alexander Wylie (an English Protestant
missionary) and Li Shan-Ian (a Chinese mathematician).

The DSB ends its account of Ricci by stating that "he was proposed for
beatification in 1963 at the Second Ecumenical Vatican Council "".
Beatification, as I made clear in my earlier article, is one step removed
from canonisation (the formal declaration of sainthood) and one step above
the level of'recognition accorded to Faa. di Bruno.

The sentence is, however, puzzling. Ricci, as I lear~ed by contacting
the Jesuit order, has not been beatified, nor wouldi t - seem that even 26
years on has the process of his beatification made much headway. What the

, DSB may mean. and it can hardly mean more than this, is that in 1963, at the
second Vatican council, some influential person suggested Ricci •s
beatification. The suggestion~ however, appears not to have been acted upon.

Michael A.B. Deakin
Monash University
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PERDIX

The', Australian Mathematical Olympiad. competed in by high-school
,students from across Australia. took place on February 14th and 15th this
year. On each day comp~titors had a four-hour paper, each consisting of 4
questions, to tackle. Here are the papers. Can you' do the questions? Send
me your comments and solutions.

Paper 1
Question 1

Let the number of different 'divisors of the integer n be
, 24' has the divisors 1, 2,' 3. 4.6, 8, 12 and 24. 30 N(24) = 8.
whether the sum N(1) + N(2) + ... + N(1989) is odd or even.

Question 2

Suppose BP and CQ are the bisectors of the angles
triangle ABC and suppose AH. AX are the perpendiculars from
GQ. Prove th8.t KH is parallel to BG.

Question 3

N.(n), e.g.
Determine

B. G of
A to BP,

The integers t U
1

.U
Z

.U
3
•... satisfy the conditions

u = 1, and
1

U
n u +.. .+u

1 n-l

for all integers n) 1.

Prove
u + U

1 2

that
+ ...

there exists
+ u ) 1989.

N

a positive integer N such that

Question 4

Let n
the integers

be even. Four different numbers a. b, c. d
1,2•... ,n ,in such a way that a + c = b + d.

are chosen from

Show that the number of such selections is n(n-2) (2n-5)
24

t "Integers" is wrong here, because the numbers u
3
.u

4
' ••• are not integers.

So for "integers" read "numbers".
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Paper 2
Question 5

Let n be a non-negat i ve integer ~ d,d.d~ ... ~d~
o 1 2 n

be eachei ther

+ 3kd + ... + 3nd be the square of
k n

equal to 0,

a posi tive

o ~ i ~ n.

Question 6

or 2 and d + 3d +
o 1"

integer . Prove toot d
i

1 for at least one i, where

Four rods AB, BC, CD and DA are freely jointed at A, B, C and D
and move in a plane so that the shape of the quadrilateral ABCD can be
varied. p~ Q and R are the mid-points of AB, Be and CD respectively.
In one position of the rods, the angle PQR is acute. Show that this angle
remains acute no matter how the shape of ABeD is changed.

Question 7

Let fen) be defined for positive integers n. It is known that

(i) f(f(n)) = 4n + 9 for each positive integer n, and'

(ii) f(2k
) = 2k+1 + 3 for each nort-negative integer k.

Determine £(1789).

Question 8

Points X, Y and Z on sides BC, CA and AB respectively of
triangle ABC are such that triangles ABC a..'"1d XYZ arc similar. the
angles at X. Y and Z being equal to those at A, B and C respectively.
Find X, Y and Z so that triangle XYZ has minimum area.

Asian Pacific ~athematicalOlympiad

Anew venture starts this year. the Asian Pacific Mathematical Olympiad~

This first year is a trial run wi th just a small
involved: Canada. Hong Kong~ Singapore and Australia.
results in the next issue of Function.

* * * * *

number of cOlll~tries

I shall report on its
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