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As announced in the last issue of FUNCTION Terry tao of Blackwood High
School, South Australia, obtained a gold. medal in this year's International

. Mathematical Olympiad, held this year in Canberra, and one of Australia's
bicentenni~l .events. Terry's 'solution to one of the questions, question 5,
one of the three questions set on the second day of the competition, is
included (as Solution 8) in the article by Emanuel Strzelecki, Australia's
team leader. Dr Strzelecki provides eight solutions,· some of which have
considerable differences from each other.

The cover diagram is to illustrate the problem: show that the area of
the largest triangle is gr~ater than or equal to twice the area of the other
triangle with which .it shares a common right angle.
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QUESTIONS 5 AND 6 OF THE
INTERNATIONAL MATHEMATICAL

. OLYMPIAD 1988

Emanuel Strzelecki
Team Leader, Aust~alian team

This year the International' Mathematical Olympiad was conducted in
Canberra, Australia.

On the second day of the competition two very interesting problems were
offered. First we discuss a number of solutions for que~tion 5.

QUESTION 5. ABC is a triangle right-angled at A, and D is the' foot of
the altitude from A The. straight line joining the incentres of the
triangles ABD, ACD intersects the-- sides AB, AC at the points K, L
respectively. Sand T denote the areas of the ·triangles ABC and AKL
respectively. Show that S ~ 2T.

The figure below has' marked on it all the subsidiary lines and points
necessary to cover aU the solutions we offer.

y

---- ..............

---- .......
A ....... ~

U N K 8 x

Let us consider fust some theorems that will be useful in solving the
problem.
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Theorem 1

If ABC is a triangle right-angled at A, and ·0 is the foot of the
altitude from A then triangles DAC, DBA and ABC are 'similar, .since

A, .• A.

CAD =CBA, DAB =ACB.

Theorem 2

In simil~r triangles all . corresponding segments (for example sides~

altitudes, radii of incircles, etc.) are· in the same ratio.

The crucial point in solving the problem is to show that AL = AK.;= AD
(Fig.). .Once the above equality has been .established we can proceed, for
example, as follows:

T =iAL x AK =i<AD)2.

Since ina right-angled triangle

AD = ICDXOB,

and, by. the geometric mean, arithmetic mean inequality

ICDXDB :s i<CD+DB) ~ iBe,

we obtain

as required.

. We can also use .trigonometry:

From b. ADC 'and I:i ABC

AD =AC sin C =Be sin C cos c.
So

. T =iAD x AD = iAD x ~C sin C cos C

= S x Si~ 2C :s ·is.
Below we present a few proofs of the equality

AL =AK = AD.

9 Solution 1
,..

Since BAC = 90° we can introduce a' system of coordinates with A as
the origin and AD and AC as the x- and y-axes, respectively. Denote
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by E, F, G the points of contact of the circle inscribed in the triangle
ADC. with its sides, and by M, N,.P the points of contact of the circle
inscribed in the triangle ADB with its sides. Let elF = r, 02M =R. Let
o U .L AB and ·0 W .L AC.

1 2

Since, . 0l~ .1 AC, 0lEAU is a rectangle, and thus

OU = EA
1

By the properties of tangents to a circle from a common point, we have

.AE = AF.

(1)

(2)

AF = AD - FD = AD - r.

From (1), (2) and (3) we obtain

o U= AD - f.
1

. Similarly

02W =AN ::: AM = AD - R.

Thus the gradient of 0
1
0 i is

A-

It follows that LKA =.450 and hence

AK = AN + NK = AN + 0 N =AM + R = AD.
2

Similady AL = AD.

(3)

Solution 2 (Variation of a solution offered by John M. Mack, University of
Sydney)

Let AL·= AK = AD (Fig.). Let A0
2

be the bisector of. the angle B~,
with 0 the intersection of the bisector with KL. Join 0 with D.

2 2

Then, since 1) . AI( =AD
2) .. A0

2
= A0

2
(common)

3) KA0
2

= DA0
2

,
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we have

/j. AKO = A ADO.
2 2

"'-

But ~ =45°, since A AK =AL and LAK = 90°.

So ADO =45° = 0 DP.
2 2

So O2 is the intersection of bisectors of two angles of the triangle

ABO. Hence O
2

is the incentre of th~ tri~ngle ABD.

-
It follows that the. incentre of the t1 ABD lies on KL Similarly we

.prove that the incentre of the triangle ADC is on KL.

This proves the require4 equality.

Solution 3

Let Oland O
2

be the incentres of triangles ADC and ADB

respectively. Consider the triangle ·0 DO (Fig. 1). We have
12. .

A A. A

o DO =0 DA + ADO =45° + 45° =90°.
1 2 1 2 .

Also, since triangles ADC and ADB are similar, we have

(In similar triangles any corresponding segments are proportional.)

It follows .that the triangle 0
1
0 2D is similar to the triangle ADC.

Hence triangle 0lD02 can be considere~ asobtai~ed by rotating the triangle
ADB around the point D through an. angle 0lDA =45° in the clockwise

direction and reducing it in size in the ratio OlD to AD~

It follows that 0
1
0

2
makes an angle of 45° with AB.

The rest is as in Solution 1.

Solution 4

The following version of Solution 3 was offered by Angelo Di Pasquale, a
year 9 student from Eltham College, who attended Friday. lectures on
mathematical problems at Presbyterian Ladies' College (PLC). .

After it has been established that 11 0
1
02D ~ A ABD, we conclude that
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0102."f:> = ABD. It follows that in the quadrilateral KBD0
2

A A A A

DO K + KBD = 180° - 0 0 D + ABD = 180°.
2 1 2

So the" quadrilateral is cyclic, and hence
A A

o KB"+ 0 DB = 180°0
2 2

A A A-

Thus °KA =180
0

- 0 KB =0 DB =45°.
2 2· 2

The rest is as in Solution 2.

Solution 5

From trapezium 0
2
0

1
GP we have

,.. 02P-olG R-r R-r
tan 020 1F = ---pc-- = PD+DG = R+ro

Denote AC by b,.AB by Co Since triangles ADC and ABD are similar,
we have

A ,..

Since 0lF II Be and OlD II AC we have FOlU =ACB.
A A A A A

Thus OOD =FOU - FDQ =ACB - FOO. Hence
21 1 12 12

A A

tan ACB-tan FO 0
tan 0 0 U = -_~A::---_l~A2_

2 1 1+tan ACBxtan FO 0
1 2

c c-b
- - - 2 2=b c+b = c +b = 1 .
1+~ c-b b2... 2 '

bXc+b c
A

consequently, 0201U = 45°.

The rest is as in Solution 1.

Solution 6

Let 02.W 1 AC, 0
1
U 1. AB and let Q be the intersection of O

2
Wand

o Uo Then
1

A QU RCA"
tan QAB = QW = r = 1) = tan ACB.

So .QAB = ACB. Also DAB = ACB. It follows that Q is on AD.
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Thus QO2A =0 2AN =02AQ. Hence O
2
Q =AQ. Sim~larly 0

1
Q = AQ.

Consequently 0
1
Q =O

2
Q, and since 0 1QO2 = 90° we obtain

The rest is as in Solution 1.

Solution 7

Note that the triangle ADC can be obtained from the triangle BDA by
_ rotation around D through an angle of 90° in the clockwise direction,

followed. by a change of size In the ratio of AC to ABo

It follows that all corresponding segments in the above triangles are
perpendicular to each other. In particular,

BO .L AO and AO .l CO "
2 1 2 1

Thus bisectors CO1 and BO2 of the angles ACB ~nd ABC of the triangle
ABC when extended .are altitudes of the triangle AO102'. Since both the

bisector of the angle BAC and the altitude of triangle 0 AO from the
. 1 2

vertex A contain A and the point of intersection of bisectors .~o1 and
130 , they coincide.

2

It follows tha~ 0
1
0

2
is perpendicular to the bisector of the angle

BAC and· hence LKM = 45°!

The rest is as in Solution 10

Solution 8. (Terry Tao, gold medalist in the Australian team, IMO 1988)

A. . A. AfJ A. ° A. A
Let .ABC = {3, ACB = 'Y. Then .02BD =2' 02DB = 45 ,and BAD = ACB = 'Y.

Applying the sine rule to the' triangle 02DB we obtain

From h. ADB, BD = c sin 7.

c sin 'Y·sin ~ _ c cos p·sin ~
So OD = ----~

2 sine45°+~) - sine45°+~) .
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Similarly

b sin p Sin(45°-~)

cos ~
A

Since 0 DO = 90°, from 8 0 DO we have
1 2 1 2

c cos p sin p C=O· =0 = tan 7·
sin p sin(90o-p)

Hence O' 0 D = -y. Thus 0 0 D = p.
2 1 1 2

A A A

Consequently KO B = 180° .. 0 0 D .. DO B
2 1 2 2

= 180° .; fJ - (1800-45°~) = 45° - ~.

Thus 0 M = I(O'B + 0 BK = 450
.. ~ + ~ = 45°.

t 2 2 £" ~

The rest is as in previous solutions.

We. now tum to question- 6.

QUESTION 6. Let a and b be positive integers such that
, 2+b2

divides a2 -+ b2
• Show that :b+l is the square of an integer.

ab + 1

Question 6 was found the most difficult of all questions this year.
Only 11 of the 26.8 contestants got the full 7 marks and .only 14 got 4 marks
or more. For question 5, 86 contestants got full marks and 124 got 5 marks
or more.

To solve question 6, consider the equation

(1)

where q is a positive integer. This equation bas the same solutions x, y
as

(2)

for the only extra solutions that could occur would be when xy + 1 = 0
(when (1) would not make sense)~ and this is impossible, for then, from (2),
x =y =o.
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Thus it suffices to study equation (2). All II complete solutions
essentially used the following idea. Suppose that . x =b, Y =a is an
integer solution of (2). Then x = b is a solution of the quadratic
equation

i.e.

x2 + a2 =q(ax+l)

.,( .. qax + a2
- q = O.

(3)

(4)

Let x = c be the other solution of (4). Then (4) must be the same equation
as

(x-b)(x-c) =0

Le. ",2 .. (b+c)x +be "= O. (5)

Comparison of the (identical) equations (4) and (5)' shows that b -+ c = qa; .
so, smce q, a and b are integers, c is also an integer. .

Thus if we. start with one pair of solutions b, it of (2) we can
construct another pair c, a, unless .of course c = b.

Now let us assum~ that q" is not the square of an integer, and that (2)
has positive integer solutions. Choose a solution x = b, "Y =a such that
a is the least number· occurring in any solution pair.

Then, as we have seen, there is a second pair x = C, y ='a, also a
solution of (2). We claim that -0 < c < a; and this contradicts 'the choice
of a· as the least integer occurring in a solution. This contradiction
shows that there can be no solutions when q is. not the square of an
integer.

Now to prove that. 0 < c < a. First note that, if c is. a negative
integer, then from (3) we have the contradiction between

c2 + a2
> 0 and q(ca+l) < O.

Hence c;:: o.
If c =0, then from (5) and (4)

o =be =a2
... q,

so that q is the square of an integer, contrary to·assumption.

If c ~ a, then again, from be =a2
- q, since also b ~ a, . we. have

a2
.. q ~ a2

, which is impossible. Hence

o < c < a

which we have also already- $een to be impossible.

This concludes the solution to question 6.



Problem 12.5.1 Find all positive integer pairs of solutions X, y of

2 2
x+y =k2
xy+l '
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where k is a positive integer.

29th International Mathematical Olympiad 1988
First Day, Canberra, July 15

Time allowed: 4.5 hours '

'1. Consider two coplanar circles of radii Rand r (R > r) -' with the
same centre. Let p be a fixed point on the smaller circle and B a
variable point· on the larger circle. The line BP meets the larger
circle again at c. The pe~endicular t to BP at P meets the
smaller circle again at A (If l is tangent to the circle at P then
A = p).

(i) Find the set 'of values of Be!' + CA
2 + AB

2
•

(ii) Find the locus of the midpoint of AB.

2. Let n be a' positiv~ integer and let A
1

, A
2

, •••, A
2n

+
1

be subsets of

a set B. Suppose that

(a) each' Ai has exactly 2n elements,
(b) each A () A (1 :s i < j :s 2n + 1) contains exactly one

i j

element, and

(c) every element of B belongs to at least two of the Ai.

For. which values· of nean one assign to every element of B one of
the numbers 0 and 1 in such a- way that each Ai has 0 assigned to

exactly n of its elements?

3. J\. function :f is defined pn the positive integers by

f(1) = 1, f(3) = 3,

f(2n) = f(n),

f(4n + 1) = 2f(2n + 1) - f(n),

f(4n ~ 3) = 3f(2n + 1) - 2f(n),

for all positive integers n.

Determine the· number .of positive integers n, less than or equal to
1988, for which f(n) = no

Questions continued on p. 144.
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John Stillwell
"Department of Mathematics, Monash University

One of the interesting, though sometimes frustrating, things about
m~thematics is that "obvious" facts can be hard to prove." For example, .it
is surely obvious that the trefoil curve (shown in Fig. 1) is knotted.

Fig. oJ

So obvious, in fact, that most people would not consider this to .be a
mathematical fact at· all. But what does it mean for a curve to be knotted,
and how could knottedness of a given curve be rigorously proved?

The most elementary way to do this is to model cwves" by polygons.
without self-intersections' in 3-dimensional space. The trefoil could be
taken in the polygonal form shown in Fig. 2.

Fig. 2.

t This article originally appeared in John Stillwell's "World of Mathematics"
column in Vinculum (published by the Mathematical Association of Victo.r:ia).
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Alternatively, we could imagine that the smooth picture originally. given for
the trefoil was actually a polygon with a very large number of tiny sides.

The point of viewing knots in this finite, polygona! way.. is that a.lI
possible deformations of the CUlVe can be broken down Into sImple atomIc
moves, shown in Fig. 3. (Fig. 3 shows that happens to one edge of the
polygon. The whole. polygon ~s a' .closed CUNe - which is just as well, since
any curve with loose ends can be untied.)

Fig. 3.

Each move is the "bending" of one edge into two, or the reverse. Of
course, such a move is allowed only if it does not cause the polygon to pass
through itself. Sequences of atomic moves .can obviously model any actual
deformation of a physical curve (made of string or whatever) with arbitrary
precision.

With this model .of CUlVes and their deformations, we can give a precise
definition of what it means for a curve K to be knotted:· K is knotted if
there is no sequence of atomic moves which convert K to a standard
unknotted polygon, say a triangle. (Thus we have really said that a knotted
CUIVe is one which is not unknotted. The property of being unknotted - i.e.
convertible to a triangle by basic moves - IS easy to understand.) The

'problem of deciding whether a curve is knotted can now be regarded as a
mathematical problem, but still a rather hard one. Even the trefoil has
never been proved to be knotted directly from first principles - all proofs
require additional geometric or algebraic machinery.

The simplest proof I know of was given recently by Lou Kauffmann in the
American Mathematical Monthly, vol. 95 (1988), p. 203. The proof is based
on two old ideas in knot theory: knot projections and Reidemeister moves.

Knot projections are simply planar pictures of CUlVes - like those we
have already drawn - i~ which no more than two lines cross at any point.
The convention is that· the lower line is drawn broken at a crossing point,
so that the picture consists' of a series of arcs. It is obvious (and easy
to prove rigorously) that any polygon K can be deformed by atomic moves so
as to have such a projection.
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Reidemeister moves are the basic nontrivial change~ which can occur in
the projection of a polygon K as a result of atomic moves on K. They are
of three types, I, II, III, shown in Fig. 4

I: II: III:

.CSD _/__ /

/ -:./----
Fig. 4

This gives us another <;lefinition of knottedness, whi'ch turns out to be
easier to work with: K is knotted if there is no sequence of Reidemeister
moves which converts projection of K to a simple polygon (one without
crossings). To use this definition to prove knottedness of some particular
K, one wants to find a property of K which is preserved by Reidemeister
moves and which is not a property of simple polygons.

We shall give such a property for the trefoil in a moment, but first it
may help to consider a simpler property which cart be- used to demonstrate
not knotting, but 1inking of curves.

1\vo polygons A, B are said to be linked· if their projection cannot be
converted, by Reidemeister moves, -to one in which A has no crossings with
B. The "obvious" example of linked curves is of course Fig. 5.

Fig. 5.

We define the linking number of directed curves A, B as the sum of

. numbers ± 1 at crossings of A with B.. A crossing X has value + 1

(the '+' indicates that you move anticlockwise in going from the. upper
portion of the directed curve to that portion lying underneath at the

crossing), while >( has value - 1. The linking n~mber is tailor-made to

be unchanged by Reidemeister moves: moves I and III do not change the
crossings of A with -B. at all (though III may move one of them), while
move II at worst introduces or removes two crossmgs - of opposite sign. Also,
changing the direction of A or B can· only change the. sign of the linking
number. Since unlinked curves have linking number 0, it .follows that the
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property of having nonzero linking number is one which is preselVed by
Reidemeister moves and which is not a property of unlinked polygons.

Inspection shows that the polygons in Fig. 5 have linking number 2, so
this proves that they are linked.

.' There seems to be no property quite 'as simple as. this which guarantees
knotting, but in the case of the ~refoil we can come close.

The trefoil has a property which Kauffmann calls tricolorability,
illustrated .in Fig. 6.

Fig. 6

A .projection is said to be tricolorable if its arcs can each be given
one of the three colours (so colours change only whe~e the curve passes
under another portion of the curve), ..in such a way- that all three colours
are used and one or three colours occur at each crossing. To make life
easier for the printer .I have made the three colours white, grey and black,
and to show them more plainly I 'have fattened the edges of the projection.
A simple polygon is. not tricolorable because it has only one arc, so only
one colour can be used. .

Tbus to prove that the trefoil is knotted it will suffice to check that
tricolorability IS preserved by Re.idemeister moves. For I moves, the
colouring need not be changed at all. For a II move in the - forward
direction, involving different coloured strands, we have to introduce a new
colour as in Fig. 7.

Fig. 7.
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Conversely, if we have a II move in the back.w~rd direction, involving
different coloured· strands, then the colours have to be. distributed as in
the right half of Fig. 7, in which .case we can move back to .the colouring in
the left ~alf. Finally it can be checked that the only multi-colourings
which 'can occur in the context of III moves are those shown in Fig. 8, which
also shows that we can move from one colouring to the other.

Fig. 8.

So now we have proved that the trefoil is 1qlotted!

This very elementary method works for quite a few knots - about 20% of
the knots with :s 9 crossings are tricolourable according to my experiments
with coloured pencils~ To prove that other .curves are knotted, more
sophisticated methods have been brought into play. In fact, the methods
used to date in knot theory include much of the geometry, algebra and
topology developed over the last century.

However, an encouraging trend in receQt research has been the
resurgence of quite elementary ideas, such as. the Reidemeister moves. This
new era in knot theory dawned .in 1985 with the discovery. of .a new knot
invariant called the Jones polynomial. Its discoverer, Vaughn Jones, ·was
not even working in knot theory, but in the esoteric field of von· Neumann
algebras, when he discovered some formulas which led in a mysterious way to
knots. The connection still remains mysterious· - it seems to imply quite
extraordinary connections between knots and physics - but its .practical
consequence is a' polynomial VK which can be ~omputed for each polygon K,

and which is unchanged by Reidemeister moves. V = 1 for a simple polygon
. K

K, hence VK ~ 1 guarantees· that K is knotted.
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·Such polynomials had been known since the 1920's, but the Jones
polynomial outpedonns them in most cases. Not only does it provide a proof
of knottedness for all known knots, it also shows that certain knots are
distinct· from their mirror .images. This is another "obvious" property of
the trefoil which until now had been hard to prove.

. How easy is it now? As I· said, Jones arrived at his polynomial via a
very roundabout route. ~ortunately, Kauffmann has since found a simple
explanation of the Jones polynomial. He relates it to knot projections in
such a way that it becomes easy to see why the polynomial is unchanged by
Reidemeister moves. If you followed my explanation of tricolorability, you
may care to read Kauffmann's explanation of the Jones polynomial which is in
the article cited above.

~e main open pr~blem concerning the ~ones polynomial. is whether it
r~cognlZes knottedness In all cases. That IS, do .knotted polygons K
invariably have VK pI? If so, this W~uld be the first· tolerably simple

method for recognising knottedness. If not, then it's back to the drawing
board. Perhaps some generalisation of crossing number and/or
tricolorability will work? This is an area in. which a young mathematician
might easily get results. .

* * 'It * *

29th IMO 1988 (Continued)
Second Day, Canberra, July 16

Time allowed: 4.5 hours

4. Show ~hat the set of real numbers x which satisfy the inequality

70 k 5
L x-k ~ 4:

k-l

is a union of disjoint intervals, the sum of whose lengths is 1988.

5. ABC is a triangle right-angled at A, and D is the foot· of the
altitude .from A. The· straight line joining the incentres of the

. triangles ABD, ACD intersects the sides AB, AC at the points K, L
respectively. sand T denote the areas of the triangles ABC and
AKL respectively. Show that s ~ 2T.

6. Let a and b be positive integers. such that ab + 1 divides
. a 2+b2

Show that ab+1 is the square of an integer.
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THE RULE OF 72

Michael A.B. Deakin, Monash University

If-money is invested or borrowed at compound interest, the investment or
debt grows exponentially as time- goes by. After n years, for each initial
dollar we now have

fen) = (1 +IOo)n (1)

dollars, .where r is the interest rate expressed as a percentage.

If we wait long enough, each initial dollar will become two dollars -
the initial investment or debt will have doubled. Let T be the time
required for each dollar to double. Then

(1 + l~)T = 2. (2)

Recently, I learnedt of a simple rule for estimating T; a friend tells
me he learned of it from the financial pages of one of. the daily papers. It
is called "the rule of 72" and it reads

T = 72fr. (3)

Let us investigate how good this approximation is. Take logs of both
sides of Equation (2). We may do this· to any base at all, but it will be
convenient to do this to base e and use so-called natural logarithms. Most
calculators have these in convenient form. Using the notation adopted on the
keyboards of such calculators, we may write Equation (2) as

r
T-In(! + 100) = In -2 =: 0.693 ...

or

T = _1_n_2__
rIn{1+100)

r In; / r
In(l+l00)

= <p{r)/r

Thus we have, and this is exact,

(say) .

T = ¢(r)/r. (4)

t See pp. 62-3 of Making Money Made Simple, by Noel Whittaker, Boo]arong
Publications, Brisbane, 1988.



146

\Vhen r is small

the validity of this formula depending on. our choice of natural
being the reason for this choice. Thus for small r

~(r) = 100 In 2 ~ 69.3.

(5)

logs a.od

As' r increases, so does tfJ(r), and we can easily calculate the entries
in the table below:

r .p(r)

0 69.3
5 71.0

10 72.7
15 74.4
20 76.0
25 77.7

•

Table 1.

Thus ~(r) =t 72 for a value of r near 10 and Approximation (3) works
best for interest rates of about 10%. Above this value it tends to
underestimate T to some extent (although the proportional error increases).
However, as Table 2 shows,· it gives reasonably· .good results over a wide range
of values of f.

r T 72/r

0 00 00

1 69.7 72.0
2 35.0 36.0
5 14.2 14.0

10 7.3 7.2
'15 5.0 4.8
20 3.8 3.6
25 3.1 2.9

Table 2.

If: * * * *
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THE THEOREMS OF
CEVA AND MENELAUS

tMarta Sved
University of Adelaide

One of the simplest plane figures appealing by its symmetry is the
equilateral triangle. A

The figure shows its lines of symme~ AA1, BB1, eel. They meet in 0,

the centre of the triangle. The symmetry here is perfect. 0 is equidistant
from the vertices A, B, C, hence it is the centre of the circumcircle of the
triangle; it is equidistant from the sides Be, CA, AB, hence it is the
ceontre of the. inscribed circle. If the. triangle is a physical object, i.e. a
thin, uniform plate, .then 0 is its centre of mass (or centre of graVity).
The symmetry lines bisect the sides Be, CA, AB at A

1
, B

1
, C

1

respectively. They are perpendicular to those lines and bisect the angles at
A, Band C.

Consider .now what happens if the equilateral triangle is pulled out of
shape to form a general (scalene) triangle.

A

B c

We cannot speak any more about lines of symmetry, though we can draw the
medians AA

1
, BB

1
, eel' whereA

l
, B

1
, C

l
are midpoints of the corresponding

t Problem 12.4.1 (p. 127 of the previous issue of Function, Vol. 12, part 4)
asks for a ~est for concurrency related to Ceva's theorem.
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sides. These lines meet in one point S, called the centroid of the
triangle, or if the triangle is a physical, uniform, thin plate, then S is
its centre of mass. However, the hnes AA1,BB1, CC

i
are generally not

perpendicular to the sides and do not bisect the angles.

o

B p c
However, we may draw the altitudes AP, BQ, CR of the triangle, these

being perpendicular to the sides Be, CA, AB respectively. These lines
again concur at one point : 0, called the orth~centre.

A

B o c

We may also draw the lines AD, BE, CF which bisect the angles' at A, B
and C. 1;bese lines also intersect in one point, I, which is the centre of
the inscribe~ circle of the· triangle.

You may have had in. class the proofs of these three concurrence
theorems, or you may read them in some geometry book, or may find proofs' by
your own efforts. In this article we want to dISCUSS a theorem which covers
all three of the above situations and many others. To establish the
concurrence of three lines without using coordinate geometry (which may in
some cases involve heavy .algebra) can be quite difficult. The theorem to be
stated and proved in the, following provides a very useful tool.
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CEVA'S THEOREM

Let ABC be a triangle and let X, Y,Z lie on the
segments BC,CA,AB respectively. The lines AX,BY,CZ
are concurrent if and only if

AZ Bi cY
- • - e - .. 1,
zB XC YA

where 12, ZS, etc. denote directedt lengths.

Proof.

Suppose first that the lines AX, BY, CZ concur at P. Through A
draw a line parallel to Be and produce CZ and BY to meet this line at

V and U respectively. Then the
triangles .PAV and JlXC are equi..angular
and so

Note that so far we have not paid
attention to the signs of the
line-sefYent~ involved and considered only
absolute values. We have similarly

I~I = 1:1·

B x c
and so

1:1 = 1:1·

1:1= 1:1· (1)

Next we consider the equi-angular triangles YBC and YUA and obtain

I~I = 1:1· (2)

t Directed lengths: give aline a direction and take two points P; Q on the

line. Then pij denotes the value of the len~h of PQ if, when moving from
P to Q on the line, you go in the gIven direction of the line and it
denotes minus the value of the length of PQ if going from P to Q is in
the direction opposite to the given direction on the line.· In either case

IllQl, called the a.bso~ute value, or equivalently the ~dulus, of pQ, denotes
the value of the length of pQ and is thus a non-negative number.
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Finally, comparing triangles ZBC and ZAV we have

1:1 = 1;1 · (3)

Multiplying together the left-hand sides of (1), (2), (3) we obtain

while the product of the right-hand sides is 1. We note now that the
expression inside. the modulust sign must be positive, since the .directions of
AZ and ZB are the same. Similarly the other factors are positive. Hence
we have proved that for the lines AX, BY, CZ to be concurrent it is
necessary that

At rot cf
- 0 - 0 - = 1.
zit ~ rt

(4)

Next we prove the converse, that is, that if (4) holds then the lines are
concurrent. Denote now the intersection of BY and CZ by P and join AP

and produce it to meet Be in X' . Then for the three concurrent lines

A AX' ,BY,CZ we must have

B c

Comparing this with (4) we obtain that

This happens only if X' = X, that is, if -the line AP intersects Be in
x. This proves that (4) is a sufficient condition· for the-concurrence and
thus the proof is complete.

Applications: Consider the cases of the centroid, the orthocentre and
incentre.

B

A A

p C B

A

o C
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We "find the ratios of the segments on the side BC in each case,
obtaining

~1 = 1, ~ = tan ~P • ~ =Jm
At; n.; tan PAC J,A.; TACf

1

[You may. not be familiar .with the last relation. Try to look it up or prove
It by drawing through C a line parallel to AD to intersect BA produced
in some point Q.]

Finding the corresponding ratios for the other sides, Ceva's theorem
proves the concurrence for each case. You may fill in the details for
yourself.

A theorem closely allied to Ceva's theorem deals with the collinearity
of three points on the sIdes of a triangle. We state this theorem below.

MENELAUS' THEOREM

Let ABC be a triangle and let the points K~L,M be
on the lines that contain the sides BC, CA and AB
respectively." (Note that at least one of the sides must
be produced.) Then K,L,H are collinear if and only if

A

8 c
K
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Proof: Here we only indicate the proof. For the first part assume that
K, L, M are on a line and drop perpendiculars from the vertices A, B, C to
this line. By a similar procedure to that of the proof of Ceva's· theorem,
find .similar triangl~s to establish the i~enti~ first wi\¥ut ~onsid~~ing

the Signs of the ratlos.. Next note that whIle MU and u' are pOSItive,

Bit is negative, since BK' is oppositely directed to KC. (Such a situation
Ke .
occurs always. Either one or three intersections must be on the sides
produced.) . The converse part of the proof you obtain by a reasoning similar
to that for Ceva's theorem, that is, by assuming the identity and considering

the point K' where ML produced intersects Be produced.

We add a short note on tl!e history of these important and useful
theorems.' Menelaus was an astronomer who -lived in the Alexandrian period of
the Greek civilization (about 100 AD.). Ceva's contribution to geometry
came much later (about 1680).

HOW MUCH MATHEMATICS
CAN THERE BE?

With billions of. bits of -information being processed every second by
machine, and .with 200,000 mathematical theorems of the traditional,
hand-crafted variety produced annually, it is clear that the world is in a
Golden Age of .mathematical production. Whether it is~ also a golden age for
new mathematical ideas is another question altogether.

It would appear from the record that mankind can go on and on generating
mathematics. _But this may be a naive assessment based on lInear (or
exponential) extrapt?lation, an assessme~t; that fails to take into account
diminution due to irrelevance or obsolescence. Nor does it take into account
the _possibility of internal saturation. .. And it . 'certainly postulates
continuing support from the community at large. .

It seems certain that there is a limit to the amount of living
mathematics that humal)ity can sustain ..-at any time. As new mathemati~l

specialties arise, old ones will have to be neglected.

All experience so far seems to show that there are two inexh~ustible

sources of new mathematical questions. One source is the development of
science and technology, which make ever new demands on mathematics for
assistance. The other source is mathematics itself. As it becomes more
elaborate, and complex, each new, completed result becomes the. potential
starting point' for several new investigations. Each pair of seemingly
unrelated mathematiCal specialties pose an implicit challenge: to fmd a
fruitful connection between them.

The Mathematical Experience,
Philip J. Davis and Reuben Hersh, Penguin, 1980.
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CENTRIFUGAL. FORCE

Michael A.B. Deakin and G.J. Troup
Monash University

1. History and General Principles

The question of centrifugal force is one that often gives rise to
controversy and needless confusion. Often, Physics texts ignore it, or seem
to re~lace it with a different for~ called a centripetal force. Now
"centrifugal" means "centre-fleeing", while "centripetal" means
"centre-seeking", so the two words refer to pre~isely opposite directions.
Students are thus. easily misled into thinking that these. forces are
antagonistic to each other, or that centrifugal force is a fiction (despite
the .fact that we all experience it). . .

The true picture is quite simple, and. we present it here.

Let us begin with a very common early childhood eXperience. Most of us,
perhaps all of uS,when young, saw stt:eet-trees move backwards as we sat in a
moving vehicle. And very likely we were told: "No, dear, the trees, aren't
moving backwards, we're moving. fOlWards".

Well, as Einstein would have said, it all depends. on your point of view.

Newton, in his· analysis of motion, saw the importance of the viewpoint
one takes when one obselVes the motion., We now speak of the frame of
reference adopted by the, observer. Now Newton held ,that the universe· itself
provided .us with a uniquely preferred frame of reference - one that was
better than all others in the analysis of mechanical phenomena. For he
believed that an a.bsolute space was embedded in the structure of the
universe.

We do not see absolute space, but Newton, and physicists in general for
many years, saw it as revealing itself tMough its effects. If we look at
the night sky, we see that the stars ,move, but in a regular way, keeping
their patterns of constellations fIXed. The ·sun, moon and planets (and the
earth too) move with respect to these "fIXed stars". Newton saw the fIXed
stars as giving us the reference frame supplied by his absolute space.

For Newton, therefore, absolute motion was motion relative to absolute
spacec As he· wrote, "Absolute motion is the translation of a body ,from one
absolute 'place to another". It is these absolute motions· that obey Newton's
laws.

Nowadays we are less rigid about these matters. Since Einstein, we
recognise that all frames of reference have equal validity, although some,
for one reason or another, are more convenient to use. Among these frames
there are some - the so-called inertial frames - that are particularly
useful. The frame defined by the fixed stars is inertial, as is any frame in
uniform motion (i.e. moving in a straight line at constant speed) with
respect to this. These are the only inertial frames that can exist. .
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.q
Newton's laws h~ld (to a very good. approximation) in inertial frames,

but not in other, non-inertial ones.

We usually think of a body being at rest if it is at rest relative to
the earth. So we implicitly use the earth as our frame of reference. This
is not an inertial frame, although for many practical purposes we .may think
of it as ~eing so.

However, if our frame of reference is the earth, its non-inertial
character will lead to' departures from Newton's laws. The most obvious of
these is the motion of the sun across the sky. A purely terrestrial example
is the motion .of the Foucault pendulum, such as that in Monash's mathematics
building. (See Function, Vol. 6, Part 2.) .~

'We tend to say: "The sun's movement across the sky is an apparent motion
caused by the rotation· of the earth". But we are too glibly accepting the
idea .of an absolute space if we do this. Modem physics, since Einstein,
sees ~o frame as being superior to any other.

Even before Einstein, the mathematics of non-inertial frames was
investigated. We' shall make particular reference to those frames which, like
the earth, are rotating. These developments were due to Huyghens
(1629-1695), a Dutch physicist and mathematician and, in a fuller and more
developed form, to Corlolis (1792-1843) and Foucault (1819-1868) who were
French.

2. Analysis

A W~~~~P::~ =e o~a J:3~~oa:~1d:K!::ry:r, U:~ia~°W:· in li~~ tt
leaves the drYer at .that time. We will analyse from two points of view what
happens. .

First, consider the ~atter from the Newtonian perspe~tive.. The
spin-dryer is pivoted at 0, which is at rest relative to the earth (which we
will treat as an inertial frame, as the minute effects of its motion are
unimportant in this case). The drum of the dryer rotates about 0 with an
angular velocity "" radians .per second, so that in time 1, Pmoves to the
new position p' and L . POp' =""t.. The water droplet, meanwhile, is acted
on6y no. forces (if we neglect gravity and air-resistance) and so obeys
Newton's fllSt law. It thus proceeds to travel in .a straight line with
constant velocity. '

. Now when it left the dryer, at P, the drop was travelling at the same
velocity as P. From FiFe i, we see that P had a velocity aw (a being
the radius) in a direction perpendicular to OP. The drop continues to
travel with this velocity and so reaches a point Q, distant awt from P,
after time t has' elapsed..
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Q

6.-....... ... P

Figure 1

Introducing a unit vector
~

in the direction op and a unit vector

~

in the direction PQ, we" now see that the drop has position vector, relative
to 0, ia + j awt, while the piece of clothing it Ii~s left, now has the

position vector i a cos wt + j a sin wt.

On this account, we have no need to .invoke centrifugal force. What
requires explanation is the 'circular path adopted by the clothingL.:-fnd this
is due to a. centripetal ("centre-seeking") force in the direction P' o. This
.is supplied by reaction· WIth "the wall ot the dryer, and it explains why the
clothing does not do. the natural thing and travel with constant velocity,
i.e. in a straight line with constant speed. " _ .

But now look at the matter differently. lmagine an obselVer travelling
with the item of clothing. This observer sees the drop leave the wall of the

~,

dryer and travel out to Q. If we write" r for the vector OP and &r

~

for the vector P 0, we have

6r = i a + j awt - i a cos wt :. j a sin wt. t

x = a(cos wt + wt sin wt - I)}
Y = a(wt cos wt - sin wt) .

These equations give the curve known as the involute of a circle, produced by
the end of a piece of thread held taut" as it is unwrapped from a spool. Can
you see why thIS should be so?

t This ~uation can be recast to give two equations in coordinates X (out
along opj and Y (perpendicular to this). We then have (try it as an
exercise)
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For this observer, Q will have an acceleration of d2(sr)/dt2
, Le.

w
2(ia cos -wt + ja sin ~t) or ",2r . Notice that this is an outward

acceleration and so is termed a centrifugal (or "centre-fleein~")
acceleration.

In· this ~ew of things, our obselVer sees no need to explain his own
motion, since he is at rest relative to himself. .But he does need to explain
the acceleration of the particle. Now of course he could say: "I'm not
really in an inertial frame and. this acceleration is only apparent and is
caused by my motion". But equally well he. could say this: "The. a~celerati~n

must be caused' by a force .~ and, by Newton's se~ond law, thIS IS mw ~,

where m is the mass of the drop". Such a force is termed centrifugal
force.

3. .Rotating Frames in General

This is only one, very simple, example of a rotating frame. . It was once
possible to experience something very like this at Luna Park in Melbourne. A
large machine called a Rotor (and very much resembling a spin-dryer) was
located there, and people could enter it and be spun around so that they were
pinned to the walls. At this point,. the tloor was. dropped so that the
adventurers. were as shown in Figure 2, in equilibrium (more or' les~) under
the influence of four forces: N, the .normal reaction of the wall; C, the
centrifugal force; W,' their weight; F, the friction.

F

N
w

o
Figure 2

Some hardy souls used to go into the Rotor, in groups and try to throw
tennis balls to one another. .ObselVers above, who were not themselves
rotating, would then see the Newtonian view, while those inside the
contraption saw matters from a non-inertial perspective. The real skill was
to .throw the ball to yourself.

Figure 3 gives two' views of this. A person at P, in Figure 3(b),
throws the bail, not straight out, say, but rather against the rotation.
However, this does not entirely overcome the effect of the rotation, so that

~, .

the station~ observers see the motion PP' of ,Figure 3(a), as followed by
the ball, whIle the thrower travels from P to P in a curved path and so
catches the ball.
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The thrower, however, sees the ball travel out and loop back, as shown
in Figure 3(b). The ball is forced back to his hand.

p

(a)

p

. Figure 3

This is a much more complicated situation than the earlier one. There
are in fact two forces introduced by the fact that the frame is rotating.
These are: the centrifugal force, which we have already seen, and the
so-called Coriolis force, which is due to the fact that the ball is moving
with respect to the rotating frame.

Once it leaves the spin-dryer, the water-drop is also moving with
respect to the rotating frame and so is su1>ject to a Coriolis force. This
explains why Op' Q is not straight (as one might perhaps expect) in Figure
1. "

Because the earth is often used as a frame of reference and this is
rotating, . Coriolis forces become important in meteorology and oceanography.
(See Function, Vol. 1, Part 2; Vol. 1, Part 4; Vol. 2, Part 3.) Ballistics
is another area· where they come in, and so is the theory of the Foucault
pendulum. Centrifugal force entcrs into·· the theory of planetaIY motion (see
Function, Vol. 8, Part 5), and Newton himself used the notion in his account
of the shape of the earth in the third volume o( his Principia.

4. Modern Developments

There are two quite distinct notions of the mass of a body:

(1) mass may be thought of as inertial mass,· a measure of the body'~
accelerative response to an impressed force;
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mass may. be thought of as gravitational mass, a measure of the
body's ability to set up a gravitatio~al field.

However, while this distinction is quite clear and· may be traced back to
Newton himself,· experiment has shoWn that to great accuracy, the two values
turn out to be equal.

This led Einstein to develop the Principle of Equivalence (see Function,
Vol. 3, Part 4) a~rding to which gravitational forces may be explained as
due to the non-inertial nature of the frame in which they are observed.

To see this, consider a rider on a merry-go-round. See' Figure 4. In
the rotating frame, the rider is in equilibrium as the tension T in the
support exactly balances the weight W and. the centrifugal force C.

w

Figure 4

. Some authors see these as forming two components of the rider's weight,
the centrifugal force being. a horizontal component of gravity. This kind of

~8; ~e ~e(fO~f :~~1e ~tta~::etonanwi~rbi:lri~ Sfr~:-cr:::~Th~
earth-directed force of gravity is balanced by the centrnuga force, so that
the astronaut is "weightless". .

What Einstein did was to suggest. that what we normally t~nn "gravity"
was also, in effect, caused by the frame of .reference, Just as the
centrifugal force is.

. Centrifugal and .Coriolis forces are determined by the inertial mass,
rather than the gravitational mass. They thus tend to be called inertlal
forces (a much better name than that adopted by soine authors, who call them.
"fictitious forces" - they are quite real, we all e~rience them). Einstein
thus suggested that gravity itself was really also an inertIal force.

. Consider the surface of a liquid (Figure 5) held in a vessel, such as a
bucket. If the bucket is at rest (in an inertial frame), its surface will be
flat, at right ansles to the force of gravity W. This is shown in Figure
5(a). .. If the It~uid is rotating, its surface acquires a parabolic shape as
sho~ in Figure 5(b),. as the weight ~ow ~as a bOllzontal compon~nt due to the
cc'!trifugal force. . .The. surface. IS still everywh~re perpendIcular to the
weIght force W aetmg 'on the particles that compose "It. .
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w

<.>

Figure 5

This example is due to Newton, who used the shape of the surface to
distinguish inertial from rotatin~ frames (although he didn't put', it quite
that way). Einstein reversed thlS view. The surface is paraboloidal because
it is still, if not flat, then as flat as is possible, in a curved
non-Euclidean space. Similarly" planets travel in elliptical (or nearly
elliptical) orbits, because .the, sun .warps the space .in. which they travel and
then inertial forces make them go In the straightest possible lines in this
space. (See Function, 'Vol. 3, Pait 2.) They are not regarded as being
subject to gravitational forces, but rather as merely obeying an extended
version of Newton's fllst law.

If the notion of curved space seems strange, recall that we ourselves
live on the curved surface of the 'earth and may not proceed from one place to
another ,by straight paths. The straightest possible paths are so-called
"great circles" and they are much used in navigatIon. (See Function, Vol. 4,
Part 1; Vol. 6, Part 4; Vol. 6, Part 5.) Airliners, for example, fOllow
them.

Einstein suggested that the planets, especially Mercury, acted like
airliners and chose these straightest paths, m a, space warped by the
presence of the sun. As is now known, this led to ari explanation of observed
discrepancies between the actual and the theoretical positions of this
planet.

One problem Einstein was unable to come to grips with completely. It
still ,remains, and from time to time different researchers claim success, but
no one theory has achieved universal acceptance. This is to explain why the
frame of reference defined by the fIXed stars should be inertial. It seems
as if, inertia - the tendency of a body to obey Newton's first law - is
somehow a property brou~ht about by the matter great distances away, Of, if
you like, by the distribution' of matter in the universe as a whole. But it
IS not known how this connection works. ,

* * * * *
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