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In this FUNCTION issue things are done in more than one \vay. From J.C.
Burns we learn that there .is more than one procedure of solving a problem and
there are "best" and ttright" solutions: all we need is a "better" method.
Drink problems certainly have more than one formulatioil, and they can have
surprising solutions, as R.B. Potts convinces us. And M. Sved tells us of a
geometry which permits the drawing, through each point, of. more than one
par~llel to a given line. It is known that Fibonacci sequences have more
than one application, but how explosive some are is intimated by Michael A.B.
Deakin.
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THE FRONT COVER

Hans Lausch
Monash University

The 19 sets of symbols origina~e from a Central .American calendar.
Before Mexico and Guatemala were conquered by the Spaniards' in the sixteenth
century, the calendar was part of a civilization known as Maya.

--
A considerable amount of Maya literature is no longer extant as it was

burnt by Spanish monks for political and religious reasons. However, there'
were scholarly exceptions amongst them, permitting scribes to save at least a
few ancient Maya writings by translating them into Spanish, which resulted in
the Books of- Chilam Balam, now an important source of knowledge that. would
otherwise have been lost.

Very intriguing are the Maya calendars - there were several in use side
by side. The "civil" year consisted of 18 months, each having twenty days
plUS a fragment, the "Uayeb", 'considered an extremely unlucky five-day
Interval, and these 19 periods are symbolized on the front cover.

In cosmic dimensions 'was time viewed by the Maya. A period of 20 years
was called a katun, 20 katuns a baktun, 20 baktuns a pictun, and so their
system based on 20 cOQ-tinued until it reached the hablatun, an incredible
460,800,000,000 days!

Hand in hand with" Maya chronometry went the Maya number notation. One
dot stood for the unit,one horizontal bar meant 5, and then there were
characters representing 0 and 20. Systems based on 20 are not all that
exotic as they might appear at first sight. In Western Europe the ancient
Celts lived with one, and its traces are" discernible in the French word for
eighty, "quatre-vingt"· (= four twenties), and in English, when we refer to
scores.

With their "civil" calendar the Maya entwined a "religious"calendar in
which each' day of a "civil" month bore a name a~d the "reli~ious" cycle
numbered 13 days. Since the numbers 20 and 13 are relatively prime,
combining a 20-day "civil" cycle with a 13-day "religious" cycle creates a
bigger cycle of 13 x 20 = 260 days.

This was recognized by the Maya. While our dates have the format
DAY NUMBER + MONTH NAME, e.g. 1 April, theirs followed the pattern
"RELIGIOUS" DAY NU,MBER + "CIVIL" DAY NAME. E.g., the fourteenth day of
each "civil" month was named Ix and the fifteenth Men, and consequently 10 Ix
was followed by 11 Hen (not by 11 Ix I). .

The Maya "religious" calendar, it seems, related to the moon. For 405
new moons to occur ~hey thought that 46 periods, each having 260 days, i.e.
11960 days altogether, had to pass- the modern figure is 11959.888 days.

Relying on the celestial motions of the planet Venus was a third Maya
calendar. Venus was referred to by the Maya as Lahun Chan, who was a male
god with the head of a jaguar, rabbit teeth, 'and the withered body of.a dog.
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CONSTRUCTION OF AN

EQUILATERAL TRIANGLE

.J.C. Burns
Australian. Defence Force' Academy

It is often possible to solve problems in Euclidean geometry by a
variety of methods, and one of the fascinations of the subject is the
challenge to find the method which is .in some sense the "best" one. This may
be, for example, because the solution. fits the problem just as, in a less
happy context, the punishment should fit. the crime or, if one is fortunate,
because the solution reveals what can be seen, at least after the event, as
the true essence of the problem. Of course we can hardly start looking for
the "best" soilltion until we have actually solved the problem and students
generally find this difficult enough. Nevertheless, they should be
encouraged to look critically at theu first solutions wIth a view at least
to uncovering any errors and improving the presentation and, more
fundamentally, to finding other and "better" methods of proof. This search
for the "right" solution, the one which ensures that the problem takes its
proper place in the broader context within which is it posed, is an essential
feature of mathematical research. A problem given by Vern Treilibs in The
Australian l1athematics Teacher (April 1986) provides an opportunity to
illustrate how students can be given experience of this process even in a
reasonably simple problem in Euclidean geometry; arriving eventually at a
solution which, although not obvious initially, can be seen to relate
naturally to the problem. .

THE PROBLEM

From .an arbitrary point A(x,y) in the Euclidean plane as one vertex,
we are asked to draw an equilateral triangle ABC with the vertex B on
the x-axis and the vertex C on the y-axis.

SOLUTION 1

. We may assume that the triangle has unknown side length l and that
x > 0, Y > O. There are two cases to consider according as the points A, B,
C have positive or negative orientation (Figure 1). Let the angle XBA be
(J and draw AX' parallel to OX. Then angle X, AC is (J + a where

a·2400

B
IX
I

1. I
I
I
I
I
I
I
I

600+8 J:!C\ -- z

Figure 1a Figure 1b
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a = 2400 or 1200 in the two cases.

In the case where a ~ 240° (Figure la),

y = t sin 8 (6.A?ffi),

x =" t cos(60° + 8) (MZC).

Eliminating t between these two equations for t and 8 gives

y cos(60° + 8) = x sin 8,

i.e. y(cos 60°cos 8 - sin 600sin 8) =x" sin 8,

i.e. y(~ cos 8 - ~ sin 8) =x sin 8,

i.e. y cos 8 = (2x + 13y)sin 8,

i.e. cot 8 = (2x.+ 13y)Jy.

In the case where Q = 1200 (Figure Ib),

Y =t sin(180° - 8) (~)

=t sin" 8,

x = t ooS(8 • 60°) (MZC).

Proceeding in a similar inanner as above, we obtain

cot 8 =(2x - 13y)ly.

Since x and y are ~iven, it follows that the angles 8 which
determine the required positively and negatively .oriented equilateral
triangles can be calculated. (It may be noted that for the positively
oriented triangle 8 is always acute, while for the negatively oriented
triangle 8 is' . acute, a 6 right angle or obtuse according as
2x >, =, < 13y.) Moreover, if A is given simply as a point in the plane
(rather than by a pair of numerical coordinates), the lines BA included at
angle 8 to the x-axis can be constructed by ruler .and compass and so,
then, can the required triangles.

y

A

B~":.....-::....L-----If-------------

Figure 2
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SOLUTION 2

Now that we have a solution we can seek out its implications and
perhaps arrive at a new and improved method. A first suggestion is that
construction would be simpler if we could obtain the points Band C
direct!y. It is. a simple exercise in coordinate geometry to. show . th~t the
coordmates of . B are (-x =F 13y, 0) and ofC' are (O,-y =F 13x) In the
two cases. The construction of Band C is just as simple as that for
the line BA suggested above and, as it leads directly· to the triangle
ABC, is to be preferred.

Before eroceeding, we obselVe that now that the coordinates of Band
C are avaIlable, we can calculate the lengths of the three sides of the
triangle ABC in each case and so verify that it is indeed equilateral.

How would we construct B' and C? When we plot the two positions of
B, . for example, as in Figure 3, we, see that they are the vertices of two

(-x, y)K
y

$ A.(x, y)

y

._B_1~_3::...:0=-O__./3_3~y_-I-_J3_3...:...Y-+__3;...:;0~0--7B~2 ~. X
(-x -J3y, 0) (-x + .J3y, 0)

Figure 3

(-x, -y) L
• M(x, -y)

equilateral triangles which have as common base the line segment KL where
K, L are the images of A in the y-axis and the origin respectively.
Similarly, we find that the two positions of C (0, -y =t: 13x) and the
vertices of two equilateral triangles on the base LM where M is the
image of A in the x-axis.

We can now see that the solution of our problem involves only the
construction o~ four equilateral triangles on given bases. Not only is this
very easily carried out by ruler and compass, but it seems especially
appropriate that it would· be by the construction of these equilateral
triangles that we obtain the vertices of our required equilate~al triangles.

The p~~cedure. is ~ow simp.I! stated. ~irst the images of A. in the ·axes
and the orlgm, the pomts - K, L, M defIned above, are constructed.'. Then
equilateral triangles LKB

1
, MLC

1
are 'constructed w~th p_ositive orientation

(and lying wholly outside the rectangle AKLM) to give the vertices Bl' C1

of the positively oriented equilateral triangle AB1C1; and the equilateral

triangles LKB2' MLC2 are constructed with negative orientation (to overlap
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oriented

Figure 4

negatively

x

of theC
2

\
\

-1 M.(x,-y)
/

/
/

/
/

the rectangle) to give vertices B
2

,

equilateral triangle AB
2
C

2
• (See Figure 4.)

- tyK(-x,y)
/../T',

/ I
//

// C28 1 ....-.:

SOLUTION· 3

This may well be considered to be a very satisfactory end to the
investigation, but to anyone with some familiarity with the use of complex
numbers in elementary geometry, the appearance of equilateral triangles both
in the statement and in the .solution of the problem is likely to bring to
mind the simple necessary and sufficient condition that three points
represented by the complex numbers 3, b, c form an e~uiIateral triangle,
namely a + wb + w

2
C =0 for positive orientation or a + w b + we =- 0 for

negative orientation (w = cis 21C/3 so that w
3 .= .1).

In our problem,. we are given a and wish to .find band c so that
either

(1) a + wb + w
2c = 0 .or (2) a + w

2b + wC = O.

In addition, for B to lie on the real ax:is, we must have b =0 and for

C to lie on the imaginary axis we need c = -c; and we note that ~ = w
2

•

If we now take the complex conjugates of the conditions that the triangle be
equilateral and use these extra conditions, we obtain the equations·

(3) it + w
2b -wC = 0 or (4)· it + wb - w

2c = O.

We solve (1) and (3), and in the other case, (2) and (4) for band c in
terms of a and a.' and, making use of the relation 1 + w + W

2 = 0, express
the results in the form

-a + we-a) + w
2b = 0 and it + we-a) + w2

(; = 0

for the positively oriented triangle; and
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for the negatively oriented triangle.

y

8 1
I 82

I / x
I

" I / \ Figure 5
", 1// \
~~- -}M(a)

(-a)L.:, /
\ /, /

\ /
~ /

C1

These equations connecting band c with a and a show at once
that, as before, the triangles LKB1 and MLC1 are positively oriented
equilateral triangles and that the triangles LKB2 and MLC2 are negatively

oriented equilateral triangles. (Figure 5.)

While judgement of these matters is of course subjective, it may be
that this complex variable solution will appeal to .others as it does to me
as the "right" one for this problem.

* * * * *

There is no royal road to geometry.

Menaechmus
(to Alexander The Great)

TO THE POINT

Not the lacking width but the lacking length in a
point must be blamed for our inability to say that a line
IS composed of·points. .

A.L.F. Meister~
professor of Mathematics at Gottingen,

when critically reviewing a mathematics text in 1775
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QUENCH YOUR MATHEMATICAL THIRST

R.Bo Potts!
University of Adelaide

Not everyone likes coke.
likes mathematics.

Not everyone likes coffee. .Not everyone

Those who do like mathematics like solving mathematical problems.
,Here's an old problem, from the very first first-year mathematics
examination paper. set by the first Professor of Mathematics in the
University of Adelaide's first year, 1876.

ItA man sets apart £28 a year to be spent in drink, and
considers that he requires in the year a quantity of alcohol
amounting to .24 (reputed) quarts. He prefers claret to ale,
but claret costs 4Os. a dozen, ale only 118. a dozen. The
percentage of alcohol in the claret being 10, and in the al.e
6, how much does he buy of each? If the price of ale rises,
will he drink more ale, or less, than before?"

To translate this problem into 1988 language,' it needs to be de-sexed,
the. drug perhaps chan~e4, and delightful .unIts . such as reputed quarts
replaced by mundane· metnc Htres:

Problem

A woman/man sets aside $12 a year to be spent on coffee and coke and
considers she/he requires from these drinks at least 0.28 litres of caffein
a year. She/heprefers coffee to coke but coffee costs $1 a litre, coke
only $0.3 a litre. Assuming that the percentage of caffeiri in the coffee is
2%, and in the coke 1%, how much does she/he buy of each? _If the price of
coke rises, will she/he drink more coke or less than before?

The numbers in the problem are not meant to be realistic but are meant
to make the subsequent arithmetic easy. .

I hope it increases your thirst for mathematical knowledge when I let
you know that the answer to the last question is: she/he drinks more cokeI
Surprise!

Mathematical Formulation

To proceed, we need yet another version of' the problem - a mathematical
formulation - and I guess that those who do not lIke. mathematics will stop
right here.

Let x be the number of litres of coffee bought and y the number of
litres of coke bought. Then

1 The article appeared in a magazine produced by Westminster School,
Adelaide.
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x + 0.3y = 12

O.02x + O.Oly ~ 0.28

and, as she/he [refers coffee, x has to be maximized. We can express this
more neatly an , in modem mathematical jargon, as an optimization problem as
follows: . . .

maximize . x subject to. the constraints

lOx + 3y = 120

2x+ y~28

x ~ 0 y ~ o.
The last inequalities are trivial in .a sense (you can't buy
coke) but have to be included for completeness.

Solution

-3 litres of

A graphical solution should give you the answers:

x = 9 = number of Htres of coffee bought

y = 10 = number of litres of coke bought.

If the price of coke rises (say, to $0.4 a litre), then

x =4 and y = 20.

She/he drinks twice as much coke as before! What happens if the price
of coke rises to $0.5 .a litre?

". Let's drink to mathematics!

* * * * *

PROSIT!

At any time must one be able to replace the words
"points", "lines", "planes" by the words "tables",
"chairs", "beer glasses".

David Hilbert (1862-1943),
mathematician
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'NON=EUCLIDEAN GEOMETRY

Me Sved
University of Adelaide

'If you have the chance to look at texts of geometry used by older
generations of students (your grandparents or your great-grandparents) you
will find in them a collection of definitions, postulates, propositions and
theorems meticulously arranged and numbered. Old English texts followed
faithfully the .exposition in. the "Elements" of Euclid. The work of Eucl!d
(about 300 B.C.) is the summary of· some three-hundred years of work of Greek
scholars (Thales, Pythag~ras, Eudoxus and their schools). Geometry, as a
practical skill, was, pursued by other civilizations preceding the Greeks, but
the Greeks were the first who strove to free the art of geometry from trial
and error methods and results and turn it into a deductive science: a
structure built on a few fundamental "obvious" postulates (6r axioms, as we
prefer to call them today) and theorems· which can be. proved, i.e. deduced
logically from the axioms. When we talk today about "elementary geometry" we
still refer to .Euclidean geometry.. Engineering, architecture, sUlVeying
(confined to areas small enough to neglect the curvature of the earth) still
deal with. Euclidean planes when talking about the horizontal plane, vertical
planes, etc. At the turn of the century and through the earlier years of
this century the foundations. of this geometry have been somewhat modified by
the work of" Hilbert (1862-1943) and others. We do not insist any more on
defining the basic terms: point, line, incidence, betweenness and congruence.
Euclid defines the. term point and ,(straight) Hne, but these definitions
involve terms which are not simpler than those which he tends· to define.
There were also some small gaps which were filled in: some axioms, not
explicitly stated by Euclid, were added, e.g. the idea of "betweenness" is
somewhat neglected.. in the. classical,- Euclidean geometry.. "'iththese. minor

.. alterations Euclidean .geometry .still stands _ as a th.eoretical structure in
which no contradictions· have been found through more than 2000 years.

..However, one. of the postulates of Euclid did cause some controversy
.throughout the centuries, namely, the "fifth postulate" or what we call
sometimes the "parallel postulateff.

Euclid states, in the fifth postulate, that if a transversal line t
forms .angles Q and f3 with the lines t and m (see ·F~g. 1), such that
the sum of ex' and /3 is less than 180°, then the lines t and m
intersect on that side of . t on which the angles Q and /3 lie.
Mathematicians felt somewhat uneasy about classing this statement as a
postulate. They felt that it is rather a theorem which should be deduced
from the other postulates. In fact, the converse of this postulate can be
deduced from the others as we are going to show now. .

The first postulate of Euclid states that through two distinct· points
there exists one and only one line. From this it follows at once that two
lines cannot intersect in more that. one point. We are going to show that
there are lines which do not intersect in any point. The converse of the
fifth postulate can be stated now. In Fig. 2 we have the situation that

Q + f3 = 180
0

•
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We will prove that land m cannot intersect.

m

..... .....
..........

l P

,
" .... L

-----~--------r-

Fig. 1 Fig. 2

Proof: Suppose that t and m intersect in L Let L~ be on line m, as
shown, such that the segments QL and PL' are equal. Since 0: + f3 = 180°,
the angle measure of L' PQ equals that of LQP, namely f3. Hence the
triangles LQPand L' PQ are congruent (SAS) and so the angles LPQ and
L' QP are of equal size. Since by assumption L lies also on m, LPQ
measures 0: and so does LPQ = Q, hence L' lies on t. This, however,
means that t and m intersect in two distinct points, Land L', which
contradicts the first postulate. We conclude that t and m cannot
intersect.

Thus we can deduce from the other postulates of Euclid that if
point not online t, we can draw .st . .least..one line
{non-intersecting) to t, (namely by choosing the _ angle ' Q

Q + f3 = 180°). If we accept the fifth postulate of Euclid, it follows that

P is a
parallel

so that

through s point P not on the line t there is one and only one
line parallel to t.

c· m
Fig. 3 brings home· to }:ou a theorem
with which you are famIliar and, which
can be regarded .as the equivalent of
the parallel postulate: .

In every triangle of the plane t:he
angle sum is 180°.

(3 a
B'---....a....-------..r.---A

1

Fig. 3
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Indeed, this means that if one day someone ascertained by .indisputable

accurate measurement that the angle sum in some triangle is different from
1800

, then the parallel postulate could not hold. .Suppose that the triangle
ABC of Fig. 3 is our offensive triangle. We know (by the converse of the
parallel postulate which was proved- above) that if we .construct the line m
through the vertex C so that the angles. Q' and Q are equal, then m is
parallel to t. However, since Q +' /3 + 1 ~ 1800 by assumption, the angles
/3 and {J' are not equal. Thus we can construct through C at least two
lines parallel to t; m and the line which makes an angle /3 with Be.

Obviously we are not in the position of measuring accurately the angle
SUDl of every triangle. This can make you understand why mathematicians
looked for a proof of the parallel fostulate. Many attempts were made, many
"proofs" appeared (see [4]), all 0 them false, but until the early years of
the 19th century, the problem remained unresolved. The "prince of
mathematicians", Carl Friedrich Gauss (1777-1855), was deeply interested in
the problem from the days of his youth, and his correspondence with various
mathematician friends indicates clearly that he arrived at the same finding~

as the founders of the new geometry, yet he did not publish his results,
finding them too revolutionary, and hard to be accepted by his
contemporaries.

The discovery of hyperbolic geometry was left to the Russian Nicolai
Ivanovich Lobachevsky (1792-1856) and the Hungarian Janos B61yai (1802-1860).
Their results (independent from -each other) were published in 1829 and 1831
respectively. The important departure taken by. Lobachevsky, B61yai (and
Gauss) was that they did not try any more to deduce the parallel postulate
-from the other postulates. Nor did they follow the path of some previous
worthwhile attempts (notably Girolamo Saccheri (1667-1733» in trying to
prove that it is impossible to draw more than one parallel. line through a
point to a given line. Instead, they assumed the validity of all the
postulates of Euclid, save the fifth, which they substituted with the
hyperbolic post:ulate:

If t is a line and P a point: not on· the line, then t:here are
at least CWo lines throughP which are parallel to t.

What resulted was a new geometry to which B61yai referred jubilantly: "out of
nothing I have created a strange new universe".

~efore we discuss some. features of this "strange new universe tl (not so
new, 150 years later, after the work of other mathematicians and physicists
of the 19th and 20th centuries, the extension and generalization of the
ideas, and the proliferation of geometrical systems), we should say a few
words to make you more ready to accept such an alternative geometry. Even
admitting that the geometry _of the hyperbolic plane is just as perfect
logically as that o~ the Euclidean plane, we all. have a natural resistance to
it; we tend to deny its "physical truth". So at this point we should analyse
our feelings. We favour Euclidean geometry, "because .it is simpler, because
it is ingrained in. our way of thinking, because it agrees with·· our
experienceft. We can answer all these arguments. It is "simpler" to think of
the sun rising in the East and setting in the West than to think of the earth
revolving in' an elIipt~cal orbit around the. sun, yet we have come to prefer
the latter description. Throughout the years the individual life and
throug~out the collective life of hundreds of generations the concepts of
Euclidean geometry, such as the simple properties of rectangles and circles,
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or .. the angle· sum of triangles have been with .us, so it is no .. wonder. that they
are "naturally ingrained in our way of thinking". As for a~reement with our
experience, we can answer that· Euclidean geometry has certaInly sprung out of
experience. We can measure with our protractors' the angles of a triangle and
find that the sum is 1800 or "something very near". . We have to make
special arrangements to ensure the precision of. the measurements. However,
when we deal .with very large triangles, we have to reappraise the object of
our measurement. The word geometry means "measuring the. eartb". A physical
horizontal plane on the earth exists as a good approximation to the surface
of a .lake, if the weather is..still and the lake .is not too large. We Jrnow
that ·the surface of the sea, however calm, is not a horizontal plane. In
fact we know that the thing which we think of as a straight, 'line does not
exist at all on the surface of the earth. A North-South line is a meridian ­
a great circle going· ·through the poles. it can be shown that the shortest
distance joining two points, on the surface of the earth, along that surface,
is the arc betwe~n the. two points of the great circle .joining the two points,
i.e. the arc of the circle m in which a plane containing tlie points and the
centre of the' earth cuts the surface. Such a line is called the geodesic
line joining the two points.

The sides of a. triangle on the surface of the earth are. segments of'
great circles. We call ,such a triangle a spherical triangle. Its angles can
be measmed locally and can be taken to coincide with the angles between the
tangents drawn to the circles at the vertices. Fig. 4 sketches the spherical
trjangle f?~ed by the E~uator, .t~e meridian. throug~, Greenwich (called the
o mendlan) and the 90 E merIdIan,' the vertIces beIng 0, Nand P. (G
is not Greenwich!) It can be seen easily that each of its angles is -90°. So
we have a spherical triangle with the angle sum of 2700 and which has in fact
three right angles (even two are denied to a Euclidean plane triangle). It
can be shown that the' ·angle sum in a spherical triangle. is always more than
180°.

N P
S R
B A

G \
\

\

.Q \\ T
1.

Fig. ·4 Fig. 5

We must point out hurriedly that hyperbolic geometry is different from
spherical geometry. One important difference is that in spherical geometry
two "lines", i.e.. geodesics, meet in two points instead of one (e.g. two
meridians meet in the Nand S poles). In hyperbolic geometry, however,
the first postulate of .Euclid is valid and so two lines intersect in at most
one point.

We are now' ready to list a few interes.ting consequences of the
hyperbolic postulate. From it follows immediately that, in a hyperbolic

'plane, through a point P not on a line t there are an infinite number of
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lines parallel to t. The situation is illustrated in Fig. 5. The rays PA
and PB shown play a distinguished part. They are called limiting parallel
or bounding parallel rays, which are symmetrical about the· perpendicular PQ
from P to t· and are inclined at an,angle 4> to . it, which is named the
angle of parallelism. Each ray enclosing an angle less than <p 'with PQ
intersects t (e~g. the line PT) while rays enclosing· non-obtuse angles
greater than· 4> on eithe! ~i~e of PQ (e.g. PR ,or PS) a.re parallel .to
1-. (Some texts call the hroiting rarallel rays PA and PB parallel, while
all the other parallel lines are classIfied as "hyperparallels".)

Fig. 6

It was found that 4>, the angle of parallelism, depends on the
distance PQ and it decreases from 900 to 00

. as the distance PQ
increases from 0 to infinity. We may s.ee from this that when PQ IS

small, the rays PA, J>B. are very nearly perpendicular to PQ, hence very
nearly coincide with the Euclidean parallel through P. This means that in
"small" regions hyperbolic geometry is not dIstinguishable from Euclidean
geometry. You are. justified to ask .the question: what is "small"? Remember
here that on the earth we can 'take a spheriealtriangle to HbeaEuclidean
plane triangle if the' region is. small in comparison to the total surface. of
the earth. For any sphere, the surface area is 4nR2

, where R is its
radius, so "small" means small compared with 4nR2

• There is also a natural
way -of defining .·"small" in hyperbolic geometry. As there are many different
spherical geometries - spheres with different radii - .so there are also many
different hyperbolic geometries or hyperbolic planes. For given a line l­
on a hyperbolic plane and a point Q on. the line, we can erect .. a
perpendicular at Q. There will be some pointP on this perpendicular for
which the angle of parallelism is 450

• Different hyperbolic planes through
the line t will have different values for' the ~ength .of PQ.· If, we fix our
attention on a particular .plane, a "small" region near Q, say, will mean a
region whose size or diameter is, small compared with PQ, described above.
You may raise another objection: "PA and PB approach the line t, so they
must surely intersect it". However, we assume that you are already f~miliar

with the asymptotes of a hyperbola which approach the curve, but do not
intersect it (Fig. 6).
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We may proceed now to list a few more properties of this strange
geometry. You have to part with the notion :of squares and rectangles. They
do not exist in hyperbolic geometry. . The distance between two parallel lines
is not constant. The case' of hyperparallelity is illustrated in. Fig. 7.
There are at most two points on m wh:lch' are equidistant from t, and there
is exactly one line which is perpendicular to both t and - m and determines
the shortest distance between them. In the case of limiting parallelness, m
asymptotically approaches l (Fig. 8).

Fig. 7 Fig. 8

In hyperbolic geometry you lose th.e concept .. of. "similarity"'. In fact,
in this geometry if two triangles are equiangular, then the· triangles are
congruent, i.e. their sides are equal in length. Here we nlust remember that
th~;/U2g:lesW1J..ofa hyperboJic triangJe i.s. . I}.lwaysless , tl1.8l1 .. ,1$,0° .. The
difference between 1800 and the actual sum is called the "defect". An
interesting connection. exists between this angular defect and the . area of a
triangle. It can be shown that the area IS proportional to the defect. It
follows from this that since the defect is· always finite, however ·large the
sides become, the area remains bounded (!).

These few startling results should make you appreciate the boldness of
the discovery of this geometry. Gauss was reluctant to publish .his findings
and neither Lobachevsky nor B6lyai received any recognition durin3 their
lifetimes. Mathematicians with minds sufficiently open not to dismIss the
theory, asked the r~Ievant question: admitting that no logical contradictions
are apparent in hyperbolic geometry, is not. there a possib;lity.· that sonle
inconSIstencies will appear at some later stage? The same question can be
asked about Euclidean geometry, but there no inconsistencies appeared in more
than 2000 years. The . idea .occurred to mathematicians at the later years of
the 19th century and the early years· of the 20th century (Beltrami, Felix
Klein, HenriPoiilcare) to use Euclidean geometry to prove that hyperbolic
geometry is consistent.. Since the basic· concepts of each geometry, line,
point; congruence, incidence, betweenness are not defined, one may start
within the framework of Euclidean geometry .and build a "modelIt for hyperbolic
geometry. For example, in the model of. F. Klein, .the points in the interior
of a circle and the chords of the .circle (excluding the points on the
circumference) are made to play the roles of the points and lines, of the
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hyPerbolic geometry. With congruence suitably' defined in this model,
situations similar to hyperbolic geometry arise (e.g.. _ through each, point P
more than one chord can be drawn, not intersecting a given chord t). The
results of hyperbolic geometry can then be identified with theorems in
Euclidean geometry. So if Euclidean geometry is consist~nt, so is
hyperbolic geometry.

An article like this can merely give
you a glimpse of this fascinating
Chapter of mathematics. Many good
books are available on the subject.

R.Kwai

Heading for the great river Kwai
I turned off ·at an angle of ,.
When a voice -cried from the jungle:
- Friend, you made a bungle -
So I stopped and shouted back: - Why?

The answer came with a sigh:
- You'll never reach the great river Kwai.

¥tt~aY6~r':fr~· ~~~ih~~~g6fi~~lane
And the angle of parallelism IS 4>.

References

"Non-Euclidean Geometry",
Academic Paperbacks.

Euclidean and Non-Euclidean Geometry",
W.H. Freeman.

"Euclid's Elements",
Dover, Vol. 1, pp. 202-220.

"Introduction to Geometry" (Chapter 16),
J. Wiley & Sons Ltd.

"Non-Euclidean Geometry", Dover.
[Contains translations of J. B61yai, "The Science _of
Absolute Space" and N. Lobachevski, "Geometrical
Researches on the Theory of Parallelsft.]

[1] H.S.M. Coxeter,

[2] H. Meschkowski,

[3] M.J.. Greenberg,

[4] T. Heath (Ed.),

[5] R. Bonota,



114

FIBONACCI SEQUENCES
AND CHAIN REACTIONS

Michael AoBo Deakin, l\fonash University

The Fibonacci sequence is well known and much written about, but
continues to be fascinating in all sorts of ways. It was the subject of an
article in the very first issue of FUNCfION and there have been many other
popular and indeed technical works written on it. There is no shortage of
reading matter, if you want to learn more of the subject.

The Fibonacci sequence is the list of numbers

1, 1, 2, 3, 5,. 8, 13, 21, 34, 55, 89, "', (1)

where each number .from the third entry (2) onwards is the sum of the two

rreceding numbers. That is to say that if we indicate the nth numbers by
n (so that f

i
= 1, f

2
= 1, fs = 2, f

4
= 3, etc.), we have

f = f + f .
n+2 n+l n

This relation, together with the values of· the first two numbers,

(2)

(3)

serve~ to determine the sequence. -

The sequence has an unlikely origin, in that it was first introduced as
a mathematical .model of the breeding of rabbits. On one account (not -quite
that first adduced), it is supposed that a pair of· rabbits mates each month
and that after a two-month gestation period they produce a new pair of
rabbits who are mature enough tnemselves to mate immediately, and so on.

_ It should perhaps be said at this· stage that as an attempt to provide a
realistic mathematical description of rabbIt population dynamics, this model
has several severe deficiencies - but perhaps we can just say that these are
mathematical rabbits and we can attrIbute to them what properties we like,
including immortality, for these rabbits don't die.

Anyhow, start with a single p~ir in, let us say, January. They mate but
have nothing to show for this in February, when they mate again. However, by
March the first of the younger generation, the pair conceived in January,
arrive, so now we have two pairs of rabbits. Both pairs mate, but this will
have no effect till May. However, in April a second litter is born to the
original pair, so we now have three pairs. By May the two litters conceived
in March arrive and so now there are fIve pairs. And so it goes on.

In August, say, we have all those pairs that were around in July,'
together with the new ones conceived by the pairs ~harwere there in June.



In mathematical language, we can express this as

fa = ~7 + f6,
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(4)

or more generally by Equation (2). The .model clearly also ~vO.lves Equation
(3) and so the numbers each month are given by the consecutive terms of the
Fibonacci sequence. "

Given this background, we might expect that as each pair of rabbits
,ultimately produces a second pair of rabbits, the growth would follow a
'geometric sequence. To check this idea, try substItuting f

n
= arn

i~to

Equation (2). This gives arn
+

2
' = arn

+
1 + arn

, which simplifies to

r2
- r - 1 = 0,

as obviously a·J" O. This has solutions

r = ~1 ± 15).
2

(5)

(6)

(7)

We now need also to satisfy Equation (3), and it can easily be checked
that this is not possible if we try to set f

n
:: arn

• For either of these

values of r, as given by Equation (6), no single value of a will do.
However, if we set

fn =~. [ 1i'5 r- ~ [~r
we will find that Equations (2), (3) are both satisfied~ You could do this
as an exercise, ano also check, both on a calculator and 'by exact
multiplication of the quantities, that the first few numbers of the sequence
(1) are in fact produced·, by this formula. , .

As n becomes large, the first term of Equation (7) becomes large (very
rapidly), while the second becomes small (also very rapidly). E.g., when
n =,10, the second term is only 0.0036, the extent by which the fIrst term
exceeds the true value of 55. For larger n, the discrepancy' is even
smaller and so we can put

f . 1 [ 1.+/5) n
n ~ 75 ~, (8)

as long as n is not too small. In other words, although the Fibonacci
sequence is not a geometric sequence, it soon settles down into something
that very nearly ,is.

Moreover, if we go back to those rabbits, they are not breeding quite as
fast. as another species that simply doubled Its numbers every month,
producing the sequence whose general term is 2n

• On the other hand, they are
multiplying more raEidly than a species that doubled its numbers every two
months, ~roducing (If n is even) the sequence whose general term is 2n/2

or (12) . The growth rate is intermediate between these and so we would
expect



12 < !.(1 + 15) < 2,
2
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(9)

which you can easily check to be the case.

I recently attended a meeting of t~e South-East Asian Mathematical
Society in Chiang Mai, Thailand,. and heard a Thai mathematician, Sompop
Krairojananan, discuss. another model that also gives rise ~o the Fibonacci
sequence. He took a relatively simple account of the reaction between oxygen
(02) and hydrogen (Hz) to form water (HzO). You may have seen it_ done in

yo.u.r school ~ chemist.ry .tab. The. two gases .are mixed and a bri~f spark
InItiates then combInation - boom! AccordIng to one model, thIS spark
dissociates some of the oxygen molecules into highly reactive oxygen atoms

. (0).

Each oxygen atom then attacks a hydrogen molecule to produce two highly
reactive species, a hydrogen atom (H). and a hydroxyl radical (OR):

o + H ~ H + OR.
2

(10)

These then attack other hydrogen and oxygen molecules according to the
reactipns:

OR + H ~ HO + Hz 2

H + 0 ~ OH + o.
2

(11)

(12)

Now see what's happened.· After one round of reactions one oxygen atom
has been replaced by another. So we still have one oxygen atom. But also in
this round, we produced two hydrogen atoms and used only one of them up.
This hydrogen atom will, on the next round, give rise to a new oxygen atom.
Then there will be two oxygen atoms, because the actual atom of oxygen will
also be replaced, and· so on. The number of atoms of oxygen will follow the

. Fibonacci sequence.
. .

Indeed, the oxygen atom is strictly analogous to the' pair of rabbits in
the first example, while the hydrogen atom is the analogue of the "potential
rabbit pair" that has been conceIved, but not yet born.

We may think of the chemical model (which so~ewhat simplifies the
real-life thing, though not nearly as drastically as the rabbit model
simplifies its cprresponding reality) as a chain reaction. This term is
especially used in nuclear situations, and it is .from these that I ~aw the
final illustration, again due to Professor Krairojananan. The model, once
again, is a simplification, but not as drastic a· one: in this case.

Let a high-energy sub-atomic particle enter a mass of fissile nuclei.
Eventually it collides with one of them, which then emits two more
high-energy particles and one low-energy particle. Low-energy particles can
also react with nuclei, but in this .case they only emit two high-energy
pa~ticles (as well as the original low-energy one). So

h ~ 3h + t}
(13)

l-+2h+l



So, if at the start of the
high-energy particles and in

round,
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nth round of. reactions, there are h
n

low-energy particles, we will have, after this

h =3h .+ 2t}n+i n n

t .= h + t
n+l n n

(14)

for the new high-energy particles come from both the old high-energy
particles (3 for each of these) and the old low-energy particles (2 for eaCh)
according to the reactions (13). Similarly for the new low-energy particles.

Equations (14) are two simultaneous "recurrence relations", and one way
to proceed is to eliminate tn. When this is done, we get a single relation
for h, that reads

n

h =4h -h.
n+2 n+l n

(15)

(Do this as an exercise.)

Equation (15) may be solved and thus also the syste~ (14); we also need
some analogue of Equation (3) and a simple one to use is h = 1, t = O.

.11

Try this, too, as an exercise. The details differ from those used for
Equations (2), (3) but the overall behaviour is very similar. The sequences
th~t emerge:

and
1, 3, 11, 41, 153, 571, 2131, etc. (for hn)

0, 1, 4, 15, 56, 209, 780, etc. (for tn)

are very similar to the Fibona~ci sequence (1) and indeed are often referred
to as Fibonacci sequences because of this similarity. It is not. difficult to
construct other examples, and you might like to do. this yourself, and send
your findings to FUNCfION.

* * * * *

Exampl~s ... which might be multiplied ad libitum, shi:>w
how difficult it often is for an experimenter: to interpret
his results without the aid of mathematics.

Lord Rayleigh
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THE TOWERING CHALLENGE

Tim Hartnell
Chelsea, Victoria

Hour by hOUf, day by day, monks in the great temple of Benares are
playing a game. When they finish it, the world will end; Your computer can
give them a hand.

In 1883, a toy invented by the French mathematician Edouard Lucas went
on sale. It was an immediate hit.· The toy, marketed under the name Tower of
Hanoi, consisted of eight disks of different sizes, and a base containing
three pegs. The aim of the game was to move the disks, one by one, from the
initial peg to one of the other pegs in the shortest number of moves. The
only rule was that you could never place a disk on top of one which was
smaller than itself.

It sounds a simple game, but it is one which demands a great many more
moves ·than you might think. Those monks, in the '''great temple of Benares
beneath the dome which marks the centre of the world" (as the instructions
with the original game explained it), were working with 64 solid gold plates.
They have a brass plate, on which rest three diamond needles "each a cubit
.high and as thick as the body of a bee".

Apparently the creator. put the 64 disks on one of the needles at the
moment of creation, and told the hapless monks to get on with it,and move
them. When they finish the· game, they are told, the universe' will pack its
bags and. ~o home. (The game instructions .. actually put it a bit more
poetically: ' When the' sixty-four disks shall have been thus transferred from
the needle on Which,. at the creation, God placed them, to one of the other
needles - tower, temple, and Brahmans alike will crumble into. dust, and with
a thunderclap, the world will vanish.")

How long will it take them until Thunderclap Day? . If there are n
disks, it takes a minimum (assuming you don't make any dumb moves) of 2n-l
moves. The numbers increase quite rapidly. With three disks, it will take
you seven moves (in theory; it always seems' to take me 12). Fifteen moves
are needed with four disks, 31 moves with five disks, 63 moves with six, 127
with seven, 255 with eight, 511 with nine disks and 1,023 moves when you have
ten disks. .

That means our monkish persons, with 64 gold plates, will take
18,446,744,073,709,551,615 moves. If a plate was transferred every second,
and .the monks' didn't drink their Horlicks and get any sleep, it would take
them thousands of millions of years to finish the task (580,454,204,615 and
a bit years, according '.' to· my calculations). Whew! I thought for. a moment
there that the Big Un-Bang was going to happen before the Christmas holiday.

The eight disks provided with' the original toy would take, as pointed
out before, a minimum of 255. moves to transfer the disks. The program
HANOI.BAS allows you to choose how many disks you want to transfer (from two
to nine), then draws up the scene for you, and lets you get on with it.
Needless to say, the· program does not allow you to cheat.
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10 REM HANOI. BAS
20 REM (C) TIM HARTNELL. 1987
30 REM INTERFACE PUBLICATIONS ,
40 a.B:PRINrtTOWER OF HANOI - TIM HARTNELL9t:PRINt':PRINT
50 DIM A$(9).B(20).C{2O),D{20):MV=O
60 Q=9:REM QIANGE TO Q=5 ON AN APPLE OR 40-0JL DISPLAY
70 PRINT "HOW MANY DISKS 00 ·YOU WANT (2 TO"; Q; ")"; : INPUI' DK
80 IF DK=O THEN END
90 IF 'DK<2 OR DK>Q' THEN 70
100 Q=DK
110 PRINT:PRINT "PLEASE STAND BY ... "
120 REM ** SET UP **
130 FOR J=O TO Q:A${J)=.tt,
140 B(J)=J
150 FOR Z::1 TO lo-J:A$(J)=A$(J)+" tt:NEXT Z
160 FOR Z=l .T02*J+l:AS(J)=A${J)+"·":NEXT Z
170 FOR Z=l TO lo-J:AS{J)=!$(J)+" tt=NEXT Z
180 NEXT J
190 Q=DK
200 REM *III PRiNT our **
210 a.s:SC=-1-
220 B(O)=O:C(O)=O:D{O)=O
230 PRINT "AFTER 'MOVE";MV:PRINT
240 REM FOR NUMBERS ONLY, mANGE NEXT LINE TO:PRINT
B(O);" tt :C(O); 9t tt ;D(O)
250 PRINT !S(B(o»:n n;A$(C(O»;" ";A$(D(O»
260 FOR J=O ,TO DK '
270 REM FOR NUMBERs ONLY, OlANGE NEXT LINE TO=PRINT B{O);" ";C(O);"

";D(O)
280 PRINT A$(B(J»;" ";A$(C(J»;" tt;A$(D(J»
290 B{J+IO)=B(J):C(J+10)=C(J):D(J+IO)=D{J)
300 IF D(J)=J THEN SC=SC+l
310 NEXT J
320 PRINT "--------------------------------------~----------------~---

----------------------......... :REM FULL WIDTH OF SCREEN
330 IF SC<>O THEN PRINT "SCORE IS"SC
340 IF SC=DK THEN PRINT "YOU'VE· OONE IT IN";MY; "MOVES" :END
350 MV=MV+l
360 INPUr· "MOVE DISK FROM WHIaI <DLUMN"; A
370 IF A<1 TIIEN END
3SO IF A>3 THEN 360
390 INPUf" TO WHIOI roLUMNtt; B
400 IF B=A OR B<l OR B>3 TIIEN 390
410 'REM ** FIND TOP DISK IN <DLUMN **
420 E=O
430 FOR J=DK TO 1 srEP -1
440 IF A=1 AND B(J)<>O THEN E=J
450 IF A=2 AND C(J)<>O TIIEN E=J
460 IF A=3 AND D{J)<>O THEN E=J
470 NEXT J .
480 IF E--oTHEN 360:REM NO DISK IN THAT COLUMN
490 REM ** FIND TOP SLOT TO PLACE DISK **
500 F=O .
510 FOR J=l 10 DK
520 IF B=1-AND B(J)=O THEN F=J
530 IF B=2 AND C(J)=O THEN F=J
540 IF B=3 AND D(J)::O THEN F=J
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550 NEXT J
560 IF F=O THEN 390:REM NO ROOM IN 1HAT OOLUMN
570 REM ** NOW MAKE MOVE **
580 REM ** F.IRSTREMOVE DISK **
590 IF A=l THEN TEMP=B(E) :B{E)::O
600 IF A=2 THEN TEMP=C{E) :C(E)::O
610 IF A=3 THEN TEMP=D(E) :D(E)::O

.620 REM ** NOW PLACE IN NEW POSITION **
630 IF B=1 TIlEN B(F)=TEMP
640 IF B=2 TIIEN C(F)=TEMP
650 IF B=3 THEN D(F)=TEMP
660 REM ** NOW CHEo( IF. DISK BELOW IS LARGER **
670 OK=1:FOR J=l TO DK-1
680 IF B(J) >B{ J+1) THEN OK=O
690 IF C(J) >C( J+1) THEN OK=<>
700 IF D{J»D(J+l) THEN OK::O
710 NEXT J
720 IF OK=! THEN 200
730 PRINT TAB(4) n ~ THAT MOVE IS IllEGAL <=Of

740 FOR Z=l TO 5OO:NEXT Z:REM ADJUST TIllS DELAY FOR YOUR SYSTEM
750 FOR J=1 TO Q
760 B(J)=B(J+I0):C{J)=C(J+I0):D(J)=D(J+I0)
770 NEXT J
780 MV=MV-1
790 GOTO 200

If you want a mathematical project, try working out a proof that you can
always move n disks in .' 2n-1 moves. I'd be interested in seeing your
proof. Another project would be to write a program which would tell IOU the
best way to move the disks. You can' do this with the assistance 0 binary
numbers. .

Let's say you had three disks. You know, from 23-1, that it will take
seven moves. You write down the numbers one to seven, in binary, one under
the other. In order to .work out which disk to move, you count the digits
from the right until you reach the first 1. . The number of digits you have
counted will tell you which disk to move. You can see that, counting from
the right with move number one, you'll hit a 1 right away, so you move the
first (that is, the smallest, disk).

A three-disk Tower of Hanoi requires seven transfers to
move the. disks from the left hand needle to th.e right hand one.
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To find out where to put the .disk, you start counting again and keep
moving across the binary number. If you don't come to .any other l's,·· then
place the disk on the first needle you come to. In this case, you'd place it
on needle number 2. If .you were on needle number 3, as you will be when
using more than three disks, you move it to 1. If there are other' l's to the
left of the' fllst 1, you count across from the .right until you hit. the next
1. This identifies the disk you moved on the previous move. Now, if there
are no zeros between the ftrst. 1 and the second 1, or there is an even number
of zeros, place the disk on top Qf the .one you moved in the previous move.
If there is an uneven number of zeros, then you skip that move.

Here's how it works in practice:

1 - 001
2 - 010
3 - 011
4 - 100
5 - 101
6 - 110
7 - 111

Move disk one
Move disk 2
Move disk 1 on disk 2
Move disk 3
Skip this move (odd number of zeros between the 1's)
Put disk 2 on disk 3
Put disk 1 on disk 2

You might also· be interested in writing a program which not only works
out the above, but actually moves the disk for you. Then you could get it .on
the 64 gold disk problem, and start packing your bags for Thunderclap Day.

00000

A collection of Hr Hartnell's mathematical articles, along with computer
progr8111S fo+, the IBM PC and Apple II, is available from Interface
Publications, 34 Camp Street, Chelsea 3196. Please write for details.

* * * * *

HALT!

MathematiCs permits no free movement.

Immanuel Kant (1724-1802),
philosopher

* * * * *,

But there is anoth~r reason for the high repute of
mathematics: it is mathematics that offers the exact natural
sciences a certain measure of security which" without
mathematics, they could not attain.

Albert Einstein
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Mark Kisin, who is a year-eleven student at Melbourne Church of England
Grammar School, wrote:

thatsuch

does not hold for

F (x»
j

j (say

; (k2-1)p (k) = ot
n

k-O

However, as

n

L Pn(k} = nt, as there
k-O

permutations, each counted once by the preceding sum. It also turns

~ (k2-I)p (k) = n1. This seems to suggest that in general there
n

k-O

a polynomial of .degreebe

n!

n = I"and

n

L Fj(k)Pn(k) = nt
k=O .

n

L kpn(k) = o! does not hold for n = 0, we should impose 'the
k-O

additional requirement that 0 2: j. In fact, this constraint' assures the
existence of 'such F (x), and in what follows I shall prove this, as well as

j

give a method for constructing the polynomials in question.

might

out that

are

n

In the 1987 IMO, Question 1 asked one to prove that L kPn(k) = nt,
x-O

where Pn(k) is the number of permutations of the set {1,2,3,...,n} with

exactly k fIXed points. It is clearly true that

Readers who are interested in Mark Kisin's proof should write to the
Editors of FUNCfION for further details. (Ed.)·

11: * • • *

STOP PRESS

1988

INTERNATIONAL MATHEMATICAL OLYMPIAD

This year the IMO took place in Canberra. The examinations were held on
July 15 and 16. There were 49 teams competing~ Australia was 17th overall.
The USSR was first, the· People's Republic of China and Romania came equal
second.

Australia won one gold medal and one bronze medal (in 1987 our team won
three silver medals).

The medallists were:

Gold: Terence Tao, Blackwood High School, S.A
Bronze: Geoffrey Bailey~ St. Aloysius College, N.S.W.

Congratulations from FUNCfION to them and all the team.
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PROBLEM SECTION

FUNCTION has received another solution to Problem 11.3.1 (Vol. 11, pte
~, p. 96; compare PERDIX in yol. 12, pt. 1, p. 31f. and Colin \Vil~on in Vol.
12, pt. 2, p. 37f.). The problem IS:

If a and b are positive and a + b = 1, show that

Here is the latest solution. It is by C.J. Eliez~r of La Trobe University
and again proves the ~sefulness of the formula

xy :s ~(x + y)2

as was indicated by ~olin Wilson:

The inequality is equivalent to a2 + 2 + --! + b2 + 2 + -.! ~ 25
a2 · b 2 ~

i.e.

i.e.

i.e.

i.e.

i.e.

i.e.

4a3b3 + 15a2b2 + 4ab ;. 2 :s 0

(4ab - 1)(a2b2 + 4ab + 2) :s 0

1ab :s 4: .

Hence the given inequality is equivalent to ab:s A.

But ab = ~[(a+b)2 - (a-b)2] :s i ,using a + b = 1.

* * * *.*

Also, Etta Melman and John Smith of Moriah College, Bellevue Hill, NSW,
submitted at last to the challenging fangs ot PERDIX. Their pretty solution
to the problem is:



To prove that if a + b·= 1 .then

(a+~)2 + (b+~)2 ~ 25
2

.
a b

In general, (a+b)2 = 2ab + a2 + b2

and (a-b)2 = -2ab + a2 + b2
•

Adding: (a+b)2 + (a-b)2 = 2(a2+b2)

i.e;. 1 + (a-b)2 = 2(a2+b2
)
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Subtracting

i.e.

Hence,

(a+b)2 - (a-b)2 = 4ab

1 - (a-b)2 =4ab

4ab =s 1.

1 1 a 2+b2

-+-=--
a 2 b 2 a 2b 2

1

2

~l'

16

~ 8..

a2 + b2 + --!. + --.!. + 4 ~ .!. + 8 + 4
'. a 2 b2 2

i.e. (a+.!.)2 + (b+.!.)2 ~ 25
2

•
a 2.

* * * * *

Q.E.D.

John Barton of North Carlton presented two solutions to Problel11 12.1.2.

First Method

Through E draw EF parallel to BC to meet AB
in F. Join CF. Let CF intersect BE in G.
Since LBCD = 50° and LBCF = 60°, LBCD < LBCF, so
Band D are on the same side of the line CF.
llBCG is equilateral, so that

BG = BC.
(1)
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Since LBDC = 50° = LBCD,

BD = BC.

Hence BO = BD, so that

LBDG =' LBGD = 80°.

Now, by (1), LFGD = 180° .. LBGD .. LBGC

= 180° .. 80° .. 60°

=40°.

But LDFG ~ LBFC =40°, so that

LFGO = LDFG.
Hence DG ::' OF.

Since' AEFG is equilateral, EF = EG.
Hence 8DFE ~ 60GE, (SSS).

Hence LDEF = LDEG.

Since LFEG = 60°, LDEG = 30°.

* * * air *

Second l1ethod (Trigonometry)

Let the base BC be 2 units long.

A ABC : u + x = z + t =cosec 10°.

A BOE : sin Q = sin 20°
x y

(1)

(2)

(3)

(4)

(1), (2), (3), (4) are six equations in the six unknowns, x, y, Z, u, t, Q.

Eliminate x, y, Z, U, t and find, after some straightforward elimination
not given here

~'

tan Q = sin 20° .

2 cos 40° - cos 20°

101
= ... =2 sec30 =13·

cos 40° - sin 10°
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Hence Q = 30°.

[There are other choices of triangles which may give a little shorter
elimination.] .

Also Leigh Thompson of Bairnsdale has sent us a trigonometric solution
that is based on the "sine rule".

* * * * *

Stephen Bigelow, who is in year 12 at Ivanhoe' Grammar School, Victoria,
offered a solution to Problem 12.2.3:

TALK EVE
~ simpHes to DTD. So, clearly it is a factor of 9999, which

factorizes to 32
X 11 x 101. The only factors which fit the structure DID

are 101, 303, 909. If DID were 101, then it would be impossible to meet
the condition that EVE < DID. If DID =909, then

EVE TALK
"9lfY" =~,

i.e.
hence

EVE x 11 = TALK,
E=K,

, which is against the assumptions. Therefore by elimination we have

DID = 303, thus
EVE TALK
TU"'! = ~,.

Le. 33 x EVE = tALK.
so, 3xE=K

and since EVE < DID = 303, E must be less than 3. If E was 1 then'

K=3xE
= 3
= 0,

which is against the assumptions. We conclude that E must be 2 and K = 6.
It follows that 33 x 2V2 = TAL6. To avoid different letters standing for the
same digit, V = 0, 2, 3 or 6 must be eliminated; V = 5 and'V = 8 would
produce 252 and 282 respectively, ·which are multiples of three and thus

allow cancellation of m. This leaves the possibilities V = 1, V = 4,
V = 7, and by trial and error we find that 4 is the only value which gives
no repetition of digits. in TALK.' So the solution of the problem is:

242 .
3U3 = 0.798679867986 ...

Leigh Thompson let his computer do all the work, save writing the foll?wing
BASIC program:

1$25 FOR E = 1 TO 8

20 FOR V = fljTO 9

IF E/2=INT(E/2) THEN N=2 ELSE N=1

IF V=E THEN .~



127

~ FOR D = E+1 to 9 STEP N : IF D=V TIIEN &2f

40 FOR I = flj TO 9 : IF I=E OR I=V OR !=D THEN 19J
5fZJ TA = 9999M(lfljl*E+l0*V)/(lfljl*D+l0MI)
60 IF TA = INT(TA) THEN T=INT(TAll~):A=INT(TAll~)-l~:L=INT(TAllrz.s)-l~

-l~A:K=TA-l~-l~A-l0*L:IF T::A OR T=L OR T=K OR T=E OR T=V OR T=D
OR T:1 OR A=L OR A=K OR A=E OR A=V OR A=D OR A=1 OR L=K OR L=E OR L=V
·OR L=D OR L=1 OR K=E OR K=V OR K=D OR K=1 THEN 7flJ ELSE PRINT
E;V;D;I;T;A;L;K

7flJ NEXT I

80 NEXT D

90 NEXT V

IfljfZj NEXT··E

N.B. : Since .TALK."< 1, we have E < D,- and also if E even, then D must
be odd; hence lines IflJ and 3flJ.

* * * * *

Problem 12.4.1 (proposed by A W. Sudbury of Monash University). From each of
the three vertic~s A, B, C of a triangle, a. ray is dra~ in the direction
of the interior of ABC. Let or1" Q 2' {31' {32' 'Yl' 'Y2 be the angles as
indicated in the diagram below.

c

A

B

Find a trigonometric equation, involving only the angles ~~, Q2' {31' {32' 'Yl'

~2' which holds if and only if the three rays intersect in one point.

Demonstrate directly from their definitions that the orthocentre, in-centre,
circumcentre and centroid satisfy your equation.

* * * * *
Problem 12.4.2 (communicated by M.A.B. Deakin, Chiang Mai, Thailand). The
game NORTH-EAST is played on· the rectangular array of points in the plane
with integral coordinates (n,m), where 0 s n s N, 0 s m ~M. Player A
selects a point (p,q) and removes all those points for which n ~ p, m ~ q.
Player B then selects a point (r,s) and removes all those points still left
for which n ~ r, m;=: s, etc. The loser is the player who takes (0,0).
The problem is to show that A has a winning strategy.
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Problem 12.4.3 (proposed by a puckish Lewis Carroll in The Monthly Packet
beginning in April, 1880). Place twenty-four pigs in four .sties so that, as
you go round and round, you may always find the number in each sty nearer to
ten than the number· in the last.

* * * * *

Problem 12~4.4. Let k be a positive integer and let
A ={2i I i = 0,1,2,...}. Find all positive integers n such that

numbers a1,...,a
k

(a
1
~ a

j
for i ~ j) from· A,

for which the sum In·a11 + ... + In·a
k
I is minimal, can be chosen in more

than one way.

* * * * *

Problem 12.4.5. Let a E IR and f: IR -+ IR be such that

f(x+y) = f(x) f(a-y) + f(y)f(a-x) for all x,y E IR

f(O) = 1/2.

Prove that f is constant.

* * * * *

Problem 12.4.6. Is it true that 832n and 83Zn + Zn have. an equal number
of digits?

* * * * *

Problem 12.4.7. Prove that for any a,b E IR, a < b, there exists n E IN and
c

i
E {-1,1}, i = 1,...,n, such that

a < c + c /2 + ... + C In < b.
1 2· n

** * * *

Approach your problems from the· right end and begin with
the answers. Then,. one day, perhaps you will find .the
final- question.

"The Hermit Clad in Crane
Feathers", in R. van Gulik's

The Chinese Maze Murders
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