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THE FRONT COVER
Michael AoBo· Deakin, Monash University

Imagine a log wi th a square cross-section and set it afloat
in a poor of water. What way wi 11 it 1ine up? Wi 11 it adopt a
horizontal posi tion a$ in Figure A or Figure H opposi te? Or
perhaps it might lie with "its sides at 45°to the water surface as
in Figure D or Figure E1 Or perhaps at some other angle as in

. Figures B. C, F ~r G?

In fac t all these behaviours are possible. The angle (0.
let us call it) between the side and the water surface is
determined by the specific gravity of the log. That is to say by
the ratio of the densi ties : densi ty of wood/densi ty of water.
Let us call this quanti ty S .

The basic law regarding floating bodies is called Archimedes'
law. and legend has it that he discovered it while in his bath.
being so car·ried away tha:t he leapt out, crying "Eureka!" (Greek
for "I. have found it"). Archimedes' law states that the upward
force on a submerged body is equal to the weight of the fluid it
has displaced. If the body is floating, the upward (or buoyancy)
force so gener.~ted must exactly equal the weight of the'body.

In our example. the weight of the water displaced wi II be
proportional to the wetted area W, say, while the weight of the
body will be proportional to the total area T. say. In fact we
must have

w = s T

and so we can achieve flotation if 0 < s < 1 .

(I)

The problem of determining. how· the log will float. which of
the diagrams A ~ H will be achieved, boils down to determining
how e depends on s .

To do this. we use a form of Archimedes' law. but in a
restatement. The geometric centre (equivalent to the centre of
mass) of the wetted area is the point through which the upward.
buoyancy, force acts. It is called the centre of buoyancy. The
downward, weight. force acts, of course, through the geometric
centre of the square.

The log will float wi thout rotating if the second. of these
two points is directly above the first. It will be stable {i.e .

. tend to right itself if slightly disturbed} if the distance
between the two poi~ts is minimjsed.
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Thi s much can be proved f rom Archimedes' law and our more
modern understanding of mechanics. The specific case of the
floating log was first worked out by the Dutch physicist and
mathematician, Christiaan Huygens (1629-1695), a somewhat senior
contemporary of the better-known Isaac "Newton (1642~1727).

The cover diagram (reproduced with minor differences of
labelling on p.101) shows the results of the arialysis." I spare
readers the details of the calculations. which can be" consulted in
Sir Horace Lamb's book Statics (cambridge University Press, 1912),
pp.220-234.. Here I merely summarise the results.

If

1 13
o < s < 2 6 (= 0.2113 ... ) (2)

then the log will float in the atti tude shown in Figure A.
Balsawood and corkwood logs adopt this configuration.

But if

1 13 1

2 6 < s < 4' (3)

then the log will float in the attitude shown in Figure B. The
precise connexion between 8. s is given by the equation

12s(1 - s) - 2

for this range of values of s.

(4)

I wasn't able to find a wood whose density lies in the range
given by Inequality (3), but presumably some plastic or composite
material satisfying these constraints must exist.

1
If s) 4"' and

. then the log floats as shown in Figure C.
8, s is in this case:

~s tan 8

-g = {1 + tan8)2

(5)

The formula connecting

(6)
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Again, i couldn't learn of a wood with the appropriate density,
but there~ust be a plastic or composite ....

Once we achieve a higher specific gravity

(7)

the log floats with its diagonal upright. as in Figure D. and the
diagoIJal r~mains upright if

1 23

2 < s < 32 •

the log merely settling lower in the water.
behaviour.

{8}

Figure E shows this

Many softwoods satisfy the constraints of Inequali ty (7).
Western Red Cedar is one example. Black Ash and many other
timbers have densities that obey Inequality (8).

Now consider higher densities. If

the configuration adopted is that of Figure F.
this.

Next if

(9)

Oak floats like

3 1 13
4"< 5.<2"+ 6(=0.7886 ... ), (10)

then Figure G gives the si tuation.
accessible eXample.

Finally if

Applewood is a reasonable

l' 13
2+~<s<l, (11)

the log will float in the position shown in Figure H. Heavy
t irnbers I ike Dogwood or Jarrah wallow low in the water in thi s
fashion. One of the heaviest timbers that still (just) stays
afloat is Andaman Marblewood (a form of ebony), for which s =
0.978. Of course .. some timbers sink. Australian Mahogany Gum
is one of these.
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The cover diagram (and its variant on p.lO!) sununarise the
data given above. Solid lines graph the angle e as a function
of the specific gravity s The letters attached to' the graph
on ·p.lOl sh~w the different behaviours and relate the graph' to
Figures A-H.

Note several points.

1st·: as we go into Figure B. we could tilt 'either to the
right. as shown. or to the left. e '. in other words. could be
positive or negative. For e negative. we could trace a path
through the lower half of the diagram on p.lOl.

2nd; we could begin,. not with e = 0 , but with B = ± 90°,
and these possibilities are also shown in the diagram and we see
how they connect up with the cases previously discussed.

3rd.~ we could even have e = 180° or e = - 180° . which
would represent the sarne configuration. I haven't drawn this
because the identification, of 180° and - 180° would require a
cylindrical page, which would make Ftinct:ion hard to print and .to
read. You'll just have to use your imagination.

Notice too the dashed lines. These repres.ent equilibria,
but these equilibria are unstable. (The distance between the
centre and the centre of buoyancy is maximised in such cases.)
Notice how stable equilibria become unstable at just those points
where different curves intersect. This is a phenomenon called
"the exchange of stabili ties" -i t first drew explici t attention
from the French mathematician Henri Poincare (1854-1912) and today
it is a very -important topic indeed.

Huygens in fact analysed not only the system we have
described, but a more general one, in which the cross-section of
the log is rectangular. e in this case depends on two
quantities, s (as before) and the shape of the rectangle. You
may like to consider how this additional complication affects the
diagrams so far drawn.

However. Huygens didn t t complete the analysis of. the more
general case. That was done by another Dutch physicist and
mathematician. Diederik Korteweg. who is today best remembered for
his work in Hydrodynamics, but who was also a notable historian
and edi tor of many of the volumes of Huygens' collected wo"rks.

Lamb tells us that Huygens. gave up his calculation, saying.
in effect, that it had at most an extremely minute practical
usefulness. Huygens t calculations were right. his historical
judgement wrong. These calculations have been modified and
extended to analyse the stability of offshore oilrigs under tow.
And the "practical usefulness" of those calculations is measured
today in millions of dollars.
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CALCULATING
THE GREATEST COMMON DIVISOR

Ro To Worley, Monash University

The greatest common divisor (or highest common factor. as·it
is sometimes called) of two integers a. b is the largest positive
integer that divides both a and b. It can be found from the prime
factorisations of a and b. but calculating prime factorisations of
large integers is not easy. A better method is Euclid's algorithm
for calculating the greatest common divisor, gcd{ao' bo)' of two

positive integers 8
0

, b
o

which is des~ribed by J .A. Deakin" in an

earlier article. in Function (Vol 8. part 5). The algori thm is
basically just repeatedly taking remainders on division. and is
quite fast for hand calculation. For example, to find gcd{57 , 152)
we divide 152 by 57 to get 152 = 2 x 57 + 38. Now dividing 57 by
3S we get 57 = 1 x 3S + 19, then dividing 38 by 19 we get 3S = 2 x
19 + o. At this point we stop, for gcd{O, 19) is 19.

In essence. the algori thm is just to replace the pair (aD,

b
o
)' that is (57. 152) •. by the pair .{a

l
, b

1
}. that is, (38. 57).

then, to replace this by (a
2

, b
2

) = (19, 38), "and finally to

replace this by (0. 19). Each_ new pair has the same gcd as the
previous pair. Thus we say that the algorithm works by replacing a
pair" by a smaller pair which has the sarnegcd as the original
pair. The procedure stops when the gcd is obvious. In Eucl id' s
algorithm the rule for generating the next a, b.pair is that b

i
+

1

is a
i

and a
i
+

1
is the remainder on dividing b

i
bya

i
.

This algorithm for the gcd is quite fast.' The number of
division steps required is around 2.3 times the number of decimal
digits in b, assuming that b is smaller than 8. (More precisely,
the number of steps is approximately logeb. the natur-al logarithm

of b.) However the calculation of the remainder is not ne~essarily

easy to do. For example in calculating gcd(1234567890123456789,
82?~5678901234578) ~e find the quotien~ is approximately 1.2345 x
10 / 8.2345 x 10 = 14.9918 ( so 1 t mus t be 14) . and the
remainder is 1234567890123456789 - 14 x 82345678901234578. This
can be done. with a little difficulty, using a calculator, pencil
and paper.
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There is another alterna~ive algorithm for calculati.on of the
gcd which is slightly more sui ted to hand calculation, and may
also outperform Eucl id' s algori thrn on some small computers. This
alternative method is known as the binary method because it uses
division and multiplication by 2. It performs well on small
computers because they usually divide by 2 much more rapidly than
they do the normal divide step required by Euclid's algorithm. The
algori thm uses the same basic .teclmique of replacing a

o
' b o by

smaller pairs with the same gcd. stopping when the gcd is
obvious.

First, a simple example. Consider gcd(57, 133). Any common
divisor of 57 and 133 divides 133 - 57 = 76 = 2 x 3$ = 22

X 19.
and is odd. so it must divide 19. Replacing the larger of 57 and
133 by 19, we look for gcd(57 , 19). Repeating this procedure, we
write 57 - 19 =38 = 2 x 19. so we replace the larger of 57 and 19
by 19, and look for gcd(19. 19). This is obvously 19. so gcd(57,
133} = 19. The process of dividing an even number by 2 until it
becomes odd will be called extracting the "odd part" of a number.
The power of two extracted will be called the "even part ft of the
number. Thus the procedure above is to repeatedly replace the
larger of a, b by the odd part of /b-al until a =b.

The algori thrn needs a little modification if we start wi th
even numbers; its operation depends on the numbers both being odd.
In general. the binary algorithm for finding gcd(a. b} is

(i) break a in to its even and odd parts. call them e and x
respectively.

(ii) break b into its even and odd parts, carl them f and y
respectively.

(iii) while x ~ y. replace the larger of x, y by the odd part of
Ix - yl·

(iv) gcd(a. b) is the final value of x, multiplied by the smaller
of e and f.

For example. to find gcd(1802, 3332) we proceed

(i) 1802 =2 x 901, so e =2. x =901.

(ii) 3332 = 2 x 1666 =22 x 833, so f = 4. y = 833.

(iii) 1901 - 8331 = 68 = 2 x 34 = 2
2

X 17. so x = 17. (y remains
at 833).
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117 - 833 1 = 816 = 2 x 408 22
X 204 _,23

X 102 24
X 51, so

y= 51.
(x remains at 17)

117 - 511 = 34 = 2 x 17, so y = 17 (x remains at 17)

(iv) gcd is 17 multiplied by the smaller of 2 and 4. that is,
gcd(1802. 3332) = 34.

Whether or not the binary algorithm is faster'than Euclid's
algori thm on a computer depends on a lot of factors. The speed
depends on the progranuning language being used. and even on the
actual compiler or interpreter being used. In modern
microcomputers the microprocessors being used tend to have special
instructions both for obtaining remainders and for
multiplication/division by 2.' The existence of these special
instructions means that both operations are done qui te qUickly.
Previously there were not so many special instructions on small
microprocessors. which meant that to obtain the remainders in
Eucl id' s algori thIn a lot of subtract ion ins tructions had to -be
carried out. In this case Euclid's algorithm will probably be much
slower. On my computer which does have special instructions for
obtaining rema.inders Euclid's algorithm was a little faster for
ordinary integers and the binary algorithm was faster for integers
of 9 digits.

There is a lot of interest in factoring numbers quickly, in
cOIUlection wi th cryptography. and a key process in factoring is
finding gcds, so a fast algorithm for obtaining gcds is of great
interest. Euclid's algorithm has another property, which makes it
superior "to the binary algorithm presented here . In u:Qandling very
larg~ numbers (say 200 "decimal digits). it turns out that the full
remaindering operation (which is very time consuming) does not
have to be done quite as often. By the use of a modified algorithm
many steps can be combined into one. making the algorithm run much
faster. With the binary algorithm only a few steps can be
combined. However, more recently, a variant of the binary
algori thm has been proposed for a piece of compu ter hardware. to
gcd calculation a so-called gcd-chip. Just as when the
microprocessor has the special instructions to find remainders.
Euclid's algorithm can be faster. so the binary algorithm can be
made faster by adding a special chip to the computer.
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UNRELIABL.E WITNESSE,S
AND BAYES' RULE

"Go Ao Watterson, Monash University

Recently, I read an article by Dennis Lindlay which
interested me, and I would like to pass on' his thoughts to you.
Lindlay discussed a very old problem~ dating back to 1685 if not
earlier. The Bishop of Bath and Wells (in England) had raised
the problem then. and had tried to answer it himself.

Suppose that two witnesses separately reported that a
particular event happened. For instance, they may both have said
that "a red-headed man stole a sheep from the farm." Both
wi tnesses are known to be not completely reliable. Wi tness
number I has probability PI of telling the truth and witness

number 2 has probability P2" What is the probability that the

event actually took place?

The Bishop argued as follows. The probability that witness
doesn't tell the truth is I-PI' and it is I-P2 for witness 2.

If the event didn't happen, then both witnesses must have lied,
which, if they were acting independently, has probability

(1-Pl)(1-P2). Therefore, the probability tbat they ,dIdn't both

lie is 1-(1-PI)(l-P2) , which must be the probability that the

event actually took place. He was wrong!

In 1763, another cler~, Thomas Bayes, introduced what we
now call Bayes' rule. He was the rector of Tunbr'idge Wells (not
"Bath and Wells", s,o Lindlay calls his article "A Tale of Two
Wells"). How does Bayes' rule answer the problem? Let us
introduce some further notation. Let B denote the event which
may, or may not. have happened. We wri te B' to indicate the
complement of B ~ namely that B didn't happen. Also, let Al

denote the event that witness 1 said that B happened, and let A
2

denote the event that witness 2 said that B happened. Finally,
let A = A

l
n A

2
indicate that both wi tnesses said that B

happened. What the Bishop wanted to know was the probability of
B . conditional on A , which we write as Pr(B\A) o.

Bayes' rule helps
probabilities. It says that

us calculate such conditional

p(AIB)P(B)
Pr(B!A) = p(AIB)P(B) + P(A!B'}P(B')
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To see how to introduce the probabilities PI and P2 that the

witnesses tell the truth, we might assume that

and

We are assuming that Pi and P2 apply whether B did occur or

whether it did not; each wi tness wi 11 tell the truth, under
either circumstance. with the same probability. Further~ if we
assume the witnesses acted independently. then

(1)

and
Pr(A/B') Pr(AIB')

Pr{Al () A2IB')

Pr(A1IB' )p(A2 IB')

[1-Pr(AiIB')J[l-Pr{~IB')]

(1-Pl)(1-P2) .

(2)

Substi tuting these resul ts into Bayes' rule. we find- the answer to
. the problem:

Pr(BIA) (3)

Remember that the Bishop said that the answer was .

. which is much simpler. but which is really Pr{A' IB') • the answer
to a different problem!

How would we _apply the correct resul t. (3). in practice?
Notice that we need to have some idea of the probabili ty Pr(B)
that the reported event would take place. not given any evidence
from witnesses. The Bishop tried to get an answer to his probiem
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without using Pr(B) . but unfortunately it does need to be known.
Often. this is a great stumbling block to the use of Bayes' rule;
in order to find the probability of B given that A lappens, we
need to know the probability of B in general. without' knowing
whether A or A' happens. For instance, in Ind,ia , it might be
very unl i.kely that a red-headed man would steal a sheep (there
being very few red-headed men in India), so that even if our
witnesses were generally fairly reliable (PI and P2 ~lose to 1).

the low value of Pr(B) will cause (3) to yield a low value of
Pr(BIA). For instance. if Pr(B) = 1/1000, PI = P2 = 0.9 , then

(3) says that Pr(B!A) 0.075, a very low probability in spite of
two reliable witnesses saying that B happened.

The other complications about (3) are that you need to know
the wi tnesses "reI iabili ties" PI and P2' and also to assume

their independence as used in (1) and (2). Witnesses might
collude to give false evidence if a defendant in court was
actually guilty. but there would be rio need for collusion if the
defendant were innocent. So (1) might be false but (2) could be
true.

*****

Mathematics is the tool specially sui ted for dealing wi th
abstract concepts of any kind and there tsno limit to its power
in this field. For this reason a book on the new physics.' if not
purely descriptive of experimental work, must be essentially
mathematical. - 'r.A.M. Dirac (Quantum Mechanics. 1930).

As I proceeded wi th the study of Faraday, I perceived that
his method of conceiving the phenomena [of electromagnetism] was

. also a mathematical one, al though not exhibi ted in the
conventional form of rna:thematical· symbols. I also found that
these methods were capable of being expressed in the ordinary
mathematical forms. and thus compared wi.th those of the professed
mathematicians. - James Clerk Maxwell (A Treatise on Electricity
and Magnetism, 1873}.
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SOLVINGPOLYNOMIAL EQUATIONS I
Neil S. Barnett

Department of Mathematics
and Operations Research

Footscray Institute of Technoloty

INTRonUCfION

Many practical applications of mathematics involve the
solution of one or more equations. Quite often not all solutions
to these equations are of concern but interest focuses on those
solutions of a special type or that lie between particular values.
because only in this range do the solutions relate to the physical'
situation from which the equations arose. .

Many types of equations occur. There ·are polynomial
equations. differential equations. integral equations. difference
equations and numerous others. Qui te often equations involving
many variables have to be solved simultaneously and the equations
can be linear. non-linear or homo-geneous .each requiring their
special methods of solution. Expressing systems of equations in
matrix form is often an invaluable·aid.

The first types of equations for solving. met at school. are
simple I inear equations followed by simul taneous linear (maybe
even a linear and non linear equation in two variables). then
quadratic equations and some simple equations involving
trigonometrical ratios. Solutions to such equations (if they
exist) are numeric.

An equation involving derivatives is called a differential
equation and in general the solutions to such are mathematical
functions rather than numbers. Consider. for example. solving
the equation

dy 2
3

dx
= x-I .

By integrating (anti-differentiating) both sides of the equation.
y is seen to be

(x
3

- 3x)

9 + C
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where C can be any constant. (Differentiating the result will
show this to be so.) Very often, some particular values of x
and y satisfying this functional solution wi 11 be lmowri and
substitution of them into the solution will determine the constant
C .

Differential equations are among the .most conunon that the
applied mathematician meets. They arise quite naturally in
problems of mechanics, electronics. and' in problems of
oscillation, dynamics and hydrodynamics. For certain types of
differential equations the method of solution requires determining
the solutions of an auxiliary polynomial .equation.

You mayor may not have wondered. having derived the formula
for solving quadratic equations, whether or not such formulae
exist for the solution of cubic equations and similar equations of
higher degree. It is the solution of such equations that is the
substance of this article.

NEGATIVE SQUARE ROOTS AND GRAPHS

A polynomial equation of degree n, where n is a positive'
integer, is wri~ten as

+ an- 1 x + an o

This yields a simple linear equation when n
when n = 2 • etc.

1, a quadratic

For solving the quadratic

o

we have the standard formula

-al~ ~21' - 4a a
2o ..

x 2a
o

and when this involves the square root of a negative

it isAt an elementary level,namely 1a.2_ 4a a
102

usually stated, that when this happens the equation simply has no

number,
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solutions. An example is the equation

2x2 - x + 12 0

and the quadratic formula gives

± 11 -96
x = 4

1 + 1-95 - 1-95
i.e. x = 4

or x 4

Rather than discarding such solutions they can be written
symbolically as.

where

x=
± 1/95

4

i =1-1

It is thus possible to eXpand the concept of a solution to include
solutions that consist of a number together wi th another number
multiplied by 1-1. Such solutions are said to be complex. If
there is no 1-1 involved in the solution. then .the solutions are
said to be real. There is the need at times to find both real and
complex solutions. at other times. very often for practical
reasons, only one of the types of solutions is of interest.
Whi 1st ackriowledging that both complex and real solutions are
possible this article focuses on finding real solutions ..

As will be familiar from considering both linear and
quadratic equations graphically. solutions can be visualised. as
the inter~ection of curves wi th the x axis. For example.
solutions to the equation

x
2

- 4x + 3 = 0

can be obtained by observing where the curve y
cuts the x axis (i.e. at x = 1 and x = 3 ).

This'is equally true for the general polynomial
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.fJ o

although of course the drawing of the graph of

for large n, is a lot more involved than drawing the graph of a
quadratic.

When trying to solve the quadratic equation x2 - 2x + 3 = 0

using the formula the solution involves "';-1 : there are no real
solutions. This is verified by drawing the graph of

y = x2_ 2x + 3 when we find that the curve does not intersect the
x axis. The graphical approach is thus useful for approximately
locating real solutions only (and ·these are often the ones of most
importance to us). This is true also for cubics, quartics and
higher degree polynomials.

Recall that in solving quadratic equations there is never any
occas i on when one so1ution isreal and one comp1ex : they are
either both real or both complex. Consider now a cubic

3 2polynomial. for example y = x - 7x + 14x - 8 A plot of this
looks like:

A

8
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The solutions to the equation x3 - 7x
2 + 14x - 8 = 0 are clearly

1, 2. and 4 (all real). There are also two turning points to the

graph - labelled A and B. Another cubic, y = x
3 has a

different shape entirely. It appears as

The two turning points A and
example have merged into one at

B • of the previous
C .

o
o

x
1

x

Clearly. there is just one solution to x3 = 0 namely

However. because x3 = 0 is the equation'and not just
the ~olution x = 0 is said to occur three times!

Consider now a cubic y = x
3 - 6x

2 + 11x - 1 that gives rise
to the following graph

There are two distinct turning points,
yet only one real solution located at

A and
P .

B
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The existence of just one "real solution is a consequence of" both
turning points lying on the same side of the x - axis.

Solving the equation by non-graphical means would provide the
solution P and two other solutions involving negative square
roots (i .e. complex solutions). Therefore, there are one real
and two complex solutions.

Consider further the cubic y
graph of this appears as

x3 - 7x2
+ 15x - 9 . The

There are, clearly, two distinct real solutions to

x3 - 7x2
+ 15~ - 9 =0 and these are 1 and 3.

Because B lies on the axis the two solutions that
would have occurred, had it been below the axis,
have merged into one to give a repeated root (or
solution) at x = 3 .

Factorization confirms this, since,

x
3

- 7x2
+ 15x - 9 = 0 = (x - l)(x - 3)2 O.
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The power of two . means that x = 3 occurs twice (in the same

sense as we considered x
3 = 0 to have three solutions equal to

0) .

To summarize what has been observed for cubic equations:-

(i) there can be three distinct (different) real solutions.

(ii) there can be three co-incident (equal) real solutions.

(iii) there can be one real and two complex solutions (a total of
three)

or

(iv) there can be three real solutions. two of them coinciding
and one distinct.

There is no way that. for unrestricted x values. a cubic can be
drawn that doesn' t cut the x axis at least once. Thus.
allowing for complex:and repeated solutions a cubic equation will
always have three solutions.

Much of what has been observed in the foregoing regarding
cubic equations is relevant to polynomial equations of higher
degree. It should be noted that the maximum number of turning
points of a cubic polynomial is 2 (1 less .than the degree)and the
number of solutions to the resul ting equai ton is always 3 (the
degree of the polynomial) provided that repeated and complex
solutions are included. It was also observed that for both the
quadratic and cubic situations. complex solutions. when they
occurred. did so in pairs. A polynomial of degree n has at
most n-l turning points and. permi tting complex and repeated
solutions. the resulting equation has exactly n solutions.
Complex solutions occur in pairs and arise when successive turning
points lie on the same side of the x Jaxis. Repeated solutions
occur when turning points fallon the x axis and/or merge with
one another. There are. for unrestricted x values, no breaks in
a polynomial curve. i.e. polynomials are said to be continuous.

The question was posed earlier. 'Is there a formula for
wri ting down the solutions of a cubic equation as there is for
solving quadratics'? The answer is yes but there are various
condi tions that make the whole thing very messy. What is
possible. however, is that wi th relative ease the nature of the
solutions can be stipulated (i~e. how many real. complex, repeated
etc.).
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FACfORS AND BOUNDS

Practice examples for solving equations are usually contrived
wi th coefficients chosen so as to simplify the working. For
example. there is no major difficulty in solving the equation

x
3

- 6x2 + 11x - 6 = 0

provided one is able to see that it factorizes into

(x - 1)(x - 2)(x - 3) = 0 .

giving the solutions x = 1. 2 and 3 .

It is important to realize that factorization is deliberately
contrived to simplify the problem. It may well be. in a
practical problem. that the coefficients are obtained from
calculations on c~rtain measurements and an equation such as

3.26 x3 + 1.41 x2 - 3.29 x + g".25 = 0 (i. e. wi th non-integer
coefficients) would not be unusual. The chances of being able to
factorize such an equation are small indeed. Factorization then
cannot be considered a practically viable. method of obtaining
solutions. For low degree polynomial equations graphing the

- polynomial will provide an approximation to real solutions but
very approximate. especially if solutions are a long way apart.
The plotting of higher degree polynomials is impractical as a
method of obtaining accurate solutions. When seeking solutions
to equations that have coefficients generated from some physical
context it will be unusual to obtain solutions exactly. One has
often to be content with approximate solutions but this is
generally no real handicap provided that we can obtain
approximations to a stipulated degree of accuracy. In obtaining
even approximate solutions we have first to get a starting
approximation which,may well mean locating a solution between two
integers (say 1 and 2). Although draWing the graph is often not
attempted. the features observed regarding turning points and
their relation to solutions can be useful.

Whilst factorization. as mentioned previously, is not
generally a viable practical approach to solving polynomial
equations, once the solutions are known of course, so too are_the
factors. For example, if a quadratic equation has solutions 1.2
and 3.4 then the factors are (x - 1.2) and (x - 3.4) and the
original equation can be re-written as (x - 1.2){x - 3.4) = 0 .
Similarly, if a cubic has solutions 1.2, 2.6 and 3.4 the original
equation can be written (factorized as)
(x - 1.2)(x - 2.6)(x - 3.4) = O.
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Generalizing, suppose that a cubic has solutions x aI'

x = a
2

, x = a
3

; then ~he equation can be written as

which expanded gives

and in general for an nth degree polyn.omial with solutions

x = a!,a2 , ... ,an the original equation can be written as

n
. .. + (-1) a! <X2 ... an =\ 0 .

This relationship between the solutions and the coefficients of
the equation enables bounds to be placed on the largest solution
(if they are all real).

n n-I
If 0:

1
, <X

2
' ... , Q n are the solutions of 8

0
X + 8 1x +

+ 8
n

= 0 then the above equation must be the same as

nx +

and observing that

= 0

we conclude that
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Clearly, the numerically largest solution (which is one of
°1' °2' Q3' .... Qn) Qrnax ' is ,such that

i. e. the numerical value of

Similarly,

Using this on the equation 2x3 - x2 ~ 26x + 40
that all the solutions are real)

2.958 S 10max l < 5.2

o (we can show

i.e. the nume'rically, largest solution lies between these values
and thus all solutions lie between -5.2 and 5.2 which is a great
help .in finding a r'irst approximation to the solutions. (In'this
particular instance the solutions can be fairly easily found to be
-4, 2 and 2.5). The usefulness of these bounds is in situations ­
higher degree polynomials - where solutions are harder to obtain
and rough location ;is necessary. The usefulness 'of the bounds
does depend largely on their closeness which in turn depends on
the magnitude of the coefficients 8 0 , 8

1
and 8 2 ,
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THE SPRAGUE SEQUENCE
Shyen Wong, Year 10, Knoxfield College

In Problem 10.4.2 the Sprague sequence appeared.
the sequence where

This is

sn+l 5 + lIs
n n

and

In Function. Volume 10. Part 5 (pp.28-29) the approximation

was given.

To test this formula. and also test another formula

Sn - 1{2n + 1/2 in n + 1) = Tn·

where in
graphed

n is the natural logari thm of
s . R and T

n n n

n . I compu ted and

The resul.ts I got (see graphs) show that these numbers differ only
slightly. The 3 lines joined together and could hardly be told
apart.

TheGraph 2 shows the difference between s and R
n n

accurate figure and the approximate figure first move apart. but
later come closer together.

S
n

and

Graph 3 shows the difference between sn and R
n

and the

The approxilnate figure of Tndifference between T
n

seems more accurate.

[The approximation sn::::: 12n was given by David Shaw and

John Barton using two separate arguments. Extension of ei ther
gives the better approximation sn ~ Tn' Shyen asks us to thank

Geoff Bryan of Monash Universi ty for help wi th the programming.
Eds.]
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GRAPH 1

The three sequences~ R
n

, sn and Tn

as functions of n .
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The difference between sand /2n .n .
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GRAPH 3

Upper curve: the difference between s and R s - R
n n n n

Lower curve: the difference between T and s T - s
n n n n
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LETTER TO THE EDITOR

The Front Cover article of Volume 11, No.3 depicts the
"Quintenz Balance" and gives its theory as suppl ied in Barnard' s
Statics. When I first saw this I tried to find who Quin~enz was.
but I had no luck tracing him at all.

Recently. however. I came upon an article qui te by chance.
One of the best and oldest of the world's mathematical journals is
Journal fur die reine und angewandte Mathematik (Journai of pure
and applied mathematics), known as Grelle's Journal after its
founding edi tor A.L.Crelle (1830-1855). Crelle was an engineer
who took a great interest in mathematics. While his
contributions to mathematics itself were of very sl ight
importance. he was active in both mathematical education and the
publication of mathematics. Grelle's Journal is his most la~ting

legacy.

I had occasion to look up the very first volume (1826) of
Grelle's Journal. and, as I turned the pages, the name Quintenz
caught my eye. A short article gives the theory of the Quintenz

. balance. essentially in the same form as Barnard gives i,t. It
also gives a brief background.

Quintenz seems to have been an inventor. In 1821. he w~s in
Strasburg and it was here that he displayed his newly invented
balance. It took the eye of aM.Francoeurt who described it in
Issue No. 234 of a journal called Bulletin de Ie societe
d'encouragement (presumably this society encouraged inventors and
the' like) and the article in .Grelle's Journal is based on
Francoeur's description. The author of this article is called E.
I don't know who he was. Crelle published short anonymous or
cryptonymous articles on topics of lesser mathematical importance
and this is one. (For two other such cases, see the article on
0° in Function Vol.5 Part 4 .)

E's picture of the Quintenz balance is reproduced opposite.

Michael A.B. Deakin

Possibly Paul Francoeur (1803 ) 1865), a Parisian mathematics
teacher.
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ARE WE CONSIS,TENT?
'GoAoWatterson, Monash University

When we gamble. are we consistent? We often have to assess
whether some games are more favourable to us than others. If so.
it would be sensible to play the more favourable ones and not play
the others.

Recent ly . our cons i s tency has been put to.' the tes t and we
have been found wanting! I here describe an experiment conducted
by Amos Tversky and Daniel Kahneman, psychologists working in
North America. They asked people to choose between two
lotteries. A and B, as to which one would be better to play .
They also asked people to choose between two other- lotteries. C
and D. Before telling you what happened. I invite you to choose
whether 'you would prefer to play lottery A or B. and whether you
would prefer lottery C or D. In all four lotteries. there are
some coloured marbles in a barrel. and you win (or lose) some
money depending on which colour is drawn out. The percentages of
the colours. and the prizes involved, are given in Tables 1 and 2.

Table 1

A choice between lotteries

Lottery White Red Green Blue Yellow

A 90% 6% 1% 1% 2%

$0 Win $45 Win $30 Lose $15 Lose $15

B 90% 6% 1% 1% 2%

. $0 Win'$45 Win $45 Lose $10 Lose $15

Table 2

Another choice between lotteries

Lottery White Red Green Yellow

C 90% 6% 1% 3%

$0 Win $45 Win $30 Lose $15

D 90% 7% 1% 2%

$0 Win $45 Lose $10 Lose $15
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If you preferred lottery B to lottery A. then you are in' good
company. All the people in the experiment chose B. probably
because' they noticed that the proportions'~f the colours were the
same 'in both lotteries w but in lottery B. the prizes were always
at least as good as those in A and were actually better if green
or blue were drawn.

Now, which of C or D did you prefer? Most people in the
experiment chose C. 'And they were wrong to do so! Al though it
looks a~ if C has the better prizes (in particular, you win if
green is drawn in. C, but you lose in D). yet notice that the
percentages of the colours are not the same in- C and D. which
makes the choise somewhat confusing lottery D is certainly the
better choice, because lottery D is really equivalent to B,
lottery C is really equivalent to A, and B is definitely
preferable to A. The equivalences mentioned here are because. in
lottery A, there are only four distinct prize values ($0, $45,

'$30, - $15) which have respective percentages (90%. 6%. 1%, 3%).
Note that the combined contribution of .blue and yellow is 3%;
they both yield -$15 in lottery A. And these prizes, and their
percentages, are the same as in lottery c. Similarly, you can
check that the prizes and the percentages in lottery B are the
same as for lottery D.

So if you chose lotteries B and C as being better than A and
D respectively, you were being inconsistent. . This inconsistency
is a s tumbl ing block to theories of economics and probabi 1i ty
which assume that peoples' choices between various al ternatives
are consistent.

*****

Strange as it may sound, the power of mathematics rests on
its evasion of all unnecessary thought and on its wonderful saving
of mental operations. - Ernst Mach.

A single curve, drawn in ,the manner of the curve of prices of
cotton, describes all that the ear can possibly hear as the result
of the most complicated musical performance. . .. That to my mind
is a wonderful proof of the potency of mathematics.
- Lord Kelvin.
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PROB-LEM SECTION

SOLUTION TO PROBLEM 11.3.1

If

Let f(x)

if

1 2
(x + x )

1 - 1
a = 2 - x • b = 2 + x then the desired

inequality may be written in the form:

or

In this form it follows at once from the Mean Value Theorem. since
f' (x) i~ increasing.

SOLUTION TO PROBLEM 11.3.2

Let the coins be numbered 1. 2 •.... 12. and be weighed as
follows:

1.

2.

3.

1. 2. 3. 4 v.

1. 2. 5. 9 v.

_1. 5. 7. 10 v.

5. 6. 7. 8

3. 6, 10,- 11

2. 8. 11, 12 .

For each weighing we record ei ther B (balance). R (right side
down). or L (left side down). It may be checked that each of
the 24 possibi 1i ties for the 12 coins may be identified by a
unique B-R-L sequence.

SOLUTION TO PROBLEM-l1.3.3

Since 107 is prime. we must have b = 1 or b = 107. If­
b = 107 I then a = 61.78 . which is.not an integer. So b = 1 .
whence a = 6 and c = 198 .

J. G. -Kupka
Monash University
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