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The British epidemiologist and pioneer of tropical
medicine, 8ir Ronald ® Ross (1857-1932), is best
remembered today for his life’'s work on the transmission
of malaria, for which he was awarded the Nobel Prize in
Physiclogy and Medicine in 1902. : I+ was Ross who
showed conclusively that malaria 1is transmitted by
masgquitoes and who analysed that transmission with. a
view to control or =sradication of this virulent disease.

Ross was a considerable mathematician as well as
being a medical researcher (he also wrote quite
meritoriocus poetry). Among the studies he made was the
development of 2 mathematical model of malaria and its
transmission. This led to what are now called the Ross
Malaria Equations. Our front cover shows the so-called
trajectories aof these equations.

et a population of mosquitces live in the same

lgcality as a population of humans and let x be the
proportion of mosauitoes infected with malaria and y
the population of humans so infected. In given time, a
proportion R of the infected humans recover and a
proportion # of the mosquitoes die of malaria. If
each human suffers B bites in this given time and each
mosquito delivers b Dbites in this same time., then in
the lonrg run

: _ Bb—RH
X =X Z Burp) (1)

_ Bb—RHM

Y EY T pEeR)

provided these quantities are positive.

I+ x = ;, y = ; . then we may plot XY on  a
graph as shown in Figure 1. _The values af x,y fellow
the arrows until the values x, y are achieved. Note

that for realism we assume

0 x <1 s Dy 21 .
The diagram shows the case for which ¥ = 0.35 , ; =
0.30.
_ If_ x < 0, or ; U S then the situation x =
X, v = vy cannot be achisved and the arrows show that in
the long run x = 0, v = O . This corresponds to there

being no malaria present — a much wished—-for situation.
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Figure 1.

_ _Eguations (1) show us that if Bb > RM , then both
X , y are positive and the situation is that of Figure
1 which corresponds to a situation of endemic_ malaria.
I+, on the other hand, B8b < RM , then both X, Yy are
negative and so the malaria 1s eradicated.

In order to eradicate malaria therefore we need to
achieve a situation in which

RH > Bb . (2)
That 1s to say we need to combirne several factors:
Increase the recovery rate of the humans,
Increase the.mortality of the mosquitoes,
Decrease the rate at which mosquitoes bite humans.
Inequality (2) shows an important point. It 1is

not necessary to eliminate all mosquitoes, nor to cure
every human case of malaria, nor need all biting be

prevented. As long as Inequality (2)  continues to
apply, malaria cannot spread in the population. This
led to considerable hopes that malaria might be

eradicated, as smallpox has Deen.
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In 1923, the American Journal of Hygiene devoted =
special supplement teo the Ross Malaria Eguations. Most
of this was written by Alfred J. Lotka., a mathematician

=%
a2t the Johns Hopkins University im Baltimore. {we tend
to forget that malaria was sndemic in Baltimore and in
many other parts of the United States until well into
this century.?) Lotka produced a very full study o h
eqguations in the course of this work, and Figure 1 as
well as the simplified form of this that appears on  the
cover! is based on one of his diagrams.

¥ ¥ %X % X

He studied and nearly mastered the six books of
Euclid since he was & member of Congress.

He began a course of rigid mental disc
the intent %3 improve his faculties, espe
oowers of logic and language. Hence his §
Euclid, which he carvried with him on the
could demonstrate with sase all the proposi
=ix honks: often studving far intoc the n
candls nesr his sillow, while his fellow-la
zen in a room, filled the air w1th i
noring. — Abraham Lincoeln (Short Autobiography,
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THE SQUARE ROOT OF ZERO
Michael A.B. Deakin, Monash University.

If we confine ourselves to the study of real
numbers., then it is impossible to ascribe a sguare root

to a negative number. In particular, the number -1 has
no square root.. But we have come to accept that we can
have another, richer number system, that of the

so—called complex numbers, in which -1 has not just one
but two sgquare roots

2
(+ 1) = 1.

(We need to have two square roots to achieve consistency
with real arithmetic, e.g. (x 2)° = 4, etc.)

Complex numbers are the numbers of the form a + ib,
where a and b are real numbers.

At first, complex numbers were ragarded with some
suspicion, but in due course they became accepted.

Complex algebra leads to very elegant theorems and
results and in some ways is simpler than real algebra.
All the familiar rules apply, including the following:

If c1 and €., are complex numbers and

c,c, = 0 , then either ¢, =0 or «c_ = 0.

172 1 2

In complex algebra, every guadratic equation has
exactly two roots (although in some cases these may be
equal); every cubic equation has exactly three roots
(again with possible equalities), every guartic equation
has ..., and so on. These properties arg not shared by
real numbers.

In 1872, the British mathematician Clifford
considered a different algebra, whose elements were of
the form a + &b where a, b are real numbers and <
= 0, Le is the Greek letter epsilon.] True, there
does not seem to be the same need for these as there is
for the complex numbers, as O already has a perfectly
good square root : itsel+f.

However these new numbers  (they are called Jdual
numbers) have some applications in mechanics (which is
what led Clifford to consider them) and have found other
uses since. .

First let us see how théy work . Let
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be two dual numbers. Then it is required that €4 T o
when and only when a2, = a_, and b, = b, - Also we

1 2 1
can add them

+ e, = (31 +oay) glb, + b) (1)

to form a third dual number, or we could subtract them

Sy " o = (al - 32) + a(b1 - bE)' (2)

Then we might multiply them

a
+ ela b, + a b)) + e‘blb2

S5 T 23,
= 2,3, + s(alb2 + azbl) s (3)
since 52 = 0.

Addition and multiplication obey all the usual rules of
algebra bar one: the product of non—-zero dual numbers
can be zero.

(¢ b,¥(e by = 0O
i 2

for all b

[It might at first sight seem that this -eguation

tells us that £ = O, but it does not. It is ¢ that

is zero. £ b1 and & b2 are two dual numbers,

distinct (unless b1 or b2 is zero) from zero.l

Let us investigate the division of dual numbers.
Put
2, + & b2 <5

a1 + £ b1 cl

and seek to find aL., b, .
3 3

From the definition of a quotient, we must have

32 + £ b2 = (a1 + £ bi)(a3 + £ bS)

= a.,a

123 + s(alb3 + aSbl)'

Then
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unless a, =

b: = ale + a- b1
a b
= a b + _~ Lo,
i3 2
1
So
3,0y _ apby
by = 2 ,
1
again unless a, = [918
What we have just done is to show that, except in
the case of a = O, we have :
a, + & b, 2, alb7 - a,,b1
a, veb, a, * 2 : 43
1 1 1 a
1
A shorter way of working out the result of dividing
=, by Sy that you might prefer, is as follows:
€5 a, + & b2 (a:2 + & bz)(a1 - &£ bl)
<y ay + £ b1 Lal + &£ bi)(a1 - £ bl)
_ 2,3, + £ (alb2 - azbl) -~ € b2b1
2 2
ay (@] bl)
_ 32a1 s(aib2 a:bl)
22 * 2
1 1

. 2
since £7 = 0,

which reduces to (4).

Formula (4) does not work in the case 2, = 0O .

We may not divide by any number of the so-called pure
dual form & b , just as in real algebra we may not
divide by zero.

- e A e P R S e e pm g pm ¥ L iy . e I



algebra is consistent is to note a straightforward
correspondence between the dual number a + £ & and the

a b
(o} a - (3)

2 x 2 matrix

It is possible, and indeed ' not difficult, to go
through the algebra of such matrices and check all the
formulae given above. ' For example & corresponds to

0 1
o o
and this matrix, multiplied by itself, gives
(o} 0
o 0

which corresponds to O. This gives a clear system in
which £,0 are manifestly different.

It is easy to see how Equations (1), (2), 3

translate into this new matrix notation. Te check
Equation {(4), note that as we go over to matrices
: : -1
a2 + & b2 32 b2 al b1
;;_:_;—3; ‘ corresponds to 0 32 o 2,

{or we could write this matrix product the other way
around) .

Now, remembering that a,6 = 0 ,

and so

_i 32a1 albz—azb1
0 aza1

and this corresponds to Equation (4).
One use for dual numbers is in the analysis of

small errors. Suppose, for instance, a rectangle has
length a. and width a_. and that the lenath a haes



associated with it a (relatively) small error b, > O .

That is to say, i¥f {( 1is the true length, then

a, - b1 <L < a, + b, - . (6)

-Similarly, there is a relatively small error b_. > O in

el
=

the measured width a, @ -

32 - b2 LOH < 32 + b? - (7
The true area LW thus satisfies
- ( - < < : .
(a1 bl).a2 b2) LK 4 (a1 + bl)(a2 + b2)
I.e. 2,3, — (ajb, + anb ) + byb, £ LR < a,a,
+ (alb2 + 5231)+ b1b2 s

Remember now that b1 » b,

blb? -is rvery small when compared to a

are relatively small, and  so

182 - For
many practical purposes we may simply neglect the blb

b

and write

aiag - (alb2 + azbl) < LH < a1a2 + (alb2

+ aﬂbl), (8)
e

If we now compare Ineguality (8) with Ineqgualities (&)

and (7) and the way these were set up, we see that we

can say that (to a good approximation) the area is a;a

[§]

with a relatively small error of .alb,3 + a_)b1 .
. - -
This. may be done very efficiently wusing dual

algebra. Write the length as a, + &£ b1 and the width

as a, + £ bo. Then the area is (al%es b

<

1)(32 + & bl)

and we can multiply this out to give ala7 + £ (alb2 +
aabl), obtaining the estimate of the area and its

associated error both in the one calculation.

Dual algebra was initially proposed by Clifford as
a means of dealing with certain problems in mechanics
and in geometry. This work was taken up by Study in
Bermany (190Z)and by Kotel’'nikov in Russia (1895-1899).
The best English summary of this work is to be found in
Chapters 2, T of Brand’'s Vector and Tensor Analysis {New
York : 1947) but it is rather too technical to go into
here. In particular, it considers the situation where
the a,b occurring above are not numbers but vectors.
{Clifford’s original study began, in point of fact, with
an even maore complicated case.) .
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Another recent application of dual algebra concerns
the foundations of calculus. Newton’ s original version
of +this made use of so—called infinitesimal quantities:
numbers that, seen from some points of view were zero,
but from other points of view (for example when we
wished to divide by them) were not. This rather
unsatisfactory situation was brought to a focus by the
philosopher (and bishop) Berkeley in his boock The
Analy=t (1734). -

‘Berkeley accepted the wutility of calculus while
pointing to logical inadequacies in its foundations.
This unsatisfactory state of affairs remained until the
wark of Cauchy (1789-1857) who succeeded in providing a
logically watertight basis for the calculus, by avoiding
entirely all reference to infinitesimals. This has
remained the standard approach to calculus to this day.

Nevertheless, as Abraham Robinson wrote in his book
Non—Standard Analysis (Amsterdam : 1966), "in spite of
this shattering rebuttal [Bishop Berkeley’'s argumentl,
the idea of infinitely small or infinitesimal guantities
seems to appeal naturally to our intuition.” Robinson
set himself the task of reinstating the infinitesimal.
and he succeeded in doing so in a series of researches
undertaken in the 1950°s.

Beginning with an idea first mooted, but not
elaborated. by Newton’ s great contemporary Leibniz, he
succeeded in producing an algebra that included ordinary
(real and complex) numbers and infinitesimal quantities

in one unified whole. (Much as the system of complex
numbers includes real and imaginary numbers in a
different such whole.) . The approach is now termed

non—standard analysis and it provides an alternative
(but equally rigourocus} approach to the foundations of
calculus.

Robinson’s account is technical -and difficult,
although it succeeds in its aim of reinstating the
infinitesimal as a valid concept. More recently (1982)
Dawn Fisher suggested the use of dual algebra. In her
version infinitesimals are numbers of the farm £ b, i.e.
neither real numbers nor zero. Whether this much
simpler version can do all that Robinson‘s can is. not
entirely clear. This iz a matter time may perhaps
clear up.

Interestingly, although in his initial paper
Clifford did treat dual algebra incorporating the
element &, for which e = 0. he spends much more time on
a related system. This is the so-called duo or
duplex algebra involving numbers of the farm 2 + w b .
where o° =1 . [w is the Greek letter omega.l
Again, require that a, - W bl = a, + W b2 only if 2,

= a,, and bl = b,.. Duplex algebra proceeds very like
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of Equations (1), (2) need not detain us at all, while
the analogue of Equation (3) is the slightly more
complicated .

(a1 + bl)(_a2 + w bz) = (ala2 + blbz) + w(alb2 + azbl)

(%)

To divide duplex numbers, proceed as we did in
setting up Equation (4). - The result is (multiply top

and bottom of the fraction on the left by @ - o bl)
2, + W b2 ‘ A b2b1 albz - azbl (105
= + W o -
a, + w b 2 2 2 2
1 1 a, b 1 a”, b 1

This result holds as long as bl = t a

in other words, divide by multiples of 1 * o . The
product of two non—-zero duplex numbers can be zero.
This is seen in the equation

(1 +# )(1l - w) =0 . (11)

Duplex numbers are less used nowadays than dual
numbers, but they find some applications in the theory
of relativity and they have a ready interpretation in
ordinary algebra : o + w b corresponding to 2 * b, a
- wb to a ¥ b .

Finally we may mention that both duplex and
complex numbers have matrix interpretations similar to
that of Matrix (35). We have the following
correspondences @

a +1b to a b
~b a

a+eb to a b
0 a

a + wbd to a b
b a

(Can you see the pattern underlying these matrices?)
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CLEAR THINKING ABOUT LIMITS

...... yde, Monach University
Mathematics, ever so slightly abused, can be used
to obtain some interesting conclusions. Consider for
example the following problem: given a non—negative
number L , find all solutions x > 0 of the equation

Yix + Ylx + Ylx + ...) =L . _ (1)

It is probably fairly clear what the left side of
equation (1) means — there is an infinite number of

square roots te be taken, with x added each time - but

to be precise we may proceed as follows. Let a1 = Yx,
a, = Y(x + a;) 5 ag = Yix + S Yix +’an_1)
for n > 1 . Then the problem is to find x such that
lim a = £ . 2)
n

Nt a0

Some might argue., however, that we can solve (1)
without mentioning limits. Indeed, squaring (1)  we
2

obtain x + L = Lz sa that the solution is x = L5 - (.

This seems to be the end of the matter: the
problem is apparently solved. However, experimenting
with different choices of the number L[ , we find this
is not the case. )

2

£ =3 ¢ Then x =L - L = 6 and equation (1) becomes
V(& + V(b + (& + ...) = 3. 53
Indeed a, = 2.849 ..., ay = 2.907 2., 33 = 2.984 ...,
2, = 2.997 ...5 .- a sequence apparently approaching
L =3,
L = %(1 + ¥3) ¢ Then x = 1 and equation (1) becomes
YL + (1 + L + ...) = %(1 + ¥S) (4)

which is the answer tec problem 10.3.2 of this magazine.
£ =1 2: Then x = 0 and equation (1) becomes

YO + (O + (O ... ) =1 . (5
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L =0 : Again ‘x = 0 , though equation (1) becnmés

YO + F(O + (O + ...) =0 . . (6}

Now (3) and (&) cannot both be true and so we are
faced with a dilemma. Clearly (6) is correct and not

(3). Therefore our solution x = LZ— L is . not wvalid
for all choices of (L > 0, and there must be doubt as
to its validity for any particular £ . For example,
can we be sure that (3) and (4) are correct? On the
other hand, the computations that led to the solution

2

x = L7 - [ were valid, weren’'t they?

One of the features of modern mathematics is its
ability to resolve such dilemmas. The problem with cur

solution x = L2 - L of equation (1) is that we have made

a hidden assumption which is not always a valid one :
we have assumed that equation (1) does have a solution

far any given L 20 . In other words, what we have
done is to show that if there is a solution of (1) then
it has to be x = L2— L. In reality therefore, we have
only half solved our problem. The more difficult hal¥
is to determine the values of (L for which there is a
solution. To do this requires some interesting,

perhaps difficult, mathematics, and the final answer is,
I think, rather surprising. :

Our aim is to determine those A for which
equation (1) is satisfied for some x [0 I We do this

i~

by proving
for each x 290, L =1im a exists. (7)
n-s

Clearly when ( exists it is 2 0.

Having done this, our ﬁrevious computations show
2
that if L denotes the limit then x = (© - ([ or

-
t“-L-x=0. Soi=2%12%v01+4x) and we must

also recall that L > 0. If x =0 then (L =1 or O;

but as we have already observed, (S) is incorrect,. and
so L =0 . I+ x > 0 , since (L 2 1 , then

L = %(1 + ¥Y(1 + 4x)) which, as x varies, assumes all
values ( > 1 . So equation (1) is solvable for L =
and for prach L > 1 . In each case the solution is

v = {* — 5



Qur final task is to prove (7).

A very useful theorem says that if {an} is a
sequence which is both increasing (i.e. a s 2. for
all n) and bounded above (i.e. there is a number K

such that a, < K for all n) then lim a exists.

We now show that our sequence an has these two

properties, i.e. that it is increasing and bounded
above.

First we show it is increasing. Certainly since

xz20, a = Yx 20 . Then a, = Yx L Yix + a;) = ag.
since a1 z 0 : in turn it then follows that

&, = Yix + ai) g Vix + az) = aq since a, < a3 and so
on: once we have shown that 24 £ a2, s for any k, we
can then use this to show that a, = Y(x + a )

< VYix + ak+1). This procedure shows that, for all =,
a, S E .1 Thus our sequence is 1ncre§51ng.

To show that 1lim a, exists it remains to show

n00
that the sequence a, is bhounded above. We show that
in fact, for all n» . a_ < %(1 + (1 + 4x)). We show

this step by step just as we showed that the sequence

an was increasing. Certainly, far n =1 .
a; = Ix = %V(4x) < %(1 + ¥(1 + 4x)); then, using this
result, for n = 2 ,we have
1 .

a, = Yix + al) < Yix . + 5 (1 + Y(1 + 4x)))

1 1 1
= Y(= + z Y1 + 4x) + 7 (1 + 4x)}

4 2 4

1 2

= 3 F(1 + 2¥(1 + 4x) + (¥(1 + 4x))™)
= Loy o+ v+ axon?
= L+ va s
Thus a, 3 %(i + ¥(1 4+ 4x))} .
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+  dx)) it immediatsly

So, by the theorem we guoted, lim a exists.

It is by no means uncommon fpr mathematicians. o
those using mathematic=s, to aporoach a nrmmlem with the
n

unspoken assumpntion that there is a solution to & given
equation. This is a small abuse of mathe atics hich
freguently will not produce any difficulties. However.
as our example above should demonstrate, chnigus

is not infallible. To avercome
conseqguences, like equation (53, desper
more interesting, though nperhaps harder,
may be reguired.

Bertrand Russell

“Mathematics may be defi
we never know what we are talk
what we are saying is true.’

“Fure mathematics consists sntirely o+ assertions
+n the effert that, if such and such a oroposition is
true of arvthing,. then zuch and such another oroposition
is true i I = to liscus
whether t i ot
mention ad

he true.

¥ X ¥ X %



STMPLE RATITONAT. NUMBERS

John Mack, Universi of Sydney

In these days of calculators and computers, decimal
notation reigns supreme upon the .screen and moreover,
what we see is usually truncated or rounded to say 8, 10
or 12 decimal places unless we are using an exact,
multiprecision or infinite precision arithmetic package

for our calculations. '~ For ‘small-’ integers, assuming
our calculating device is decently. accurate, (as most.
are), then we expect the results of arithmetic

operations to be exact until we exceed the display size.
It then becomes an interesting problem (and one of
extreme importance) to decide whether or not one can use
one’s calculating device to obtain exact answers to
problems in integer arithmetic.

Far example, if you have a standard scienfifi:
calculator, it is fairly easy to discover the highest
power of Z where size will fit exactly into your screen

-
display. If it is, say, 2”0, then the challenge is to
work out how, using your calculator, plus pencil and
paper, you might find the exact value of _240 without

doing ‘unnecessary’ work.

The problem we are gdingrtn discuss here is of a
different kind and concerns the fact that the decimal
representation of rational numbers lying between 0O and

1

1 is not always finite. While 8 = 0.125 is a
terminating expansion, % = 0.333... is not. It 1is
fairly easy to prove directly that if «x lies between

Q and 1 and has a terminating decimal expansion, then
X 1is a rational number which can be written in the form
p/q, where the only possible prime divisors of ¢ are 2
or S .

With a little more work, it is possible to show
that the decimal expansion of a reduced rational
fraction x = p/q will always terminate (remember that
a fraction p/q is said to be reduced if »p and q .
have no common factors other than * 1), unless some
prime other than 2 or 5 is a divisor of ¢ .and when
this occurs then the decimal expansion of x is
infinite and ‘eventually periodic’. This means that.
possibly after an initial block of digits, the rest of
the expansion consists of a certain finite sequence of
digits which repeats over and over again. For example,

i_ = 0.0666 ....
15



has an initial block consisting of the éingle digit 0O ,
followed by the digit & which repeats, while
)
= 0.11363636 ...
44

has an initial block of length 2 followed by the
recurring sequence 36  and

! = 0.024z9024 ...

41

has no initial block, Jjust the recurring sequence
02439,

Some experimentation with a calculator will help
you to guess when there is and when there is not an
initial block.

The upshot of all this is that if we are relying on
a limited display. decimal representation calculator,
then we will often be unable to tell, from what we see,
whether or not we actually have a terminating or
eventually periodic decimal representation and so unable
to tell whether or not we may be dealing with a rational
number . This leads to the question "Given a truncated
decimal, can we guess whether or not there is a ‘simple’
rational number that might be close to or equal to it?"
By ‘simple’, we mean one with a denominator small
compared with the length of the decimal, for, after all,
every finite decimal is a rational number.

For example, suppose we read '0.0243%9° on our
display. This is the rational number 2439/10000, but
our question is “Is there a rational number p/q v
with ¢ much less than 10000, which could be the exact
answer to our problem?* From the example above, we see

that, indeed, 1 might well be the actual answer and we
41 }
could re-examine the steps which led to our calculated

answer to see whether 1 is in fact correct.
41

There is a technique for finding such simple
rational numbers. This technique, called the continued
fraction method, produces a sequence of rationals with
increasing denominators that lie close to a given
number. Rather than discuss the technigque in general
terms, we shall apply it to a specific praoblem.
Afterwards, we'll give some references which contain a

- fuller account of the method.
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Here is the problem. - You are .at a meeting at
which someone, in order to support an argument, says "I
have done a éurvey on this issue and found that S8.6% of
those surveyed said ."Yes', while only 31% said "No’, so
clearly there is strong support for my proposal.* The
problem is that the number of persons surveyed 1is not
stated and you would like to know how small a sample

could be surveyed to produce results as quoted. S8.6%
586 2932 —q 31 135

means = or " , J1%Z means ~_  , or —( s S0 perhaps
1000 SO0 100 500

the survey . really covered 500 people, which is an

impressive number. But wait a minute. Quoting to 1

decimal place suggests rounding off and so we are
looking for percentages in the range 58.55 to S58.64 and
30.95 to 31.04, assuming the speaker is giving accurate
estimates. Perhaps there .is a denominator q (equal to
the survey size) which will produce percentages IOOpI/q

' and 100 P,/q within the abave ranges, with q much
less than 5007
To apply the continued fraction method, we need to

understand haw it works. Given any number x ' between
O and 1 , it will give us a sequence pllql, Ps/qnscea

é% rationals, alternately larger than and smaller than
X , which close down onto x : .

X
a—t 1 L I L
L] T ¥ H T
P Py P Py
- —_ P _Z
75 94 9= a,

Taking x = 58.55% = 0.5855 = 1171/2000, we obtain
its continued fraction as follows: - :

L= 1170 1 _ 1
2000 2000 L 4 829
1171 1171
_ 1
1+t
1171
829
1
1+ 1!
L+ 342



N
[

1 1+
829 !
=
sa2 2+ 2
342
1
1 +
1 1
2+ — 2+
342 52
a— "\+_—
145 “ 145
1
+
1 1
1 t=
2 + 1 2+ 1
2 + 2+
145 “ 41
7 Y
1
1
1 1
1+ T
2+ 2
1 -+ 1
2 + 2+ ——
. 1 1
5 2+
31 L+
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= (after several more such steps)

-
+
hI| =

The numbers pn/qn are found by :aiculating the values

of the intermediate steps:

©

Py 1 1 P2 1 1 3 1 1 3
-;—=T=T’q—-=~_f=:2—’ ;::: 1 = 2=§5
1 2 -~ 3 -
1+ 1+ N 1+ 3
1+

Pa 7 Ps 17 Ps 24 P7 g9 Pg 113

= s o a ) - s

94 12 q5 29 ’q 41 q7 152 qe 193
Pqe 315 P10 28 P11 1171 :
— = "= — = o= —— = z—= (as it should be!).

~a =T s
qq 538 940 731 944 2000
The fractions greater than 0.5855, with denominators

1 3 17 89
less than 500, are T o g » E; and IEE - 0f - these,
17 189

the ones less than 0.5864 are 59 and 152 -

We now see if there is a fraction p. /29 1lying in
the range 0.3095 to 0.3104. Since .3 of 29 is about 9,

we try 92/29 and find 9/29 = 0.3103 ... is within the
range!
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Thus our speaker could have surveyed as few as 29
people and obtained the guoted percentage responses.
29 is not nearly impressive a size as 500 and may well
be an unimpressive size in terms of the argument the
speaker is supporting!

1+ you have followed the above calculations, then
you would have despaired over calculating the pn/qn by

successively simplifying the fractions. Fortunately
there is an easy way to do it : if we have
) 1
x = 1
3 * 1
ax v 1
& +
3
a4'+..,.
Py P2 1 a3
first calculate — = > and ;: = I "7 a +1 °
1 1 2 - 172
a, + —
1 2,
Then, miracle of miracles, we can compute pn/qn for

n > 3 by the recursive formulae

n n "p - n - 2
G T2 9 -1 T 2 -

Check it out on the above example! If this leads
vou to believe that it might be true, vyou can either
prove it or find it in an account of continued
fractions. This may be found, for example, in
H.Davenport's lovely little book The Higher Arithmetic
published by Hutchinson, (reprinted by Harper and

Brothers, New York, 19240), which ought to be in every
scheool library!

Another account can be found in Volume II of
C.V.Durell and A.Robsan’'s Advanced Algebra, a book that
40 years ago used to be a standard H.S5.C. textbook, ‘and
s0 is probably in many school libraries- Continued
fractions are first introduced on p.242.

Finally., a note of thanks from the author to
Dr Henry Pollack., who recently retired from Bell
Research Labeoratories in the U.S5.A. and who mentioned
this nice application of cuntlnued fractions to guessing
possible sample sizes.



THE JAPANESE ABACUS

An exciting contest between the Japanese abacus and
the electric calculating machine was held in Tokyo on
November 12, 19464, under the sponsarship of the U.S.
Army newspaper, the Stars and Stripes. The abacus
victory was decisive.

The Nippon Times reported the contest as follows:
"Civilisation, on the threshold of the atomic age.
tottered Monday afternoon as the 2,000-year-old abacus
beat the electric calculating machine by adding,
subtracting, dividing and. a problem including all three
with multiplication thrown in, according to United
Fress. Only in multiplication alone did the machine
triumph."

The American representative of the calculating
machine was Pvt. Thomas Nathan Wood of the 240th Finance
Disbursing Section of General MacArthur’s headguarters,
who had been selected in an arithmetic contest as the
most expert operator of the electric calculator in
Japan.The Japanese representative was Mr Miyoshi
Matsuzaki, a champion operator of the abacus in the
Savings Bureau of the Ministry of Postal Administration.

The abacus scored a total of 4 points as against 1
point for the electric calculator. Such results should
convince even the most skeptical that, at least so far
as addition and subtraction are concerned, the abacus
possesses an indisputable advantage over the calculating
machine. Its advantages in the fields of
multiplication and division, however, were not =1s]
decisively demonstrated.

The Abacus Committee of the Japan Chamber of
. Commerce and Industry says that, in a contest in
addition and subtraction, a first grade abacus operator
can easily defeat the best operator of an electric
machine, solving problems twice as fast as the latter.
In multiplication’and division the margin of advantage
over the electric calculator disappears when there are
maore than a total of 10 digits involved.

From The Japanese Abacus, by Y.Yamazaki, Prentice~Hall,
1965.

X X % % x
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You are probably familiar with the expression [?J
{read: n choose r), which is the number of ways in
which a subcommitiee of r members can be chasen out of
a committee consisting of n individuals. The  symbol
E) is an abbreviation:

1) oo (n -~ r + 1)

ni{n -
B =
L} 1. Z2.. r

giving the required numbers.

The numbers [:] play a very distinguished role in

algebraic expressions. The best known. of these
expressions is the binomial expansion:

(a+6)" = 2" + ["]a" 1« [M)a”72,2 S T Y PR
1 2 n—1

Te make this expression more uniform looking., we define

B )

which makes sense when we consider that there is exactly
one committee with no members and one way of choosing
everybody for a subcommittes.

When this is done then the binomial theorem reads

a _ faYy.n ny_n~1 n n—1 ny},.n
(a + b)) = [o]a + [I]a * oenae + [n—l]ab - (n]b B

You are also likely to be familiar with the Pascal
array which vou obtain when writing daown in succession
the binomial coefficients occurring in the expansions of

-4

{(a + b)o, {(a + b)zs {a + b)z and soc on. You obtain

i n = 0

1 1 n = 1

1 2 1 n = 2

1 3 3 1 n = 3

1 4 & 4 1 n = 4

1 3 ic 10 3 1 n = 3

1 & 15 20 15 & i n = 6

1 7 z23 35 33 21 7 1 n = 7

1 8 28 5& 70 56 28 8 1 n = 8

1 2 36 -84 126 126 84 36 9 1 n = 9
1 10 45 120 210 2352 210 120 45 10 1 n = 10

= ® % ® = = @& © ® 8 ® 35 5 2 2 A & @ = a s = =



N
o

This array provides endless fun, if wvou like o5 olay
with numbers. One =2+ the most important propertiss of
the array is expresssd by Pascal s Recursion Formulia:
n+1Y _ (n n
r+i r r+1j.

You can check this, {proving is not di$éficult
either), looking at the array and seeing how the sntries
in each row can be obtained from the entries of the
previocus row by just adding each time two neighbours.
in fact, this iz the way of getting gus vy  the

L. . . R .,
coefficients in  the expansions of . {a+h} with

increasing n .

The title suggests that we want_to deal with-
gvenness or oddness of these bhinomial coefficients, a
glance at the array already suggests that therse is an
abundance of even numbers in the Fagcal array. Logkin
for example at rows n = 72 2 =4, n = 8, you find tha
excepting the first and last numbers in the row, alwa
2qual to 1, all the other entries are even. However,
whan vou look at the rows above these rows, that is &+
rows = 1, n =3, n = 7, then you see that all
cosfficients are odd (without exception).

here is however a mors efficient and also mors
ive way of settling the question o+ svenness and
oddness. Iinstead of writing out the binomial
coefficients, we merely state, whether they are even or
odd, by writing i feor the ndd coefficients and O for the
even ones. (Mathematically this means that we write
doewn the remainders atter dividing each coefficient bv
- Next we note that we do not even have to  lock at
the Fascal array to obtain our new array, because the
Fascal recursion formula gives us an easy rule to obtain
ach row in succession, since

0 k)

M

even + 2ven = even wrrite G+ O =0

aven + odd = pdd : write O+ 1 =1 3

odd + odd = even : write 1+ 1 =0 .
Thus we obtain the binomial arvay modulo 2 {see

oage 57)
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If you have a large enough sheet of paper, vyou may
continue and enlarge the array. It will give you an
even better insight into the evenness-oddness problem,
and if you paint your . O-A's red and your 1-A°s blue, you
can use it as a wallpaper design or pattern for a
knitted jersey.

You notice that to the array of ones and zeroes we
also added three different types of triangular frames.
These may serve as further embellishments, but their
real aim is to produce some mathematical results.

Triangles of type 4£:i::>> which seem to repeat

in a pattern are given a thin frame. Next we note that
such triangles which we shall call cells seem to cluster
on patterns of three:

4

Pt s e o o o o0 2 42 0 0 o € €20 e e D O D ) s B D 2 D D D D D G R

These clusters will be framed by broken lines.

Finally, as far as our érray goes, we note that these
clusters again cluster in threes, giving a more

complicated cluster which we mark with -heavy frames.
You may guess that continuing the array vyou will <find
that the heavy framed clusters will " make similar
formations (you may use colours for the new, larger
frames) and so you may continue as far as time and paper
sheets permits.

What are the conclusions which can be drawn from
all this?

Let us first look at the reasons - for these

regularities. Note that there are unframed ‘spaces
filled with zeros, numbering 1 or & or 28 in our array.
We shall call these spaces rero-holes. It follows from

our construction that the cluster arising betwmeen the
edge of the Pascal array and a zero—hole wust be the
same as the top-cluster of the same sire arising between
two edges of the array with its vertex at the apex of
the Pascal triangle.The first zero-hole consisting of a
single zero entry is in the row n = 2. To its right



%4
Rel

and left two cells appear identical tao the cell above
the zero entry. These three cells together form our
first cluster. Looking at the last rows of this

-

cluster (replacing the row <1 3 3 13} o0f the Pascal
array), we see that all entries are equal to 1, since
this row is the amalgamation of the last rows of two
cells.

It follows again from the rule ¢ 1 + 1 = O that the
row following the last row of the cluster has only zero
entries between the two l-entries at the edges of the
whole array. This means that the entries of the Pascal
array which this row replaces are even. (They are {4
& 4. A larger zero hole is now generated consisting
of three rows forming an inverted triangle. It
replaces : :

of the Pascal array.

Replicas of the cluster above the zero-hole appear
on the sides and so we obtain the first heavy framed
cluster, with its last row (n = 7) consisting of 1's
and followed by the next row (r = 8) where a new, larger
zero~hole, consisting of 7 rows originates. We note now
that the first zero-hoie begins at n = 2, the next
central zero—hole at n = 4, and from the congruency of
clusters it follows that at n = 8 s and generally at

n = 2k new central zero—holes arise, each larger than
the preceding one.

We are able to state now that when n = 2k, all

binomial coefficients [:] are even, provided that

O <L r < n . Referring to the last rows of clusters, we
have :

if =24 [ﬁ} is odd tor all r .

These two last results can be proved by algebra, but it
is interesting to see how they follow from the geometry
of our modulo 2 array.

Another consedquence, not so well known is that for

n < Zth

k

s the nuaber of odd binomial coefficients (?] is

(2]

Looking again at our picture, we see that for n < 2
there are 3 odd binomials. namely
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Since the cluster for n < 4 contains three such cells,.

there are 9 odd binomial coefficients [?] when
>
n ¢ 25 .
Generally : the ar?ay for n < 2k contains 3
clusters congruent to the cluster of entries for
n < Bk_l s hence 3 times as many 1l-s ., which signify odd

entries in the Pascal array.

Thus : up to » =8 » there are 3I x 9 = 27 odd
binomial coefficients s Up to n =16 , there are 81
(you can check this), and so. on.

We can conclude immediately that the probability of
a binomial being -even, approaches 1 (it is "almost
certain") as the Pascal array increases, although for
arbitrarily large n we shall always have completely odd

rows, namely when n = Ek -1 .

‘To be more precise, we find the numbers of even

binomial coefficients [?] when. n ¢ 2% |

The total numbers of entries in the Pas:ai array

for n <« 2k is k &
2°(2° + 1)

k- -

= 2~k 1 + 2k 1 )

HN=1+2+3+ ..+ 2%2 ~
. -

Since the number of odd binomials is Sk, it follows that
the number of even coefficients is )

= p2k-1 k-1 k

”E + 2 -3 .

Hence theAprobability that in the range considered a
binomial coefficient is even is

ME 3k
PUE) = — = 1o e
N 22k 1 + 2k 1
Thus Lk i
> k
PEY > 1 - 22k-—1 =1 - 26] -

where for large enough ¢ , 2|= « can be made as small as
g ry

we wish. Thus P(E) can be made as near to 1 as we
wish by choosing & appropriately large.
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PERIDIX

The Australian Mathematical Olympiad for 1987 was
held on the 3rd and 4th of March. Seventy-one selected
cempetitors took part in  the Olympiad, most chosen
because  of their performances in the Australian
Mathematics Competition. Some had shown their ability
in other competitions, and a few had been accepted on
the strong recommendation of their mathematics teachers.

For success in the Australian Oiympiad, 11 gold
certificates, 15 silver certificates and 21i bronze
certificates were awarded. The remaining competitors
all received participation certificates.

How would you have fared in this Ol ympiad? The
papers set are appended. Have a go! Send me any of
your solutions, or any queries you  have about the
guestions.

The Australian team for the International
Mathematical Olympiad, this time being held in Havana,
Cuba, is selected by taking the best six performers in
the Australian Mathematical OClympiad. This vear ' 's team
{in alphabetical order) is:

Chung Kim Yan, Duncraig Senior High School,
Western Australia.

Jonathan Potts, Brisbane Grammar School,
’ Bueensland.
Ben Robinson, Narrabundan College,

Pustralian Capital Territory.

Luke Seberry, Sydney Grammar School,
New South Wales.

Terence Tao, Blackwood High School,
: South Australiia.

lan Wanless, Phillip College,
Australian Capital Territory.

As usual a2 reserve member of the team was also
selected and he is: .

Danny Culegari, Melbourne Grammar Schoel,
" Victoria.

There is still intensive training ahead for the
team. A highlight of this training will be a week in
Sydney at the IBM training school. At this school the
team, with its reserve, will be joined by eight others,
selected alsoc from their performances in the Australian
Mathematical Olympiad, and who alsc are in yvear 11 or
below at school, so that they will still be eligible for
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s2lection for the 1988 Clvmpiad Team.

Those selected to join the school in  Mav in
addition to the team and its reserve ars:

Seoffrey Balley, St Aloysius College.
New South Wales.

Xobert Gates, K Srammar School.
New South Wales.

David Jackson, Svdney Grammar School,
New South Wales.

Mark Kisin, Melbourne Grammar School.
Victoria.

Jeremy Liew, Duncraig Senior High Schooi,
Western Australia.

Martin O Hely, Salesian College.
Victoria.

Blair Trewin, Canberra Grammar School,
Australian Capital Territory.

Sam Yates, St Feter's College,
South Australia.

The guestions in the papers that follow provide-
difficulties of +wo kinds. The +irst kind of
difficulty is that of understanding what the problem is.
I+ yvou are not certain what the circumcircle  of a
triangle is then you cannot be sure you understand
guestion 1. If you do not know what a prime number is.
then vou cannot do questlon 2.

The second kind of difficulty is that of solving
the problem once it has been completely undersinod,
‘Here there are at least two factors that come into most
solutions. The first is knowledge. This knowledge
can be a knowledge of related mathematical resul+is some
of which might be necessary to use ir solving the
oroblem. For example, in guestion 6, you need to be
famiiiar with proofs bv mathematical imducticn to  be
sure—+pooted in vour solution. Familiarity with the

properties of similar triangies helps for question 1.

assume you have all the necsssary

that the main {and intended}
coniure up sufficient ingenuity to D1t
ther to lead to a solution.
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THE
1987 ,
AUSTRALIAN MATHEMATICAL OLYMPIAD

PAPER I

Tuesday, 3rd March, 1987

Time allowed: 4 hours

NO caleulators are to be used.
Each question is worth seven points.

Question 1 7
GKA is an isosceles triangle with base GK of length 26. GA and AK each have
length a. Let C be the midpoint of AK and z the circumcircle of the triangle GCK.

Let Y be the point on the extension of AK such that if E is the intersection of Y&
with z then EY is of length a/2.

Prove that if z is the length of EC and y is the length of K'Y then ay = 22 and
zb = y2, '

Question 2 .

Let p be a prime number. Show that the integer

20\ . 20(2p—1)---(p+1)
(:)“2' P

is a multiple of p.

Question 3

In the country Patera there are 20 cities and two airline companjes, Green Planes and

Red Planes, to provide communication between the cities. The ﬁights are arranged

as follows:

(i) Given any two cities in Patera, one and 6nly one of the companies provides direct

flights (in both directions and without stops) between the two cities.

(il) There are two cities A and B in Patera such that a journey cannot be made
from one to the other (with possible stops) using only Red Planes.

Show that, given any two cities in Patera, a passenger can travel from one to the

other using only Green Planes, making at most one stop in some third city.
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THE
1987
AUSTRALIAN MATHEMATICAL OLYMPIAD

PAPER II
Wednesday, 4th March, 1987

Time allowed: 4 hours

NO caleulators are to be used.
Each question is worth seven points.

Question 4

In the interior of the triangle ABC, points O and P are chosen such that. angles
ABO and CBP are equal, and angles BCO and ACP are also equal.
Prove that angles CAO and BAP are equal.

Question 5

Let m and n be (fixed) integers greater than 1, m even, and f a real-valued function,.
defined for all non-negative real numbers, that satisfies the following conditions:
© (i) Forall z;,zs,...,z,, '

=T+ 28+ +27)/n) = ([f(z)]™ + [f(z2)]™ + - + [f(za)]™) /2
(i) f(1986) # 1986;
(iii) f(1988) # 0.
Prove that f(1987) = 1.

Question 6

Prove that for each positive integer n (n > 1),

VRtl+ V- V2 > 1+ 1/vV2+ 1B+ - + 1//n.
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