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THE FRONT COVER

The British epidemiologist and pioneer of tropical
medicine, Sir Ronald Ross (1857-1932)1 is best
remembered today for his life's work on the transmission
of malaria, for which he was awarded the Nobel Prize in
Physiology and Medicine in 19020 It was Ross who
showed conclusively that malaria is transmitted by
mosquitoes and who analysed that transmission with a
view to control or eradication of this virulent diseaseo

Ross was a considerable mathematician as well as
being a medical re~earcher (he also wrote q,-:!ite
mer~torious poetry)w Among the studies he made was the
development o~ a mathem~tical model of malaria and its
transmission 0 This led to what are now called the~Ross

Halaria Equations. Our front cover $hows the so-called
trajectories of these equationso

Let a population of mosquitoes live in the same
locality as a population of humans and let x be' the
proportion of mosquitoes infected with malaria and y
the population of humans so infected. In given time~ a
proportion R of the infected humans recover and a
proportion H of the mosquitoes die of malariac If
each human suffers 8 bites in this given time and each
mosquito delivers b bites in this same time~ then in
the long run

Bb-RH
x x B(!f+b) ( 1 )

Bb-RI1
y = y

b(B+R)

provided these quantities ~re positive.

If x ~ ;~ y ~ y , then we may plot x,y
graph as shown in Figure 1. _Th~ values of x~y

the arrows until th~ values x~ yare achieved.
that for realism we assume

on a
fellow

Note

o < x <' 1 o <: y -<

The diagra~ shows the case for which x = 0.35 y
Ow30 ..

If x < 0 ~ or y < 0 ~ then the situation x
x, y = y cannot be achieved and the arrows show that in
the long run x = O~ Y = 0 0 This cor~esponds to there
being no malaria present - a much wished-for situatione
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Figl1.re. 1 ~

Equations (1) show us that if Bb > RH , then bot~

x ~ yare positive and the situation'is that of. Figure
1 which corresponds toa·situation of endemic malariao
If, on the other hand~ Bb < RM , then both x~ ~ are
negative and so the malaria is ~radicated.

In order to eradicate malaria therefore we need to
achieve a situation in which

RH > Bb (2)

That ~s to say we need to combine several factors:

Increase the recovery rate of the humans,

Increase the mortality of the mosquitoes,

Decrease the rate at which mosquitoes bite humans.

Inequality (2) shows an impo~tant point. It is
not necessary to eliminate all mosquitoes~ nor to cure
every human case of malaria, nor need all biting be
prevented. As long as Inequality (2) continues to
apply, malaria cannot spread in .the population. This
led to considerable hopes that malaria might be
erad1cated~ as smallpox has been.
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Unfortun~tely, matters not taken into account 1n
the analYsis complicate mattersz Malaria olasmadia ar?
becoming resistant to the drugs (derivatives of quinine)
used to keep the value of K high~ and mosquitoes have
become resistant to the pesticides used to keep ~ne

value of H upc It has also been discovered that
malaria. infects other animals besides humans and 1:n~s

corresponds (in essence) to higher values of 0 and
lower values of R than we might at first supposez

Nonetheless the analysis has been very helpful~ ana
continues to be helpful~ in malaria control programs.

In 19~3~ the American Journal of Hygiene devoted a
,special supplement to the Ross Malaria Equations. Most
of this was written by Alfred J. Latka.!, ,-3 mathematician
at the Johns Hopk~ns University iR Baltimore. (We tend'
to fo~get that malaria was endemic in Baltimore and in
many other parts of the United S~ates until well into
this centuryv) Latka produced a yery full study of the
equations in the course of this work~ and Figure 1 as
well as the simplified form of this, that appea~s on the
cover)· is based on one of his diagramsc

* * * * *
He studied and nearly mastered the six books of

Euclid since he wa~ a member of CDng~essc

He began a course of rigid mental discipline with
the intent t~ improve his faculties~ e~oeciallv his
powers of logic and language. Hence his fondness for
Euclid~ which he carried with him on the ·~i~cuit till he
could demonstrate with ease all the proDositions i~ the
six books; often studying far into the night, with ~

candle near his pillow,. while his fallow-lawyers, hal a
dozen in a rQom~ filled the air with intermina Ie
snoring. - Abraham Lincoln (Short Autobiography~ 1860

* * * * *
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ZERO

Michael A~B~ Deakin} Monash University.

If we confine ourselves to the study of real
numbers~ then it is impossible to ascribe a square ~oot

to a neaative number. In particular~ the number -1 has
no squa~e root.. But we"have come to" accept that we can
have another~ richer number system, that of the
so-called complex numbers~ in which -1 has not just one
but two square, roots

(We need to have two square root~ to achieve consistency
with real arithmetic, e.gu (± '2)~ = 4~ etc.)

Complex numbers are the numbers of the form a + ib~

where a and b are real numbers 0

At first~ complex numbers were r~garded with some
suspicion, but in due course they b~came accepted.

Complex algebra leads to very elegant theorems and
results and in some ways is simpler than real algebraa
All the familiar rules apply~ including the following:

If c
1

and

c 1c 2 = 0 ~

c~ are complex numbers and
~

then eith~r c
1

= 0 or

In complex algebra, every quadratic equation has
exac~ly two roots (although in some cases these may be
equal>, every cubic equation has exactly three roots
(again with possible equalities), every quartic equation
has .00' and so on. These properties are riot shared by
real numbers.

In 1873, the BrLtish mathematician Clifford
considered a different algebra, whose elements were o~

the form a +' &b where a, b are real numbers and £4

= 00 [& is the Greek letter epsilon.] True, there
does not seem to be the same need for these as there is
~or the complex numbers, as 0 already has a perfectly
good square root : itself.

However these new numbers (they are called dual
nu.bers) have some applications in mechanics (which is
what led Clifford to consider them) and have found other
uses since.

First let us see how they work. Let
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be two dual numberso Then it is required that c 1
when and only when a

1
a

2
and b

1
= b

2
Also

can add them

we

( 1 )

to form a third dual number~ or we could subtract them

(2 )

T~en we might multiply them

since 2
& = 0 ..

(3)

Addition and multiplication obey all the usual rules of
algebra bar one: the product of non-zero dual numbers
can be zeroo

[It might at first sight seem that this -equation
tells us tha~ £ = O~ but it does not~ It is &~ that
is zerou & b

1
and & b

2
are two dual numbers~

distinct <unless b
1

or b
2

is·zero) from zero .. ]

Let us investigate the division of dual numbers 0

Put

and seek to find a3~ b 3 ..

From the definition of a quotient, we must have

Then
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So

(> We also have
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again unless at = o.

What we have just done is to show that, except in
the case of at = 0, ~e have

+ e (4 )

A shorter way of 'working out the result of dividing
c 2 by c

1
' that you might prefer, is as follows:

C
2 a"", + & b"", (a.., + £ b 2 ) (a 1 - 1£ b

1
)

JIt. JJt:. A-

c
1

a
1

+ & b
1 (·a 1 + & b

1
)(a

1
& b 1.)

G
2

a
1

+ & (a
1

b
2

- a
2

b
1

) _.£2
b2b1

2 ?
a

1
- (£ b'

1
) -

a
2

a
1

e(a
1

b
2 - ~2bi )

2
+

a~
2

a
1

since & = 0,

which reduces to (4) •

Formula (4) does not work in the case a 1 0

We may not divide by any number of the so-called pure
dual form e b ~ just as in real algebra we may not
divide by zerOD

- 1. __- ....._ ......~"""1.L +- ... ~+- rflf.::i-.l
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algebra is consistent is to note a
correspondence between the dual number
2 x 2 matrix

(~

straightforward
a + & b and the

(5)

It is possible~ and indeed . not difficult~ to go
through the algebra of such matric~s and check all the
formulae given above. For example & corresponds to

(~ b)
and this matrix~ multiplied by itself, gives

which corresponds to O. This gives a clear ~ystem in
which &,0 'are manifestly different.

It is easy to see how. Equations (1)~ (2), (3)
translate into this new ma~rix notation. To check
Equation (4)~ note that as we go over to matrices

corresponds to [

a"""-'
o

(or we could write this matrix product the other way
around) •

Now, remembering that a
1

~ 0 !I

(:1 b 1] -1 1 (:1 - b 1]
at 2 a

1a
l

and so

(~2 b2 ] [:1 b 1] -1 1 r2
b

2
] r1-b 1]

a
2

a
1

2 o a.., o at
at ....

1 (afl a 1b 2 -a2 b 1]

2" a
2

a
1

and this corresponds to Equation (4).

One use for dual numbers is in the analysis of
small errors. Suppose, for instance, a rectangle has
length a~ and width a_ and that the lenath a. has
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associated with it a (relatively) small error b
1

That is to' say, if L is the true length!! then

a
1 - b 1 < L < at + b

1
(6 )

·Similarly~ there is a relatively small error b
2

~ 0 in

the measured width a~
~

('7 )

The true area LU thus satisfies

Io@o a
1

G
2

- (a
2

b
2

+ a
2

b 1 ) + b
1

b
2

S LU < a t a
2

+ (d
1

b
2

+ a
2

d
1

)+ b
1

b
2

Remember now th~t b
1

, b
2

are relatively small, and so

b
1

b
2

is very small when compared to a 1a 2 For

many practical purposes we may simply neglect 'the b
1

b
2

and write

(8)

If ~e now c6mpare Inequality (8) with Inequalities
and (7) arid the way these were set~p~ we see that
can say that (to a good approximation) the area is

with a relatively small error of ~lb2 + a2 b 1 •

This, may be done very efficiently using dual
algebr~D Write the lengt~ as at + & b 1 and the width

as a 2 + £ b 2 - Then the area is (al~£ b
t

)(a2 + & b t )

and we can multiply this out to give a
1

a
2

+ & (a
1

b
2

+

a
2

b
1

>, obtaining the estimate of the area and its

associated error both in the one calculation.

Dual algebra was initially proposed by Clifford as
a means of dealing with certain problems in mechanics
and in geometry. This work was taken up by Study in
Germany (1903)and by'Kotel'nikov in Russia (1895-1899).
The best English summary of this work is to be found in
Chapters 2, 3 of Brand's Vector and Tensor Analysis <New
York : 1947) but it is ~ather ~oo technical to go into

~ here. In particular, it considers the situation where
the a~b occurring above are not numbers but vectors.
<Cli~~ord~s original study began, in point of fact~ with
an even more complicated case.)
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Another ~ecent applic~tion of dual algebra concerns
the foundations of calculus. Newton's original version
of ~his made use of so-called infinitesimal quantities:
numbers that~ seen from som~ points of view were zero~

but from other points of view (for example when we
wished to divide by them) were not. This rather
unsatisfactory situation was brought toa focus by the
philosopher (and bishop) Berkeley in his book The
Anal y s't (1.734).

Berkeley· accepted the utility of calculus while
pointing to logical inadequ~cies in {ts foundations.
This unsatisfactory state of affairs remained until the
work of Cauchy (1789-1857) who succeeded in prOViding a
logically watertight basis for the calculus, by avoiding
entirely all reference to infinitesimals. This has
remained the standard approach to calculus to this day.

Nevertheless~ as Abraham Robinson wrote in his book
Hon-Standard Analysis (Amsterdam: 1966)!' "in spite of
this shattering rebuttal [Bishop Berkeley's argument],
the idea of infinitely small or infinitesi.al quantities
seems to appeal naturally to our intuition .. " Robinson
set himself the task of reinstating the infinitesimal~

and he succeeded in doing so in a series of researches
undertaken in the 1950 1

50

Beginning with an idea first mooted, but not
elaborated~ by· Newton's great contemporary Leibniz, he
succeeded in producing an ~lgebra that included ordinary
(real and· complex) numbers and infinitesimal quantities
in one unified whole.. (Much as the system 0+ comple~·~

numbers includes real and imaginary numbers in a
di+ferent such whalea> The approach is now termed
no~-standa,d analysis and i~ provides an alternative
(but equally rigourous} approach to the foundations of
calculuse

Robinsonls account is technical 'and difficult!!
although it succeeds in its aim of reinstating the
infinitesimal as a valid concepto More recently (1982)
Dawn Fisher suggested the use of dual algebrao In her
version infinitesimals are numbers of .the form e b!l iDe ..
neither real numbers nor zero", ··Whether this much,
simpler version can do all that Robinson's can is. not
entirely clear-a This is a matter time may perhaps
clear up.

Interestingly, although in his initial paper
Clifford did treat ~ual algebra incorporating the
element &~ for which &~ = O~ he spends much more time on
a related system. This is the so-called duo or
duplex ~lgebra involving numbers of the farm a + w b ,
where w4 = 1 0 [w is the Greek letter omega.]
Again, require that a 1 + w b

1
= a 2 + wb

2
only if a 1

a 2 and b
1

= b
2

- Dupiex algeb~a.proceeds very like



of Equations (1), (2) need not detain us at all,
the analogue of Equation (3) is the slightly
complicated
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while
more

(a
1

a
2

+ b
1

b
2

) +w(a
1

b
2

+ a
2

b
1

)

(9 )

To divide duplex numbers!' proceed as we did in
setting up Equation (4). . The result is (multiply top
and bottom of the fraction on the left by a 1 - w b 1 )

a~ + w b", a
2

G
1 - b

2
b

1
a

1
b

2
- a

2
b

1.4. .:. (10'>= 2 .., + w
2 b 2 .at + w b

1 b"a
1 1

a
1 1

This result holds as long as b
1
~ ± ~10

in other words, divide by multiples of 1
product of two non-zero duplex numbers
This is seen in the equation

(1 + w)(l - w) = 0 •

We may not!'

± w The
can be zero.

( 11 )

Duplex numbers are less used nowadays than dual
numbers, but they find some applications in the theory
of relativity and they have a ready interpretation in
ordinary algebra a + w b corresponding to a ± b F a
- w b to' a + b 0

Finally we may mention that both
complex numbers have matrix interpretations
that of Matrix (5). We have the
correspondences

duplex and
similar to

following

a + i b to (a :)-b

a +& b to ( a :)0

~"
a + w b to ( a :)b

(Can you see the pattern underlying these matrices?)
",-Ir
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CLRAR THTNKTNG ABOl_TT LTMTTS

Alan Pryde 7 Monash University

Mathematics, ever so slightly abused, can be used
to obtain some interesting conclusionso Consider for
example the following prriblem: given a non-negative
number L find all solutions x > 0 of the equation

~(x + y(x + y(x + ORO) L ( i )

It is probably fairly clear what the left side of
equation (1) means - tryere is an infinite number of
square roots to be taken~ with x added each time but
to be precise we may proceed as follows. ~et a

1
= ~x~

=2 = -Icx + a l ) , Ci3 = -{(x_+ «3 2 ) DOO!' an Y(x + an-i)

~or n > 1 a Then the problem is to find x such"that

lim a = L It

n
(2)

Some might argue, however, that we can solve (1)
without mentioning limitsu Indeed, squaring (1) we

obtain x + L = L
2 so that the solution is x = L

2
L.

matter: the
experimenting

we find this

This seems to be the end of the
problem is apparently solved. However~

wi th d"if-ferent choices of the number L
is not the case ..

L = 3: Then x "(2 - L = 6 and equation (1) becomes

3 • (3)

L 1 and equation (1) becomesThen x

approaching

= 2cr984eeo, a 2 = 2.907 GOS' a 3
a sequence apparently

2 .. 449Indeed at

ii 4 = 2 .. 997

L 3.

1(1 + YS>
2

(4)

which is the answer to problem 10.3.2 of this magazine.

L = 1 Then x = 0 and equation (1) becomes

-{( 0 + y( 0 + ~(O .... 0 ) = 1 .. (5)
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~(O + y(O + Y(O + 000) = 0 0 (6)

Now (5) and (6) cannot both be true and ~o we are
faced with a. dilemma. Clearly <6> is correct and not

(S). Therefore our solution x = L2~ L is .not valid
for all choices of L > 0, and there must be doubt as
to its validity for any particular L". For example,
can we be sure that (3) and (4) are correct? On the
other hand, the computations that led to the solution

x = L 2 - L were valid, weren't they?

One of the' features of modern mathematics is its
ability to resolve such dilemmas. The problem with our

solution x = L2 - L of equation (1) is that we have made
a hidden assumption which is not always a valip one
we have assumed that equation (1) does have a solution
for any given L ~ 0 In other words, what we have

done is to show that "if there is a solution of (1) then

it has to be x = [2_ L ~ In reality therefore, we have
only half solved our problem. The more difficult half
is to determine "the values of L for which there is a
solution. To do this require~ some interesting,
perhaps difficult, mathematics~ and the final answer is~

I think, rather surprising.

Our a±m is to de~ermine those
equation (1) is satisfied for some x ~

by proving

L
o .

for which
We do this

for each x ~ 0 , L = lim a exists.
n

n-+oo
(7)

Clearly"~hen L exists it is ~ 0 0

Having done this, our previous computations show
?

that if L denotes the limit then x L- L or

L
2 - L - x = 0 . So L !( 1 ± y( 1 + 4x) ) and we must

2

also recall that L ~ 0 . If .)( = <) then L = 1 or 0;

but as. we have already observed, (5) is incorrect, and
so L = <) If x ::; 0 !II since L ~ 1 , then

L = !( 1 + l'< 1 + 4x) ) which!, as x yaries, assumes all
2

values L > 1 ·50 equation ( 1 ) is solvable for L 0

and for each L > 1 . In each case the solution is
?

-)( = L- - I
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Our final task is to prove (7).

A very useful theorem says that if {an} is a

sequence which is both increasing (i.e. an ~ a n + 1 for

all n) and bounded above (i.e. there is a number K
such that a < K for all n) then lim a exists.

n = n

We now show that our sequence an has these two

properties~ i.e. that it is increasing and bounded
above. .

First we show it is increasing. Certainly since
x ~ 0 a l = ~x ~ 0 a Then a 1 = ~x ~ y(x + a 1 )

since a
1

~ 0 in turn it then follows that

=2 = -{(x + a l ) ~ ~(x +.Ci2 > = Cil 3 since at ~ Ci2 ; and so

on: once we have shown that ak~l ~ a k ~ for any k~ we

can then use this to show that a k = ~(x + a
k

-
1

)

~ y(x + a
k

+
1

). This procedure shows that, for all n,

an ~ an+i· Thus our se~ue~ce is increasing.

To show that lim a exists it remains to show
n

n ...oo

that the sequence a is bounded abovelll We show that
n

!( 1in fact, for a.ll n ~ a ~ + y< 1 + 4x». We show
n 2

this step by step just as we showed that the sequence

an was increasingu Certainly~ for n = 1

at = ~x = ~Y(4X) ( ~(1 + Y(l + 4x»; then~ using this

result~ for n = 2 ,we have

~(* + ~ ~(1 + 4x) + *<1 + 4x»

1
~ ~{1 + 2Y(1 + 4x) + {~(1

1 ~(1 + ~(1 + 4x»2
2

1 (1 + .y{ 1 + 4x» D

La



that
you

.3,.....
L

Now if you look at the aGQve calculation
the only assumption used in showing that
1 1

~ 2 (1 + ~(1 + 4x) is that a
1

~ 2 (1 + ~(1 +

47-

see

1

Hence~ using a 2 ~ ~(1 + Y(i + 4.~·) it immediately

follows that ~(v + a_' i k~l + ~(1 + ~X}); and
L -.L.

sa

on
1

we next get d
4

~ ~(1 + ~(1 + 4x)) .3.na similar-I.v

then for ar:=:' a _So~ ff::r a.l ":! r •
6 !l ...

1
.-J

1 --I ( 1 4."..-) '\.a ~ ~( + + I ..
n .L

Thus ~(1 + Y{l + 4x)
..:-

is an upper bound fer the

sequence a
n

So, by the theorem we quoted~ lim
a "00n

a n

It is by no means uncommon f9r mathematicians~ ~r

those using mathematics~ to approach a problem with the
unspoken aS5umotion that there is a solution to a given
equation. This is a small abus~ of mathematics which
frequently will not produce any -difficulties.. However =

as our example above should demonstrate~ the technique
is not infallible: To overcome the adverse
consequences~ like eauation (5)~ deeper arguments and
more interesting, though perhaps ha~der~ mathematics
ma.y be required ..

Bertrand Russell

HMathematics may be defined as
we never know what we are talking
Nhat we are saying is true.!1

the subject
about" nor

in ~..,hich

~..,hether

-4\ ..

"Pure mathematics consists entirely of assertion:­
to the effect that~ if such and s~ch a oropcsitian is
true of anything~ then such ~nd such another proposition
is true of that thing. !~ is essential not to discuss
whether the first oroposition is really true~ and not to
mention what the anything is~ of which it lS suoposed to
be true.1!



SIMPLE RATIONAL NUMBERS

John Mack, University of Sydney

In these days 04 calculators and computers, decimal
notation reigns supreme upon the .screen and moreover,
what we see is usually truncated or rounded to say 8~ 10
or 12 decimal' places unless. we are using an exact,
multiprecision .or infinite precision arithmetic package
for ~ourcalculations•. For 's~all' integers, assuming
our calculating device is decently. accurate, (as most.
are), then we expect the results of arithmetic
operations to be exact until we exceed. the display size.
It then becomes an interesting problem (and one of
extreme importance) to decide whether or not one can use
one's calculating device to obtain exact answers to
problems in integer arithmetice

For example, ~f you have a standard scientific
calculator, it is fairly easy to discover the highest
power of 2 where size will fit exactly into your screen

30display. If it is, say, 2 , then the challenge is to
work out how, using your calculator, plus pencil and

paper~ you might find the exact value of 2 40 without
doing 'unnecessary' work.

ais0.125Whileis not always finite.1

The problem we are going to discuss here is .of a
different kind and concerns the fact that the decimal
representation o~ rational numbers lying between 0 and

1
8

1terminating expansion, 3 0.333 ••• is noto It "is

fairly easy to prove directly that if x lies between
o and 1 and has a terminating decimal expansion~ then
x is a rational number which can be written in the form
p/q~ where the ~nly possible prime divisors of q are 2
or S.

With a little more work~ it is possible to show·
that the decimal expansion of a reduced rational
fraction x = p/q will always terminate (remember' that
a fraction p/q is. said to be reduced if p and q.
have no common factors other than ± 1), unless some
prime other than 2 or 5 is a divisor of q .and when
this occurs then the decimal expansion of x is
infinite and 'eventually periodic'. This means that~

possibly after an initial block of digits, the rest of
the expansion consists of a certain finite sequence of
digits which repeats over and over again. For example~

1

15
= 0.0666 ••• D
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has an initial block consisting of the single digit 0
followed by the digit 6 which repeats, while

5

44
= 0.11363636

has an initial block of length
recurring sequence 36 and

2 ~011owed by the

1

41
= 0.02439024 DDllI

has no initial block, just the recurring sequence
02439.

Some experimentat10n with a calculator
you' to guess when there is and when there
initial block.

will help­
is not an

The upshot of all this is that if we are relying on
a limited display, decimal representation calculator,
then we will often be unable to tell, from what we see,
whether or not we actually have a terminating or
eventually periodic decimal representation and so unable
to tell whether or not we may be dealing with a rational
number. This leads to the question "Given a truncated
decimal, can we guess whether or not there is a 'simple'
rational number that might be close to or equal to it?"
By 'simple', we mean ~ne with a denominator small
compared with the length of the decimal, for, after all,
every finite decimal isa ration~l nt.J",ber.

For example, suppose we read 'O.02439~ on our
display. This is the rational number 2439/10000, but
our question is "ls there a rational number p/q !'

with q much less than 10000, which could b~ the exact
answer to our problem?" From the example above, we see

1that, indeed, might well be the actual answer and we
41

could re-examine the steps which led to our calculated

answer to see whether 1 is in ~act correct.
41

There is a technique ~or finding such simple
rational numbers. This technique~ called the continued
fraction method, produces a sequence of rationals with
increasing denominators that lie close to a given
number. Rather than discuss the technique in general
te'rms, we shall apply it' to a specific problem.
Afterwards, we'll give some references' which contain a
fuller account of the method.
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Here is the problem. . You are at a meeting at
which someone~ in order to support an argument, says "l
have donea~urvey on this issue and found that 58~6% of
those surveyed said ,'Yes', while oAly 31X said 'No' ~ ~o

clearly there is str9ng support for my proposalm" The
problem is that the number of persons surveyed is not
stated and you would like to know hciw s.al1 a sample
could be surveyed to produce results as quoted. 58.6%

586 293 -1~ 31 155 hmeans or ~ h means , or ___, so per aps
1000' 500 100 500

the survey. really covered 500 people~ which is an
impressive number. But wait a minute. Quoting to 1
decimal place suggests rounding off and so we are
looking for percentages in the range 58.55 to 58.64 and
30.95 to 31.04, assuming the speaker is giving accurate
estimates. Perhaps .there .is a denominator q (equal to
the survey size) 'which will produce percentages 100P1/q

and 100 P21q within the above ranges~ with q much

less than 5007

To apply the ,continued fraction method, we need to
understand how' it workso Given any number x between
o and 1 , it will give us a sequence Pl/ql~ P2 /Q2'o.o

of rationals~ alternately larger than and smaller than
x which close down onto x:

x
t , I I I

p~ P4 P3 P14

~ ~

q2 q4 q~ ql
~

Taking x 58.55% 0.5855 = 1171/2000, we obtain
its continued fraction as follows:

1171 1 1
x =

2000 2000
1 +

829

1171 1171

1

1 + 1

1171

829

1

1 +
1

+
342

829
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1

1 +
1

829

342

+

1 +

2 + 145

342
1 1

1 1
1 +

1 1 +
1

1 + 1 1 +
1

2 + 342

145

2 +

2 + 145

1

1 +

1" +
1

1 1
2 + 1

2 + 145

2 +

2 + 41

52 2 + 52

1 1

1

1

2 +

2 +

2 +

1 +

1

1

2 + 1

2 + 52

2 +

1 +

1 +

41 1 + 41
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(after several more such steps)
1

1
1 +

1 +
1

2 +
1

2 +
1

2 +
1

1
1 +

1
3 +

1
1 +

1
2 +

1
1 +

2

The numbers Pnlqn are found by calculating the values

of the intermediate steps:

Pi 1 1 P2 1 1 P3 1

"q 1 1 1~ q2 ! ""'!I
q3 1 '"1 + 1 + "11

1 + r"\
Ji!.

P4 7 Ps 17 P6 24 P7 89 Pa
'q - ,

q4 12 qs 29 41 q7 152 qa6

3

2 5!i

1 + 3'

113

193

315

538 731 ' ql1

1171

2000 (as it should be!).

The fractions greater than 0.5855, with denomi"nators
1 3 17 89

less than 500, are 1 ' 5 ' 29 and 152 • Of . these,

17 189
the ones less than 0.5864 are 29 and

152 •

We now see if there is a fraction p"",/29 lying in
.:.

the range 0.3095 to 0.3104. Since.3
we try ·9/29 and find 9/29 = 0.3103
range!

of 29 is about 9~

is within the
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Thus our speaker could have surveyed as few as 29
people and obtained the quoted percentage responses.
29 is not nearly impr:-essive a size as 500 and may well
be an unimpressive size in terms of the argument the
speaker is supporting~

"If you have followed the above calcu~ations, then
you would have despaired over calculating the Pnlqn by

successively simplifying the fra~tionsg Fortunately
there is an easy way to do it : if we "have

1
x = 1

1

1
a~ +

...:-

Ci 4" +

Pi 1 P2 1
a 2

first calculate and
1 + 1ql a

i q2 /" a
1

a
2

iii +
i3

2

Then~ miracle of miracles, we can compute

n ~ 3 by the recursive formulae

for

2

Check it out on the above example! If this leads
you to believe that it might be true, you can either
prove it or find it in an account of .continued
fractionSa "This may be" found, fo~ example, in
HDDavenpo~t's lovely little book The Higher Arith.eti~

published by Hutchinson, (reprinted by Harper and
Brothers, N~w York, 1960) , which ought to be in every
school library!

Another account can be fGund in Volume II of
C=VcDurell and ADRobson's Advanced Algebra~ a book that
40 years ago used to .be' a standard H 0 s. C a textbook, "and
so is probably in many ~chool libraries. Cbntinued
fractions are first introduced on po242o

FinallY9 a note of thanks from the author to
Dr Henry PQllack~ who recently retired from Bell
Research Laboratories in the U.SaAo and who mentioned
this niceappl~cation of continued fractions to guessing
possible sample sizesc
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THE JAPANESE ABACUS

An exciting contest between the Japanese abacus andthe electric calculating machine' was held in Tokyo onNovember 12, 1946, under the sponsorship of the U.S.
Army newspaper, the Sta'rs and Stripes. The abacusvictory was decisive.

The Nippon Times reported the contest as follows:"Civilisation, on the threshold of the atomic age~tottered Monday afternoon as the 2,OOO-year-old abacusbeat the electric' calculating machine by adding,subtracting, dividing and·a problem including all threewith multiplication thrown in, according to UnitedPress. Only in multiplication alone did the machinetriumph. II

The American rgpresentative of the calculatingmachine was Pvt. Thomas Nathan Wood of the 240th Finance
Disbursi~g Section of General MacArthur1s headquarters,who had been selected in an arithmetic contest as themost expert operator of the electric calculator inJapan.The Japanese representative was Mr KiyoshiMatsuzaki, a champion operator of the abacus in theSavings Bureau of' the Ministry of Postal Administrationw

The abacus scored a total of 4 points as against 1point for the electric calculato~. Such results shouldconvince even the most skeptical that, at least so faras addition and subtraction are concerned~ the abacuspossesses an indisputable advantage over the calculatingmachine. Its advantages in the fields ofmultiplication and division, however~ were not sodecisively demonstrated.

The Abacus Committee of. the Japan Chamber ofCommerce and In~ustry says that,- in a contest inaddition and SUbtraction, a first grade abacus operatorcan easily defeat the best operator of an ~lectricmachine., solving problems twice as fast as the latter.In multiplication' and division the margin of advantageover the electric calcul~tor disappears when there aremore than a total of 10 digits involved.

From The Japanese Abacus~ by V.Yamazaki, Prentice-Hall,1965a

* * * * *
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"V\lHAT

THAT

ARR THE ODDS

f{ n) .TS RVEN?..... r '

Marta Sved~ University of Adelaide

(Dr]You are probably familiar with the expression

(read: n choose r), which is the number of ways in
which a subcommittee of r members can be chosen out of
a committee consisting of n individ4alsc The symbol

~) is an abbreviation:

~) =
1)(1'1 - 1) .. III (n - r + 1)

1 .. 200 r

giving the required numberso

The numbers
(

Tl
y

] play a very distinguished role in

algebraic expressionso The best known of these
expressions is the binomial expansion:

(a+b)1) = an + + .( n] n-l+ 0 .. + - ab +b #

n-1

To make this expression" more uniform looking, we define

(~) = (:) = 1 •

which makes sense when we consider that there is exactly
one committee with no members and one way of choos~ng

everybody for a subcommittee 0

obtain

n- O
1"1 1
~ 2
n 3
n 4
Ti 5
n 6
n 7
n 8
n 9
1"1 10

1
1

8
9 1

45 10 1

1
1

6
21 7

28
84 36

120

35
70 56

126
252 210

21 35
28 56

, 84 126
120 210

1
1 1

2 1
1 3 3 '1

1 4 6 4
1 5 10 {O 5

1 6 15 20 15
1 7

1 8
1 9 36

1 10 45

When this is done then the binomial theorem reads

(a + b)n = (~)an + (~J;!n-lb + ••• + (n~l)abn-l + (~)bTl.

You are also l~kely to be familiar with the Pascal
array which you obtain when writing down in succession
the binomial coef+icients occurring in the expansions O?

012
(at + bJ , (a + b) , (Ii + b) and so on Cl You
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This array provides endless fun, if you like tw playwith numbers. One of the most important oroperties ofthe array is expressed by Pascal's Recursion ~ormu~a:

( TI + 1) = (Tf') + (: )r+l r r.t.

You can check this~ (proving is not difficult
either)~ lookina at the array and seeing how the entriesin each row can be obtained from the entries of theprevious row by just adding each time two neighbours.In fact~ this is the way of getting quickly the
coefficients in the expansions of "(a+b)n withincreasing T1

The title suggests that we want_to deal with" theevenness or oddness 0+ these binomial coefficients. Aglance at the array already suggest·s tha.t there is anabundance of even numbers in the Pa~cal array. Lookingfor e}~ample at rows n = 2 :r n = 4,- Tl = 8, you ·find thatexcepting the first and last numbers in the raw~ alwaysequal to 1, all the other entries are even. Howeve~~when you look at the rows above these rows, that is atrows n = 1~ n = 3~ n = 7~" then you see that all thecoefficients are odd <without exception).

There is however a more efficient and also moreattractive way of settling the question of evenness andoddness. Instead of writing oui th~ binomial
coefficients~ we merely stat~~ whether they are even orodd, by writing 1 fer the odd coe~~icients and 0 far theeven ones. (Mathematically this means that we writedown the remainders after dividing each coefficient by2.) Next we note that we do not even have to loak atthe Pascal array tq obtain our new array~ because thePascal recursion formula gives us an easy rule to obtaineach row in succession~ since

even + even even wr t'e 0 + 0 0
even + odd odd wr te (1 +
odd + odd even wr te + 1 0

Thus we obtain the binomial array modulo -"'\ (see.,;:
page 57)
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If you have a large enough sheet of paper~ you may
co~~inue and enlarge the array. It will give you an
even better insight into the 'evenness-oddness problem,
and if you paint your.O-6's red and your l-~'s blue, you
can use it as a wallpaper design or pattern for a
knitted jersey.

You notice that to the array of ones and zeroes we
also add~d three different types of triangular frames.
These may serve as further embellishments, but their
real aim is to produce some mathematical results.

Triangles of type il which seem to repeat
in a pattern are giv~n a thin frame. Next we note that
such triangles which we shall call cells seem to cluster
on patterns of three:

These clusters will be framed by broken lines.
Finally~ as far as our array goes, we note that these
clusters again cluster in threes~ giving a more
complicated cluster which we mark with .heavy frames.
You may guess that continuing the array you will find
that the heavy framed clusters will· make similar
formations (you may use 'colours for the new~ larger
frames) and so you may continue as far as time and paper
sheets permits.

What are the conclusions which can be drawn from
all this?

Let us first look at the reasons· for these
regularities. Note that there are unframed 'spaces
filled with zeros~ numbering 1 or 6 or 28 in our array 0

We shall call these spaces zero-holes. It follows from
our construction that the cluster arising bet~een the
edge OT the Pascal array and a zero-hole .ust be the
sa8e as the top-cluster oT the sa.e size arising ·between
two edges of the array with its vertex at the apex oT
the Pascal triangle. The firs~ ~ero-hole consisting of a
single zero entry is in the row n = 20 To its right
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and left t~o cel~s appear identical to the cell above
the zero entry. These.three cells together form our
first cluster. Looking a~ the last rows of this
cluster (replacing the row {I 3 3 1} of the Pascal
array), we see that all entries are equal to 1~ since
this row is the amalgamation of the- last rows of two
cells.

It follows again. from the rule: 1 + 1 = 0 that the
row following the ~ast row of the cluster has only zero
entries between the two I-entries at the edges of the
whole array. This means that the entries of the Pascal
array which this row.replaces are even. (They are {4
6 4}. A larger zero ho~e is now generated consisting
of three rows forming an inverted triangle. It
replaces

of the Pascal arr~y.

4 6
10

20

4
10

Replicas of the cluster above the zero-hole appear
on the sides and so we ,obtain the first heavy framed
cluster, with its last row (n = 7) consisting of l~s

and followed by the next row (n = 8> where a'new, larger
zero-hole, cons~sting of 7 rows originates. We note now
that the first zero-hole begins at n 2~ the next
central zero-hole at n = 4~ and from the congruency of
clusters it follows that at n = 8, and generally at

n = 2
k new central zero-holes arise, each larger than

the ~receding one.

binomial coefficients

We are able to state now that when

(n
r

) are even.~ provided that

all

(> .:..... r ( n . ~eferring to the last rows of clusters~ we
have

if n = 2
k - ~) is .odd for all r

These two last results can be proved by algebra, but it
is interesting to see how they follow from the geometry
of our .odulo 2 array.

Another consequence~ not so well known is that

_4
th h ..c b . . (rn)n ( , ~ t e nu.ber 0, odd InoMial coeffIcients

Tor

is

Looking again at our picture~ we see that for n ~ 2
there are 3 odd binomials~ namely
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~) 1 (~) = G) = 1 •

Since the cluster ~or n < 4 contains three such cells 9

(n
r

)there are 9 odd binomial coefficients when

Generally : the array for n < 2 k
contains 3clusters congruent to the cluster of entries for

n ( 2k - 1 , hence 3 times as many 1-s which signify oddentries in the Pascal array.

Thus : up to n = 8 ~ there are
binomial coefficients ~ up to n = 16
(you can check this), and so. anD

3 x 9 = 27
there are

odd
81

We can conclude immediately that the probability ofa binomial being -even, approaches I (it is "almostcertain") as the Pascal array increases, although forarbitrarily large n we shall always have completely odd
rows~ namely when n = 2

k
- 1

even

array

:2
+3+ •• +2

k+ 2N = 1

To be more precise, we find the numbers of
binomial coefficients ~) when· n < 2

k
•

The total numbers of entries in the Pascal
for n < 2 k is

since the number of odd binomials' is 3k~ i~ follows thatthe number o~ even coefficients is
__ 22k-l

HE +

P(E)

Hence the probability that in the range
binomial coefficient is even is

HE 3 k

H = 1- 22k-1 + 2 k - 1

considered a

Thus

P (E) ) 1 -
,.,2k-l
.4

=1-2~Y -"

where for large enough k , 2~)k can be made as small as

we wish. Thus
wish by choosing

P(E) can be made as near to
k appropriately large.

1 as we
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PRRDIX

The Australian Mathematical Olympiad for 1987 was
held on the 3rd and 4th o-f March" Seventy-one selected
competitors took part in the Olympiad, most chosen
because of their performances in the A~5tralian

Mathemat~cs Competition. Some had ~hown their ability
in other competitions~ and a few had been accepted on
the st.rong recommendation o-f their mathematics 'teachers.'

For success in the Australian Olympiad, 11 gold
certificates, 15 silver certificates and 21 bronze
certificates were awarded. The remaining campetitors
all received participation certificates.

How would you have fared in this Olympiad? The
papers se~'are appended. Have a go! Send me any o~

your solutions 9 or any queries you have about the
questionsQ

The Australian team ~Dr the Interna~ional

Mathematical Olympiad 9 this time being held in Havana 9

Cuba, is selected by taking the best six performers in
the Australian Mathematical Olympiad. This year·s team
(in alphabetical order) is:

Chung Kim Van,

Jonathan Potts 9

Ben Robinson'9

Luke Seberry?

Terence Tao,

Ian .WanlessIj!

Duncraig Senior High School":
Western Australia~

Brisbane Grammar School,
Queensland!:»

Narrabundah College,
Australian Capital Territory~

Sydney Grammar Schoal,
New South Wales.

Blackwood HighSchool,
South Australia.

Phillip College,
Australian Capital Territory.

As usual a reserve member of the
selected and he is:

team was also

Danny Culegar-i. Melbourne Grammar School"
Victoria ..

There is still intensive training ahead for the
team. A highlight o~ this training will be a week in
Sydney at t:he IBM training school. At~ this school the
team, with its reserve~ will be joined by eight others~

selected also from their performances in the Australian
Mathematical Olympiad 9 .and who also are in year 11 or
below at school 9 so that they will still be eligible few·
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selection for the 1988 Olympiad Team.

Those selected to joi~ the school
addition to the team and its reserve are:

in Mav in

Geoffrey Bailey~

Robert Gates~

David Jackson~

Mark Kisi~~

Jeremy L~ew,

Martin O'Hely,

Blair Trewin~

Sam Yates~

St Aloysius College.
New South Wales.

Knox Grammar SchQQ1~

New South Wales.

Sydney Grammar School~

.New South Wales.

Melbourne Grammar School~

Victoria.

Duncraig Senior High Schaol,
Western Australia~

Salesian ColleQe~

Victoria.

Canberra Grammar School~

Australian Capital Territory.

St Peter's College~

South Australia.

The questions in the papers that follow prov~ae

difficulties of two kinds. The +irst kind of
difficulty is that of understanding what the problem is.
If you are not certain what the circumcircle of a
triangle is then you cannot be sure you understand
question 1. If you do not know -what a prime number is~

then you cannot do question 2.

The second kind of difficulty is that of solving
the problem once it has been completely understood.

·Here there are at least two factors that come intp mast
solutions. The first is knowledge. This knowled~e

can be a knowledge of related mathematical results some
of which might be necessary to use in solving the
problem. For example, in question 6~ you need to be
fam11~ar with proofs by 'mathematical induction to be
sure-~ooted in your solution. Familiarity with the
properties of similar triangles helps for question 1.

Let us assume you have all the necessary knowledge.
It ~s then that the main <and intended) difficulty
arises: conjure up sufficient ingenuity to out what you
know together to lead to a solution.
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THE
1981

AUSTRALIAN MATHEMATICAL OLYMPIAD

PAPER I

Tuesday, 3rd March, 1987

Time allowed: 4 hours

NO calculators are to be used.
Each question is UJorth seven points..

Question 1

GKA is an isosceles triangle with base GKa! length 26.. GA and AK each ha.ve

length 4. Let C be the midpoint of AK and z the circumcircle of the triangle GCKo

Let Y be the point on the extension of AK such tha.t if E is the intersection of Y G

with z then EY is of length a/2.
Prove that if z is the length of EC and y is the length of KY then ay = x 2 and

xb = y2 0

Question 2 .

Let p be a prime numbero Show tha.t the integer

(21') -2= 2p(2P-l)···(P+l)_2
p p(p - 1)···1

is a multiple of p.

Question 3

In the country Patera there are 20 c;ities and two airline companies, Green Pla.nes and

Red Planes, to provide communication between the ·cities. 'J;he flights are atTanged

as follows:

(i) Given any two cities in Patera, one and only one of the companies provides direct

flights (in b~th directions and without stops) between the two cities..

(ii) There are two cities A and B in Patera. such tha.t a. journey cannot be made

from one to the other (with possible stops) using only Red Planes.

Show that, given any two citi~ in Patera, a. passenger-can travel from one to the

other using only Green Planes, making at most one stop in some third city.
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THE

1.987

AUSTRALIAN MATHEMATICAL OLYMPIAD

PAPER II

Wednesday, 4th March, 1987

Time allowed: 4 hOUTS

NO calculators are 'to be used.
Each question is worth seven points.

Question 4

In the interior of the .triallgle ABC, points 0 and P are chosen such that. angles

ABO and CBP are equal, and angles BCO and ACP are also equaL

Prove tha.t angles CAO and BAP are equal.

QuestioI;l 5

Let m and n be (fixed) integers ~reater than 1, m even, and f a real-valued function,­

defined for all non-negative real nunlbers, that satisfies the following conditions:

(i) For all %1,%2, ••• ,x"',
f{(:t'{' + %2' + ... + x:')/n) = ([f(Zl)]m + [f(X2)]m + ... + [f(xn))m)Jn;

(ii) 1(1986) =I- 1986;

(iii) [(198B) i: o.
Prove that 1(1987) = 1~

Question 6

Prove that for each positive integer n (n > 1),

~. + v;. - v'2 > 1 + 1/v'2 + 1/v'3 + ... + l/v;..
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