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Welcome to new readers. ‘We hope you enjoy reading Funrction
this year. If there is some subject you are specially interested
in and would like to see an article about write to us and we shall
try to produce one.
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Front Cover: This word picture is taken: from . p.143 of the
beautiful book by Edward R. Tufte entitled 7The visual display of.
quantitative Information. Tufte describes the picture as a
"typographical delight” and attributes it to the statistician
W.J. Youden. The book may be purchased <(only) by direct order
from the Graphics Press, Box 430 Cheshire, Connecticut, US4,
06410, price US$34,

The book is a magnificent account of the art of pictorial
presentation of information. It includes a short history with
superbly chosen examples. Nearly every page contains two or
three memorable pictures, mostly of vividly effective presentation
of numerical data but with the addition of same pictures showing
how it should not be done.
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THE DEVELOPMENT OF AL GEBRA

Lyn Donaldson, Keilor Downe post"prinmry schocl

A lot of the mathematics that we study today was discovered
many centuries ago. Algebra, ‘the science ot eguations’', was
tirst used in 1700 E.C. and developed in three distinct stages.
At first the equations were written entirely in words, then some
abbreviations were introduced until finally svmbols replaced the
words. This took place over a long period of time.

Algebra originated in Babvlqnia at about 1700 E.C. A
typical problem from this time is shown below.

1. Length, width. I have multiplied length and width,
thus obtaining area: 252. i have added length ang
width: 32, Required: length and width.

2. Given I2 the sumg 258 the area.

[

- Answer 18 length, 14 width.

4. One follows this method: lake half o+ A2 {(this gives
14) .
Multiply this by itsels (16x1lé = 25&) .
256252 = 4, The sguare rcot of 4 is 2.
16+2 = 18 1ength. 16-2 = 14 width.

S. Check: I have multiplied 18 length by 14 width.
18x14 = 252 area.

The above method involves stating the problem, listing the
data, giving the answer, showing the method and finally checking
the answer. fhis is not all that different trom our methods
today but we should note that the Babylonians did not have numbers
as simple as ours or simple symbols to represent the operations.

Algebra was further developed by the Greeks (S40-300 B.L.5.
Most o+ the work from this time was concerned with geometry and
two of the greatest mathematicians — Euclid and Fythagoras - wmade
some contributions to algebra. A typical problem wouid have
locked like this: i

If a straight line be divided into any two parts, the square
on the whole line 1s equal to the squares on the two parts,
together with twice the rectangie contained by the parts.

What does this mean in our languags7

The next step in the development o+ algebra was made by
another famous Greek. His name was Diophantus and he is known as
e father of aigepbra . Diophantus wrote a series of books
alled the aArithmetica which included problems ‘and their
ciutions. However , we know very little aboutr  him. it a1s
2lieved that he lived hetwsen 250 and 300 A4.D. and one clue we
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nave to s tife 1= a probiem about him.

"Here lies Diophantus. The wonder behold - through art
algebraic, the stone teils how old: “God gave him his
bovhood one—sixth of his lite, one—twelfth more as vyouth
whitie whiskers grew rife:; and. then vyet one—-seventh ere

marriage begun; in five years there came a bouncing new son.
Alas, the Jdear child of master and sage, met fate at just
haif his dad’'s final age: Four years yet his studies gave
solace from grief; then leaving scenes earthly he, toao,
found relief.”

How oid was Diophantus when he diea?

Diophantus was the +irst to use algebraic abbreviations 1in
problems, which helped make life easier for the mathematicians of
the time. He also used special symbols which were previously not
thought of. This helped algebra develop because it simplified the
probiems which previously would have been written in words only.
However, the work was still very tedious compared to our methods.

Here is an example of Diophantus symbols.

Consider the esxpression

X7 - SxT + 8x - 1.

Before Diophantus this would be written in words.
Diophantus would have written .

1 NUB LE 8q3 U1

u

where T~ = cube of the unknown S5g = square of unknown
NU = the unknown U = unit

LE = less (minus)

The use of symbols such as these helped with the general
development of mathematics because it made life easier. It
especirally favoured the development of trigonometry -and number
theory because now there was a way to express higher powers and
unknowns. Mathematics still had not developed special symbols
for operations that we have now, but over the years mathematicians
have worked on these symbols and developed them into the algebra
and arithmetic that we now use.

This 15 a problem from Diophantus' Arithmetica

“Find three numbers so that the product of any two plus the
sum of the same two shall be given numbers."

in modern notation this problem reads: given numbers a, &, <
find numbers x, ¥y, ¥ such that
’ . vyr +y + r = a
X+ F + x = b
Xy + x +y =& .
{Readers are invited to send solutions. For example try

with a = 11, 8 = 7, ¢ = S.1



THE DOMESDAY® METHOD

DAVID JOHNSON, UNIVERSITY OF NOTTINGHAM

Of the many methods for computing the day of the week upon
which a given date Falls, my Favourite is that devised by
Frofessor J.H. Conway, F.R.5., of BGonville and Caius College,
.Cambridge. Apart from his contributions to Group Theorvy,
Topology ("An enumeration of knots and links and some of their
algebraic properties”, pp. 329-358 i1n Computational Froblems 1in
Abstract Algebra, Fergamon, Oxford, 1970 : despite the title, a
joy to read), and Logic ("All Numbers Great and Smalll),
Frofessar Conway is justly famous as the inventor of many
mathematical games, puzzles and diversions, such as the “Game of
Life”, upon which several miiiion dollars’ worth of computing time
has been expended. the method described below is not the least
of his brainchildren.

There ar= two reasons why evaluating the function
g ca}endar date 3 day of the week is non—trivial. First,
the number of days in a year 1s never divisible by 7, and second,
in the words of W.S.Gilbert,

Aithough, for such a beastiy month as February,
Twenty—-eight days are as a rule considered plenty,
It has been decreed that, one year ain every four,
Its days shall be numbered as nine-and-twenty.

On the other hand, the function 4 takes only seven values, and
the last day of February is fairly near the beginning of the year .

The first step capitalizes on this fact, and goes straight to
the heart of the problem by deciaring that the day of the week
that is the last day of February in any year be the Domssday# +or
that year. For example, February Z8 falls on a Saturday in 1987,
and so the Domesday for this year is Saturday. In 1988, February
29 wili fall on a Monday, and so Monday 1s the Domesday for 19g98.

We proceed to find (at least) one Domesday 1in every other
month, using the folliowing simple rules:

a’ for even months, April = 4, June = 5y «.».., December = 12,
a Domesday 1s the day whose date is the number of the monthj;’
for example, June & is always a Domesday: check, for exanple,
that June & and February 26 are both Saturdays in 1987;

omesday is Eﬁé Mxédleagagzish—ggéiling of Loomsday.[Ed. 3
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monthis atber rebrusrv, 3t 15 the day that has date
y the nuambesr of the month £ 44 with + +tor long montos
irke May, and - tor shart monthe (30 days) like

=] January 31 is a Domesday. except in leap vears, when 1t is a
day later, so in this case, pick yvour favour from 4, 11, 18,

B

25 to +ind which day 15 a Uomesday.

tlonth Mumber Days Domesday
Janaary 1 =1 (Seze (c) above)
February 2 28 or Z9 last

March = =1 7

Aprii 4 Z0 4

May b L k4

June ) 20 &

July 7 31 i1

August 8 21 8
September 9 20 5
October i¢ 1 10
November 11 20 7
December iz2 =1 12

With this intormation, it 1is now a matter of simple

arithmetic {(modulo 7) to arrive at the day of the week for any day
in any month.

For example, suppose someone you know was born upon December
22 in 1963Z. Given that the Domesday for that year was Thursday,
you know that so is December 26 (= 1Z + 14) {Boxing Day is always
a Domesday, as is American Independence Day and possibly some
special dates of your own) and by simply counting back four days,
you deduce that they are a Sunday’'s child. '

There remains the problem of establishing the Domesday for a
given year, and this is neatly solved as follows. First note
that a given century also has a Domesday, namely that of the first
(really the zeroth!) year of that century. The Domesday for the
twentieth century is Wednesday. Note that (since 365 = 7 x 82
+1), the bDomesday movies forward one for each normal year, plus an
extra one For leap years, and thus by fifteen, i.e. to the next
day of the week, every 12 years. 8c to obtain the Domesday for
nineteen hundred and &, © = & < 100, move on N days Ffrom
Wednesday, where N iz obtained as follows: divide & by 12 :

k = i2g + r . O =< r < 12 |,
s0 that g = [&£/121, the "integer—-part" of &/12. whereupon
N =g +r + [r/741.

lhus, for 1988,



g = LB8/121 = 7, r =4 , Lr/431 =1 ,
and N = 7 + 4 + 1 = 12 = 7 x 2 « 2

and the Domesday is two days before Wednesday, i.e. Monday, as we
saw earlier.

In case you should wish to carry this out for dates in the
last century, I should mention that the Victorians- Domesday was a
Friday, since the year 1900 was not a leap vyear (they miss it out
every hundred years); but the Domesday for the 21st cantury will

be Tuesday (take & = 100 in the previous paragraph) since the
year 2000 isx a leap year (they put 1t back every four hundred
vyears). ‘"There is also a version of the method that works for

the Julian calendar, which was replaced by the Gregorian calendar
in 1752 (in Britain at least - in Russia, this did not take place
until 1923). .

Now the method may look complicated, but facility comes with
remarkably little practice (best done with an egually quick-witted
friend!), and you will find you can perform the whole calculation
in a few seconds, and have what is among other things an

impressive party trick. in fact, by asking for year first, then
month, and finally day and using some glib patter, vyou can give
the appearance of producing the answer instantaneously. When

doing this with birthdays you can follow up with a reference to
the famous rhyme, which I can never remember, "Monday’'s child ...*"
You can' also check dates appearing in books (there is at least one
mistaken one in the Sherlock Holmes ' stories) and élsewhere; I
leave other applications, both academic and social, to vyour
imagination. )
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STEPHEN MURPHY WINS AUSTRALIAN BHP SCI1ENCE PRIZE

Stephen Murphy won this vear ‘s BHF Science Prize for
excellence in scientific research by Australian school students.
Stephen, at 12 vyears old, is the youngest winner of the prize.
The prize included a gold medal, a cheque for #3000, and a traip
arranged to the 38th International Science Fair at Fuerto Rico, in
May.

Stephen’'s fesearch was an investigation into the glacial
region of New Zealand' s South Island. His interest was ardused
three years ago into 1ts many curious features : the milky water
of glacial rivers, the odd places large boulders are dotted about,
the mysterious circular cavities in gorges.

He drew up a research plan and, armed with appropriate
instruments, on his last holiday in New Zealand, collecteg
measurements of river flows, sedimentation rates, air and water

temperatures. Samples were bought back to study under
microscopes in his school lab. He then began analysing his data
using computer simulation models. In particular his models

enabled him to estimate the rate at which silt would build wup
behind dams on glacial rivers, important information to have when
planning hydro-electric schemes.
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PRIZES AND MEDALS

Michae! A.B. UDeakin, Monash University

The Nobel Prizes, announced annually, recognise excellence in
Chemistry, Physics, Fhysiology and Medicine, Literature, Feace and
(more recently) Economics. Except for the last of these, the
money for the prizes comes from the estate of the Swedish chemist
and industrialist Alfred Bernhard Hobel (183%3-18%4) . Naobel
studied, patented, and .manufactured explosives, being most
remembered as the inventor of dynamite. He funded his prizes
from the wealth these activities brought him, and did so in the
hope of leaving a lasting legacy of service and benefit to
humanity.

Many fields of endeavour are not recognised, and among these
is Mathematics. Why this is so is not really known. There does
seem to be some evidence that Nobel at one point considered
1ncluding Mathematics among the fields chosen for the awards.

One widely believed explanation for his change of heart - (if
in fact there was one) is his bad relations with the Swedish
mathematician Mittag-Leffler. Magrnus Gustat (or Gosta),
Mittag—Llefrler (1844-1927 was a mathemstician of some note,
nowadays better remembered perhaps as an organiser and editor than
tor his technical contributions to Mathematics itself. He had
studied under one of the very greatest of all mathematicians, the
Getrman Kar 1 Theodor Hiltheln Heierstrass (1815-18973.
Weierstrass made major contributions to calculus, geometry and
approximation theocry. He also changed for all time the standard
of mathematical rigour and the concept of mathematical proof.
Mittag-lLeffler was one of many students who spread Weierstrass‘s
influence and so helped to form the shape of modern mathematics.

Had there been a Nobel prize for Mathematics, it is just
conceivable that Mittag-teffler might, one year, have won it.
Almost certainly, as the leading Swedish mathematician of his day,
he would have played a part in administering it. 80 it could be
that Nobel, if he were ill-disposed towards Mittég~Leffler, might
have forestalled both these eventualities by deciding to scrap all
ideas of a Nobel Frize for Mathematics.

The alleged quarrel between Nobel and Mittag-Leffler is
supposed to have Dbeen the result of their rivalry for the

affections of another mathematician: Sonya Kovalevsky. This
story 1s ino print : Solomon W. Golomb telis it in the journal
Cryptologia {Jan. 1980} and Fuanction s Dutch counterpart,
Pythagoras ran it in December 1983, and a translation atf

Fythagoras’' article appeared i1n the Winter 1984 issue of the
Belgian #Haths Jeurnes.



Let me tell you how the story goes.

Sanya Kovalevsky (18S0-18%91) was a Russian who escaped that
country by the expedient of contracting a marrage of convenience

and so being allowed to go abroad f£o enter a university. This
device was the only one avaiiable at the time, and women seeking
education had no other recourse but to adopt it. The couple did
ga sbroad and, in large measure, drifted apart as such couples
wara expected to do - she to go to study with Weisrstrass.

Her difficulties as 2 woman were 2Normous, and even

Weierstrass’'s powerful help did not always win the day for her.
Eventually she resumed her married life, retwrned to Russia and

bore a daughter. The couple, however, were in deep financial
trouble, and this phase of Sonya’'s life ended abruptly with the
consequent suicide of her husband in 1883,

She tuwrned, in this crisis, to Weierstrass and he contacted
Mittag-leffler, who offered her a lectureship, later upgraded to a

professorship, in Stockholm. She thus became the warld's second
woman professor of Mathematics {(after Marie Agnesi : see Ffunction
Vol.l10, Part 4). Her contributions to mathematics were very

significant, involving calculus, mechanics and the theory of
Saturn's rings.

She also wrote several novels and was a political radical,

especially in the area of women's rights. Even by today's
standards, let alone those of 100 years ago, she would be classed
as a radical feminist. Her early death was a great loss to the
world.

Now this much is fact - but what of the story of her amorous
liaisons with Nobel and Mittag-lLeffler? Beyond the obvious -

that the three were often in the same city at the same time, and
s0 the men could have fallen out over the woman, there is very
little evidence I have seen to support it. Certainly she was a
colleague of Mittag-Leffler ‘s and was in his debt for getting her
her job, but that’'s not the same thing as having an affaire with
him.

Earlier, indeed, she had been very close to Weierstrass, and
malicious tongues had wagged, but it would seem that the gossip
(which hurt Weierstrass very deeply) was unfounded and that the

relationship was purely platonic. Certainly Mittag-Lefiler,
writing late in his 1ife on the two and their relationship, leads
one to this viaw. W= may perhaps take the same view on  her

alleged atfaire with Mittag~Leffler.
Jerl
As for Nobel, although he never married, there wag a number
of women in his life, and his official biography deals with these
relationships in considerable detail. Nowhere, however, doez it
mantion Sonya Kovalevsky at all!

I+ either Golomb or the anonymous author Gf;xphe Fythagoras
article had offered any evidence for the stmfy, th=Tt might perhaps
be checked, but they don‘t, so I remain sceptical.

Anyhow, for whatever reason, there i= no Nobel Frize in
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Hathamatics. fhis story has an interesting sequel.

John Charles Fields (1B8463-1922) was a Canadian mathematician
who had a close mathematical association with Mittag—-Letfler.
Like Mittag-Leffler, he 15 best remembered today for the
organisational and administrative work he did rather than for Hhis
actual mathematical regearch.

Every fouw vears (apart +rom war—time interruptions) an
International Congress of Mathematicians is held, and that for
1924 took place in Toronto and was organised by Fields. This

congress left & surplus of  funds, and Fields suggested that
“International Medals" might be struck and awarded for excellence
in mathematical research.

The fact of there being no Nobel Frize in Mathematics and of
Fields’ friendship with Mittag-Leffler has led to the speculation
that Fields wanted to compensate for the lack, but, although the
theory 1s an attractive one, again there is no real evidence for
it.

Fields' proposal had still not been implemented by the time
of his death in 1932, but his will left further funds and later
that vear his proposal was accepted. The first medals were
awarded in 19364.

Medals (between two and four of them) have been given at each
ot the congresses since then. The next was not held till 1950,
but they have continued unbroken since then (although - the 1982
congress very nearly didn‘t happen, due to political developments
in Warsaw - it went ahead a year late).

Whatever the history of the matter, mathematicians regard
these medals as being the mathematical equivalent of a Nobel

“Prize. There are, however, some important differences. There 1is

no cash award, as with the Nobel Prizes, and the rule has grown up
that the recipient is to be under forty years ot age. (The Nobel
Frizes have no such restriction.) '

The last congress was held in 1986, and three medals were
awarded. The recipients were Michael K. Freeman, an American,
Simon K. Donaldson, an Englishman, and Gerd Faltings, a German.
Freeman and Donaldson won their medals for work on the topology of
four—dimensional spaces, and Faltings was honoured for his proof
of Mordell ‘s Conjecture. (See Function Vol. 7, Part 5.)

One final irony. Fields, in his will, stipulated that the
medals should not bear "in any way, the name of any country,
institution, or person". They are universally known today as the
“Fields Medals".

. ® ¥ ® K ¥
GOON SHOW

Moriarty: ‘How are you at Mathematics?’

Neddy Seagoon: 1 speak it like a native.’
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TARBTAGLIA AND CARDANOY

John Stillwell, Monash University

Niccolld
Tartaglia

Niccolld Tartaglia was born in Brescia in 1499 or 1500 and

died in Venice in 1557. The name “Tartaglia® {(meaning
"stutterer") was actually a nickname, and his real name is
believed to have been Fontana. Tartaglia's childhood was scartred

by poverty, following the death of his father, a mail courier,
around 13506, and injuries suffered when Brescia was sacked by the

French in 1512, Despite taking refuge. in the cathedrai,
Tartaglia received five serious head wounds, including one to the
mouth which left him with his stutter. His life was saved only
by the devoted nursing of his mother, who literally 1licked his
wounds. Around the age of 14, he went tao a teacher to learn the
alphabet, but ran out of money for his lessons by the letter k.
- This much is in Tartaglia‘'s own sketch of his life. After that,

the story goes, he stole a copybook and taught himselt to read and
write, sometimes using tombstones as slates for want of paper.

By 1534 he had a family and, still short o+ money, he moved
to vVenice. There he gave publaic mathematics lessons in  the
church of San Zanipolo, and published various scientific works.
The famous disclosure of his method for soliving cubic eqguations
occurred on a visit to Cardano’'s house in Milan on 25 March 1539.

+ Extracted from a book on the~ Eistory ot mathematics
being written by John Stiilwell.
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When Caroano pubiished 1t in 1545, Tartaglia angrily accused him
ot dishonesty. Tartagliia claimed that Cardano had solemnly sworn
never to pubiish the solution, and to write 1t down only 16
cipher. Ferrari, who had been an 18-year old servant of Cardano
at the time, came to Cardano’'s defence, declaring that he had been
present and there had been no promise of secrecy. In a series of
2 printed pamphlets, known as the Cartelli (reprinted by Masotti
19471, Ferrari and Tartaglia traded insults and mathematical
challenges; the two finally squared off in a public contest in
the church of Santa Maria del Girardino, Milan, in 1548. It seems
that Ferrari got the better of the eichange, as there was little
subsequent improvement in Tartaglia’'s fortunes. He died alone,
and still impoverished, 9 years later.

Apart from his solution of the cubic, Tartaglia is remembered
for other contributions to science. It was he who discovered
that a projectile should be fired at 45° to achieve maximum range.
His conclusion was based on incorrect theory, however, as is clear
from Tartaglia’'s diagrams of trajectories, e.g. see the picture
below, reproduced from Tartaglia's works.

Tartagliéﬁs Italian translation of the Elements was the first
printed translation of Euclid in.a modern language, and he also
published an Italian translation of some of Archimedes’' works.
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birolamo Cardano often described in English books by the
anglicised name name Jerome Cardan, was born in Favia in 1501 - and
died in Rome in 1574. His father Fazio was a lawyer and
physician who encouraged Birolams = studies, but otherwise seems
to have treated him rather harshly, as did his mother Chiara
Micheri, whom Cardano described as "easily provoked, gquick of
- memory and wit, and a fat, devout little woman". Cardano entered
the university of Favia in 1520 and completed a doctorate of
medicine at Padua in 1524,

He married in 153 and, atter s=struggling until 1539 for
acceptance, became a successful physician in Milan. So
successful , in fact, that his fame spread all over Europe. He

evidently had a remarkable skill in diagnosis, though his
contributions to medical knowledge were slight 1in comparison with
those of his contempraries Andreas Vesalius and Ambroise Fare.
Mathematics was one of his many interests outside his protession.
Cardanoc also secured a niche in the history of cryptography for an
encoding device known as the Cardano grille and in the history of
probability, where he was the first to make calculations, though
not always correctly.

The vioclence and intrigue of Renaissance Italy soured

‘Cardano’s life just as much as Tartaglia’'s, though in a different
way. An uncle died of poisoning, attempts were made to poison
both Cardanc and his father (so  Cardano claimed) and in 1560
Cardano’'s oldest son was beheaded for the crime of poisoning his
wife. Cardano, who believed his san = only fault was to marvy
the girl in the first place, never got over this calamity. He

could no longer bear to live in Milan and moved to BRologna.
There he suffered another blow when his protegé Ferrari died in
1565 -~ poisoned by'his sister, so i1t was said. In 1570 Cardano
was imprisoned by the Inquisition for heresy. After a few months
he recanted, was released, and moved to Rome.

In the year before he died, Cardano wrote The Book of Hy Life
which is not so much autobiography as self-advertisement. It
contains a few scenes from his childhood, and returns again and
again to the tragedy of his oldest son, but most of the booi: is
devoted to boasting. There is a chapter of testimonials from
patients, a chapter on important people who sought his services, a
list of authors who cited his works, a list of his sayings he
considered guntable, and a collecticn of tall stories which would
have done ERaron Von Minchhausen proud. Admittedly, there is also
a (very short) chapter “Things in which I have failed” and
frequent warnings about the vanity ‘of all earthly things,  but
Cardano invariably tramples all such outbreaks of bumility in his
rush to admire other facets of his excellent self.

As for the quarrei with Tartaglia, The Book of Hy Lite ais
almost silent. Among the ‘authors wha have cited him, Cardano
lumps Tartaglia with those for whom he ‘Ycannot understand by what
impertinence they have managed to get themselves into the ranks of
the learned”. Only. at the end of the book does Cardano concede
that "in mathematics [ received a few suggestions, but very few,
from brother Niccole". ’
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YELLOW LIGHTS

Michael A.B. Deakin, Monash University

Many readers of function will be learning or thinking about
learning to drive a car. And among the many skills this entails
is judging what to do if the light vyou- are approaching changes
from green to yellow. This is an important question not only for
the driver but also for the traffic engineer wha designs ‘the
lights in the first place. It is a problem that has attracted
quite a lot of mathematical attention, and here I would 1like to
give some of the analysis involved.

The problem was first addressed in the immediate post-—war
years (late ‘40s! in the U.S. but the first really thorough and
accurate study was by Gazis, Herman and Maradudin, three engineers -
with the General Motors Corporation. This was published in 1960
in the journal Operations Research. Their paper is in the main
a theoretical analysis of the issues involved. It was followed
by an observatiocnal study by two other Beneral Motors researchers,
Olson and Rothery, who, from camera recordings of driver
behaviour, estimated the values of the various parameters used in
the theoretical analysis given by the first group. . This second
study was also published in Operatiens Research in 1961.

In 1962, another theoretical analysis appeared, i1ndependently

af the others. This is a little more accessible, being rather
less technical. It appeared in the American Jourmnal of Physics
and its author was Howard Seifert of Stanford University. These

early studies set the basis for the analysis, and by 1981, Fred
Watts of The College of Charleston, in South Carolina, was  using
the situation for laboratory classwork for his students. (He
described this in The Physics Teacher for that vyear.) These
discussions are summarised also by Jearl Walker in Scientific
American (March 1983) along with a lot more interesting questions
on traffic lights. (One of these is very like Froblem 3.4.1 that
appeared in Furnctiorn in 1979.)

So if you would like to see more on this topic, there is no
shortage of reading material!

You will notice that all the above references are American,
and this is important in one key respect. Look: at Figure 1,
showing the interesection of High 5t and Cross St (let us call
them!.



14

STOPPING CLEARING
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In America, a car travelling east along High St, as shown, must
clear the intersection completely before the light it  is facing

turns red. For, in most such instances, the moment the High St
light turns red, the Cross St light turns green and so cars enter
the intersection travelling North. (Remember Americans drive on

the right as you read this diagram.)

In Australia, matters are different and we 11 get to that,
but let’'s analyse the simpler Gmerican situation first.

Figure 1 gives some of the basic notation. As the car
approaches the intersection, the light turns vyellow when it is x
metres short of entering. The width of the intersection is 1]
metres and the length of the car is L metres. Thus, to

completely clear traffic in Cross St, the car has to travel
w + L(= i) metres.

Consider first the case in which the car is to stop. This
must be done within the distance XNo Suppose the car is
travelling at speed u. First the driver must react to the
signal. This takes about three—quarters of a second, during
which the car continues to travel at speed u. The distance
travelled during this period is called the "thinking distance";

it varies with u {see Table 1) and will be dencted by Di'

When the driver registers the yellow tight, the brakes are
applied and the vehicle is brought to a halt. This takes a
further distance D_ and this distance varies as the square of u.

In fact
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where &,y is the deceleration brought about by the brakes.
Values for U, are also given in Table 1. (Table 1 is a metric
version of a table in Fred Watts  paper.) . (2 is called the

“stopping distance”.

Speed u Thinking Distance P

1 Staopping Distance 02
(kph) e (m) ) (m)
- =0 & <
40 a8 8
S0 10 12
&0 13 16
70 15 23
Table 4. -
# For convenience we list these values as kph, but in theoretical
work we use ms—l. IO kph = 8.33 ms—l, etc.

So, if the car is to stop in the available distance, we must
have

xzD, + D, . (1)

1 2

If Condition (1) cannot be met, then the car must attempt to
drive through the intersection and reach the other side of Cross

St before the light twns red. The yellow light lasts, 1let wus
Say, ¥ seconds, and so, if the speed wu is maintained, it must
be high enough to allow the car to travel «x + W metres in T

seconds, i.e.
u > ——— (2

If u does not satisfy Inequality (i), then the driver must
accelerate to get across in time. The acceleration will commence

at a point x — 01 metres to the left of the intersection.

Thereafter the speed will increase, the acceleration being

—2 -
a,., ms . a., is, to complicate matters, a function of u. (We
are here ignoring a less important complication, that the thinking
distance 01 iz slightly longer in the case of acceleration than

it is for braking - at least, for most drivers, most of the time.)

The time taken to travel 01 m at speed u mshl is leu Sy

so there is now available a time

+ =7 - —
u

seconds in which to complete the crossing. The distance
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travelied in this time 13 known to be

= u(r - =Y 4 12 a., 1 -~ -1ye
o0 < uw

and so we require, if the crossing is to be successful

D, Dy 5
X + W =D S u(T - =7y 4 1/2 a_ (T - —3% . (%
1 u s u

(Inequality (2) is the special case of this cendition +For which

a, = 0.)

2
<

There is a third constraint that also must be satisfied 14

the motorist is to keep within the Iaw. The final speed
D .
attained, which is wu« + a (7 - &1) , must not exceed the speed

limit, V (say). That is

u+a f — ) =V . (4)

The constraints applying to the driver are that Inequality
(4) must hold, together with either (1} ar (3).

One of the problems highlighted by the various authors 1is
that traffic lights sometimes engineered in such a way that
this is not always possibie. the dilemma this creates 13 one
that all the papers referenced eariier discuss at some “"length.
Fred Watts, for example speaks of the absurdity of having "a law
which cannot be obeyea”, while Gazis, Herman and Maradudin speak
of “man—-made systems, man-made laws and human behaviour tnot
beingl always compatible.®

I thought +to test this in HMelbourne and chose the

intersection of High st and Chapel st. For an eastbound car on
High 5t, w ~ 20 m and 7 ~ 3 s. A reasonable vaiue +or L 13
4 m. Suppose the car to be travelling at the speed fimit :

&0 kph, or 1&6.&67 ms—l. 'hen Inegual:ty (4, requires ‘aj = 2 .

We must therefore satisfy either inequality 1) or Inequal:i:ty .
inequality (1) gives (trom labis 1)
x 2 27 ,
while Ineqguality (2} gives (from the ¥1gureé quotad)
x X oEs .

tontinues on page @2
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B8IG NUMBERS
Al asdoir McAndrew

Footscray Institute of Technology

Big numbers have a great fascination, to the mathematician
and non—-mathematician alike. In this article, we shall look at
some particular numbers, and where they occur in mathematics.
But first, let us consider how to construct big numbers.

The simplest and most common way ot getting a big number is
to raise one number to the power of another. For example, we can

iy
write down things like 35 ar IOXLO. In this way we can very

easily obtain numbers too large to have any physical significance
ti¥f we assume that the largest number with ‘any physical

. Lo . . .87 . . : . R
significance is 108 » which gives an approximation to the number
of sub-atomic partircles in the entire known universe). The

iy
number iDiL) has been given the name “googol” -~ see the book

"Mathematics and the Imagination® by Kasner and Newman.

We can get even bigger numbers by allowing not just one
numer snd one exponent, but a chain of exponents, such as
5 2

= o 1010

— the last number, you may rotice, is just the googol again.

When dealing with such chains, the convention i1s that we work from

the top down, rather than from the bottom up. Take the number
L4°

+or instance.

I+ we work from the bottom up, we get the number
(34)5 = (B1)” = 3484784401 .

This :s still small enough to be printed. However, i1f we work

from the top down, we get

LA _ _ivz4

>
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which is a number of 489 digits — already this is too big to make
any sense as a number printed in its glorious entirety.

Now let us look at some particular numbers, and where they
accur.

Skewes' number

This number comes from the realm of numbear theory (seams
fitting!); in particular the distribution of prime numbers. A
prime number, you recall, is a number with no integer divisors
other than itself and 13 for instance 5, 17 and 53 are prime

numbers. The number of prime numbers less than a given integer
x is denoted by m(x). So n(ioy = 4 , as the only prime
numbers less than 10 are 2,3,5 and 7 -~ the number 1 is not

considered to be prime.

.One of the great results of nineteenth century - mathematics
was a proof that nix) was approximately
x N
————= dt;
o log t

this integral is known as l1li(x). For many years after this it was
thought that n(x) was always strictly less than 1i{x), but in 1913
a proof by a mathematician named Littlewood demonstrated that for

some large number x, n(x) was greater than 1li(x). However ,
nobody as yet knew how big this x would have to be. This is
where the mathematician Skewes comes into the story. His result
concerned the finding of an upper bound for x3; that is a number
X for which n(x) is greater than li{x) for some x less than
X. and now, folks, here is this number:
.1034
x = 10'° .

in describing this wondrous number, the mathematician G.H.Hardy
said proudly "I think that this is the largest . number which has
ever served any useful purpose in mathematics. " He goes on tao
give some idea of the sizre of Skewes ' number. '

“The number of protons in the universe is about 1080, and the
number of possible games of chess is much larger, perhaps

(in any case a secaond order exponential). I the universe were
the chessboard, the protons the chessmen, and any interchange in
the position of two protons a move, then the number of possible
games would be something like the Skewes number."

In any case, this number certainly earns for itself the
criterion big.
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Graham' s number

Before describing this magnificent number, we shall first

describe the notation needed. This so-called arrow notation was
developed by Donald Knuth in an article "Mathematics and Computer
Science: Coping with Finiteness" in Science in 19754. It is an

extension of the idea of exponentiation, and works as follows:

The expression xT™n means xn. That is, one arrow means we
multiply the first number by itself as many times as the second
number. . When there are two arrows, +for example 3Tt3, we
"arrow” the first number with itself as many times as the second
number . Thus, 3™4 = IT(IT((3FT3)). In standard notation:

~33
3tta = 37

This innocent looking number equals

3
327 = 37:625,597,484,987

(2]

which is a number of over three thousand billion <{(one billion =

109) digits when written out fully. Then three arrows  work
similarly: ZTT4 = 3T (ITT(ITT3)) ). To get an idea af the
extraordinary size of this number, let’'s try to evaluate it.

To start with, 3T™3 = 3T (3T3) = IT3° = 3127 = 327
7,625,397 ,484 ,987. Futting this number into the expression for
ITMT4 we get ITNITTILZ...987)). Then the expression
ITT7462...987 is equal  to  3T(IT(IT...3)...)), where there are
762...987 Z's altogether. That is, written in exponential form,
we would get a tower of exponents 7,625,597,484,987 levels high.
But this number, huge though it is, is just I™TH(IT+I)). Let s
give this number the symbol 4. So the number we really want is
Ity This, of course, is merely an exponential tower of 3I's — 9
levels high! This npumber is certainly so huge as to be

completely indescribable in anything but abstract mathematical
terms.

Now we shall describe the problem which led to Graham’s
number. This problem is in an area of mathematics called graph
theory. A graph, in this context, is nothing to do with axes and
curves, but just a collection of dots with lines joining some or
all of them. Here are some examples of graphs:

fig1 fig 2. | fig 3
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A graph with every one of its points connected by a line to

every other point is called a compliete graph, and 1s denocted Kn’
where n is the number of points in the graph. So an  the
diagram above, figures 2 and I are the graphs K4 and KS
respectively. ‘

Now imagine an ordinary cube — or rather, the skeleton of a
cube - in space. We can consider it asua graph on eight points.
I+ we join all the pnints diagonally, what we end up with is the
complete graph on eight points with a cubic structure. This
particular graph is made up of a number of copies of K4 - there
are six K4‘5 as the faces, and four wmore going through the
middle of the cube. Now here is a puzzle Ffor vyou: Can vyou
colour every line of this cube graph either red or blue in such a
way that none of these ten K4’s is all of the one colour? (It
can be done.) Such a one-coloured K4 is said to be

monochromatic.

The same sorts of graphs exist in higher dimensions,.and for
dimensions four and five it has been shown that it is possible to
colour all the lines of these hypercubic complete graphs with red

and blue in such a way that there is no monochromatic Kq. Here

now is the big question: For what number n is there an
rn—dimensional graph (of the hypercubic sort) such that no matter
how yvou colour the lines red and blue there will always be at

least one monochromatic K4? The exact answer is as yet unknown,
but a mathematician named Ronald Graham has found an upper bound
for n. The following diagram explains how to get this upper
bound.
T
S et ST
L R Mt 5

64 lavers
S e O I 3
R e SRR e
The number we start with is ZITTTT3 - you can show that this

is equal to 3 TTT4, where 9 is the number we dealt with in
describing the arrow notation (and you thought 3ITTT4 was- big!).
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This gives the number of arrows in the next row, which nunber
gives the number of arrows in the neut row,; and so on until we
have a column of numbers &4 rows deep. Yhe last number in this
sequence is GBraham’'s number.

Now that 15 a big number, a very big number.

However, experts in the field claim that the answer to the
hypercube problem is in fact - wait for it — sin!

Some less serious numbers

The two numbers we have considered are serious in the sense

that they occur in formal proofs. However, there are some nice
numbers which have no known mathematical usefulnessy they are
just big. Here is vet another way ot constructing big numbers.

A number inside a triangle means that number raised to the
power of itself. So

= 3(3

Then a number inside a square is that number i1nside that many

triangles. So
2] = =/4\=256

Continuing in this way we say that a number inside a pentagon
is that number inside that many sguares. So 2 in a pentagon is 2
in two sguares, which 1s 256 in one square, which is 256 in 256

e
56256

triangles, which is 2 in 2535 triangles, and so on. This
number has the name mega. The moser (named after Leo Moser, a
Canadian mathematician) is defined to be 2 inside a megagon.

But this is pure mathematical whimsy.

It may seem, at this point, that we’'ve been cheating in not
actually writing down the decimal expansions of any of the numbers

we have been cdnsideringw Space, of course, is a major problem
here. Far example, to print Skewes® number would reguire (in
terms of book size) about as many copies of the Encyclopaedia
Brittanica as there are possible games of chess. This means that
there is no way of printing this number and fitting it inside the
kFnown universe. However, there are some examples of handsome big
numbers (including one of 5,421 digits) in the "Mathematical

Games’” column of Scientific American, August, 19&67).
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A final note

All these numbers are finite integers, and in the words of

Donald Knuth: "Almaost all numbers are larger than this.” I like
to think of these extraordinary numbers as helping us get an
understanding of the set of integers. Most of us (including me)

are used only to dealing with small finite numbers; the rest we
dump conveniently into the "infinite set of integers”, without
realizing what "infinite" really means. When we see that this
set contains numbers of the unimaginable magnitude of Graham's
number or the moser, we begin to see that “"infinite" is literally
‘beyond our comprehension. Mind you, there are such very good
mathematical tools for dealing with the intinite that the literatl
grasp of the concept of infinite is not an issue.

¥ B OE # #
Continued from page 16.

So there is a (small, 3m long) region for which it 1is
impossible to meet all the constraints. A car 28 m (say) from
the corner of Chapel St cannot pull up in time, nor can it clear
the intersection (unless it exceeds the speed limit) before the
light turns red.

Were this intersection in the US, it would be classed as
poarly engineered, although it is not as bad as some guoted in the
references. Here in Australia, however, we organise our lights
differently. After the High St 1light turns red, there is a
further two second delay before those in Chapel St turn green and
thus it is safe to cross even if the last part of the crossing is
done in the red.

Jearl Walker recalls an experience of his own in which *“I
found myself facing a yellow light with neither the space to stop
nor the acceleration to race through before the red light came on.
I was saved from the possibility of a collision only by a delay in
the light system : the green light for the perpendicular traffic
came on about a second or so after the yvellow light ended.”

Because such delays are standard in Australia, we have fewer
poorly engineered lights than does the U.S. Nevertheless,
perhaps a little advice to younger drivers may not go astray here.
I routinely change down a gear when approaching a light. This
has the effect of increasing both 2, (and so decreasing D2) and
a_, (and so making Inequality (3) easier tao satisfy). Howard
Seifert also remarks: "Since most yellow lights are on for a more
or less standard time interval, and most street widths lie within
a limited spread, it becomes possible to develop an intuition
concerning the possibility of a successful run—through. Most
mature and stili-surviving drivers have developed such intuition.”
To which I would add, "Take things slowly till you do®.
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INVERSE FUNCTIONS

Graham Baird, Melbourne Colliege of Advanced Educotion

Throughout this note ¥ will denote a function which has an
inverse f_i . Many calculus texts point out that the graphs of
¥ and f~1 are related by reflexion through the line y = x .
If students are encouraged to think in this way the essential

geometical relationships‘between ¥ and f ! are lost.

It is more instructive to introduce a new set of axes XY so
that the X-axis is the y-axis and the Y-axis is the ~y-axis.

The equation of the curve y = ¥{x) (with respect to the Xy axes)
has the equation ¥ = f*I(X) (with respect to the XY axes). A
typical illustration of this set-up is given in Fig.1.
yXx
A y =19
E Y=f1X)
1
]
]
i
1
ci
B |-
i
Al
1
]
]
1
i Y
[P [N S, o e o~
i a b ¢ X
Fig 1
It is now evident that
N N
(i) av =1/ 97 and, if¥ the function has the
4% lx = I - dx 1x = &
form given in Fig.i,
¢ -1 =
(ii) _[A.r (X}dy = Ce - Ha - fa Fix)ax

Fact (11} is5 not as well—-known as it should be and can be used to
compute the integrals o+ many i1nverse functions. For example, 1+
Y = sinx we have (see Fig.Z2)
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Fig 2
A -1 a
IO sim XdX = Aa - JD siny dx
= Aa + cosa — 1
. -1 2 :
= 4 sin A+ ¥Y(i - A7} - 1
It +ollows that the indefinite integral of Y = sin—lx is

<2

X sin Tx + YL - X5 .

® .HF X K K

CORRECTION to Fumction, Vol.10, Ft.S, p.7.

The table in the articile Chinese gambling games in NSW 1in

1891, by Frank Hansford-Miller, has an errar in it. The entry
t.3.4s.8d., in the Prize #Money column, should be replaced by
+Bi.65.80. ihe reference in the text on p.8 is correct. LThe

mistake was maae by the editors.d

L
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THE ANALYTICAL ENGINE OF CHARLES BABBAGE

Feter Kioceden, Murdoch Unfversity

Mathematical tables used tc be & common sight in secondary

school mathematics classes. With their long, soporific lists of
numbers, the values of trigonometric and logarithmic functions,
they are rarely considered awe—-inspiring. Yet it was the

calculation of such numbers, with polynomiais of high degree being
used to approximate the given functions, that preoccupied many
mathematicians during the sixteenth and seventeenth centuries,

some of whom prided themselves on their arithmetic prowess. You
may weill ask: why did they bother? The answer is simple:
these numbers were crucial for maritime ° navigation, and

consequently for trade, colonization and the development of world
enpires.

In these days of electronic computers, this all seems rather
mundane. For example, suppose you want to calculate a list of
values for the polynomial

! 2 4 1 &
TLX) =1 s X+ =3 X - %55 X
tor systematically increasing values of X 4 say 0, 0.0001,
0.0002, 0.0003, ... etc. (This polynomial approximates cos X
tor small values of X). ¥You could do this with a very simple
program in which you define (X} as above, insert a value of X
and then print out the corresponding value of f(X). Then, Just

by adding & DD LUDF to vour program, you could print out an
entire table ot ¥ (X) values corresponding to the systematically
increasing X wvalues. Pretty easy! in fact modern electronic
computers and calculators have such programmes built into them.
2ut you shouid not forget that electronic computers have been in
common usage. for only about 25 yvears, and in the class room for
less than 11U years.

Mechanical devices to help with arithmetic caiculations have
been in use for over a thousand years, For example +the Chinese
abacus with its sliding beads to help with additions, carrying
digits and so on. In the Western worid, calculating machines
with geared wheels were developed, firstly by Fascai in France to
do additions and subtractions, and then some time later by Leibniz
1n Germany to handle the conceptualiy harder multipiications and
divisions. Refinements of these machines were made over the next
two centuries, but the underiying principies remained the same.
They saved a person doing repetiticus calculations & lot of tedium
{and errors), but stiil required physical and mechanical movements
tor each step of the calculation, as well as decisions by the

pErson. You may be surprised to learn that most of the
calculations needed far the cevelopment of the atomic bomb in
america  during World War II were done on such m2chanicai

calzulating machines.
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Actually, a calculating machine that could be programmed to
do repetiticus calculations and to make decisions without human
intervention had been conceived and constructed more than one
hundred years before World War 11 This was the “Analytical
Engine® of the English mathematician Charles Babbage (1722-1i871).
He got the idea from the Jacquard looms which had been developed

in France to weave patterns on cloth and on tapestries. - These
had a long paper loop with holes punched in patterns across 1t in
raws. The positions of the holes 1n & given row activated

mechanical devices in the loom, which moved warp threads forwards
or backwards as required for a single pass ot the shuttle puiling
the woof thread through the opening of the warp threads. The
ioop then rotated to the next row, the loom rearranged the warp
threads and the shuttle made its next pass across the loom.
Eventually the loop came back to its starting row and the pattern
being woven repeated itself.

‘It took Charles Babbage several decades to adapt this idea to
the mechanical calculating machines then available. EBesides
having to invent new mechanical devices to do things which are
easy for a human but difficult to get a machine to do (for
example, storing a number to be reincorporated in the calculation
at a later stage) Babbage also had to develop new methods for
improving the accuracy in cutting and turning metal on lathes.
This was because inaccuracies in the sizes of the gear wheels
could lead to errors in the calculations, which would otherwiss be
noticed by a person doing the calculations step by step on & more
shoddily built machine. The British Government of his day, in a
surprisingly enlightened display of support +for the sciences

 (perhaps they knew about trade deficits too?) generocusly supported

Babbage to the tune of £20,000, which was an enormous sum in those
days. This paid for his equipment and for his technicians. A
machine, called his "Analytical Engine®, was eventually built and
could be programmed to carry out calculations as had been
intended. It is now on display in the British Museum in - London,
but was never really used except +or demonstrations. Ferhaps the
concept was too far ahead of its time. The concept was haowever
not forgotten, in fact came back with a vengeance in the 1740°'s
with the development of programmable electric computers. The
British taxpayers reaped their reward much earlier, as the high
precision metalworking techriques machines and skilled metal
workers, that came from Babbage's workshop gave Britain a decisive
lead in the early days of the Industrial Revolution.
Technological spin—off?

While small compensation for the misery suffered by millions,
the Second World War was a catalyst for some spectacular advances
in science and technology. The design of aircraft, the
development of +the atom bomb and of numerical methods for
long-term weather forecasts all required voluminous numerical

calculations, far beyvond the capacity of human operated
calculating machines. 1t was during this that prngrammed
electrical computers were constructed and used. The first was
mads by Konrad Zus= an aircraft designer with the Heinkel Aircraft
Factory in Warneminde near Rostock. He used 1t Ffor his own

aerodynamical calculations, but otherwise it received little
interest: the then government of his country is not remembered as
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being particularly enlightened!’ After the war, Zuse's ideas were
taken over by 1BM, then a calculating and business machine
manufacturer. Meanwhiie in America, the famous mathematician
(and a founding father of computer science) John von Neumann led a
team which also made an eslectrical computer. This was like
Zuse’'s in that it involved rooms full of valves, and by today’'s
standards was primitive. During my recent visit to America, I
met a mathematician who did numerical weather - forecast
caiculations for von Neumann on such a computer. He said he
always could tell where the computer was in the program by seeing
which valves were.glowing. He also said that a program “crash”
was literally that, and so was a "bug", a moth in the works'

* K O® OE B
PROBLEMS

Solution to Problem 10.5.1, by David Shaw, Geelong West

; R o . . n . e .
lechnical School. The probiem was to show that e e 4 without
computation.
2 3
X X * X
el = 1 o+ x o+ o7+ + L.l (x 0) , sa e > 1 + x .
P
fad .
23 e , so — i, i.e. b i >0 .
14
e 1 ™
Hence e Fl 4+ = -1
e
T
- - 1
e s
i.e. e o=,
e
L4
e
i.e. e o 14
. e
whence e s -

HON X N R

Two correspondents, John Barton and David Shaw, pointed out
that Froblem 10.5.2 probably had a slip in it. As presented, it
has the soluticn that ~ + vy has maximum value 50, but two of the
conditions on ¥ and v are then superflucus. Try instead the
following problem, the cne probably intended.

PROBLEM 11.1.1.

I¥ x ; o, Y O  and
-2x + vy < 590
Ex o+ 2y 4 200
X o+ oy 2 S
and ks i 90 y
what is the maximum value of x + y 7
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DISTRIBUTION OF PRIME NUMBERS

Arnut f Riedl, Year 12, Stawell High School

Recently I examined the distribution of prime numbers ocn

my
computer. First 1 used a method called the Sieve af Eratosthenes
to find the primes greater than 2 and less than a number N.

This works by systematically excluding multiples of

previously
discovered primes.

I implemented this as a BASIC program SIEVE.BAS which 1

give
here.

10 cLs

20 INPUT "Prime numbers under (n)?";N:DIM A(N+2):Z=3:S=INT(N/2)+1

30 FOR P=1 TO S:A(P)=Z:2=Z+2:NEXT P:PRINT "2 ";:FOR P=1 TO INT(SQR(S))+1
40 IF A(P)=0 THEN 100

50 PRINT A(P):;" ":

60 FOR Z=pP+1 TO S

70 IF A(Z)=0 THEN 90

80 IF A(Z)/A(P)=INT(A(Z)/A(P)) THEN A(Z)=0
90 NEXT 2

100 NEXT P

105 cLs

110 OPEN "o",#1,"primes"”

120 FOR P=1 TO §

130 IF A(P)=0 THEN 160

140 PRINT A(P);" “;

150 PRINTHI1,A(P)

160 NEXT P

170 CLOSE#1

Next .1 used a program PRIMETABSE.BAS to create a file of
primes. Here is my program.

10 ON ERROR GOTO 180

20 INPUT N

‘30 DIM A(N)

40 CLS .

50 OPEN "i",f1,"primes"

60 FOR P=1 TO N

70 INPUT K1,A(P)

80 NEXT

90 CLOSE#1

100 REM _**k*******k******tt*t****k****
105 x=1:Y=1

110 FOR P=l1 TO N )

120 IF A(P)=0 THEN END

130 LOCATE X.,Y

140 IF Y=73 THEN Y=1:X=Xt+2 ELSE Y=Y+6
145 Ir X>=24 THEN FOR T=1 TO 1000:NEXT :CLS:X=1
150 PRINT A(P)

160 NEXT P

170 END

180 RESUME NEXT
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1 used this file as input tor a new program PRIMEGRA.EAS.
inis did a number of things. First it counts the number of
primes greater than 2 and less than A. This number P isg
graphed and so is an estimate by the mathematician Legendre.
Legenare s formula is

PiM) o

in N -
where In stands for the natural log.

Here is the result. Legendre’s +Formula gives a slight
overestimate and a smoother curve but it is very accurate.

Aﬂ Plot of the Distribution of the Prime Numbers
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1 5 DIM A(1600)

10
20

CLS

ON ERROR GOTO 1010

CLS

OPEN "I",#1,"PRIMES"

FOR P=1 TO 1600
INPUT #1,A(P)

NEXT P ’

ON ERROR STOP

SCREEN 2

DRAW "BM60, 0"

DRAW "M+0,159"
Q=INT (16%1.8) :W=Q
FOR T=19 TO 3 STEP -2

15 130 LOCATE T, 3:PRINT W;

17 150

W=W+Q
NEXT T

18 160 DRAW "M+600,0"

19 170
20 180

DRAW "BM60,158"
FOR T=60 TO 600 STEP 27

21 190 PSET STEP (32,0)

22 200

NEXT T

23 210 LOCATE 2,7:PRINT "Y"
24 220 LOCATE 21,76:PRINT "X"

25 230 LOCATE 21,7:PRINT "O"

26 240 U=1

27 250 FOR T=11 TO 71 STEP 4

28 260 LOCATE 21, T:PRINT U:U=U+1:NEXT T
29 270 LOCATE 23,39:PRINT "N * 100"

30 280 LOCATE 3,12:PRINT "NO. OF PRIMES"

31 290
32 300
33 310
34 320
35 330
36 340
37 350
38 360
39 370
40 380
41 390
42 400
43 410
44 450
45 500

LOCATE 5,14:PRINT "BELOW N."
DRAW "BM63,160"

FOR L=160 TO 0 STEP -9
PSET STEP (0,-16)

NEXT L

DRAW "BM60,159"

FOR A=1 TO 580
L=A/32*100
Y=~L/(LOG(L)-1.08366)
DRAW "BM60,159"

PSET STEP (A,Y/1.8)
NEXT A

REM ‘k*k******************************}:***********

N=1
FOR A=16/6 TO 1600 STEP 16/6

46 505 L=A/32*100

47 510
48 600
49 610

IF A(N+1)<L THEN N=N+1:GOTO 510
Y=N
DRAW "BM60,159"

50 620 PSET STEP (A,~-Y/1.8)
51 630 NEXT A

52 1000 END

53 1010 RESUME NEXT

A(N+1)<L THEN N=N+
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LETITERS TO THE EDITOR

i would like to comment on G.A.Watterson's article Jard
Shuffling in the October 1984 1ssue. in particuliar, i1 refer to
the conciuding section on the ‘perfect’ ritfle shuffle.

With an even number o+ cards, the +irst and last cards retain
their positions in the pack in the course of the shuffies. With
an odd number ot cards (divided so that there is one more card in
one division than in the other!, only the first card retains 1ts

position. The computer program 15 easiiy modified to include the
shutfiing of an odd pack and to print out the order of the cards
atter each shutfle. I+ we allocate position 1 to card 2, it is

seen that in successive shuffles it takes up positions 2, 4, 8,
.. untal the power of & exceeds the number of cards in-the pack.
the position ot card I atter » shutfles is given by 2" (tmod N
1+ N denotes an odd number of cards in the pack and 2 (mod N-1)
1+ N denotes an even number.

The number (x) of shuffles required to return the pack to its
original order i1s the least positive solution of the congruences

1 {mod N) i+ N is odd

or 2 =1 (mod & — 1) i¥ N is even .

For example, for modulus 1Y the residues +for
may be set out as +ollows: -

Loz

Index I 4 4

[

& 7 8 ¥ 10 11 12 132 14 15 16 17 18

Residue 24 8 16 13 7 14 9 18 17 15 1t 3 e 12 9 10 1
The index corresponds to the number of the shuffle and the

residue corresponds to the position of card 2 which can be seen to

return to its original position aftter i8 shutfies.

A =imilar argument may be applied to the position of any card

in the pack. In generai, i+ < 1s the number of the card, then
its position aftter x shufiles is given by (o - 125 (mod N it
N is odd or mod N -~ 1 if N 1s even).

A pragram {for generating residues of EX (mod N or N — 1)
and +or counting the number of shuffles is shown below. It wili

produce the desired result more quickly than the program in the
article.

it follows from the above that a pack of Si1 cards wiil
perform in the same way as a normal pack of SZ in shuffling
back to original order atter 8 ritties. '
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INFLIT "NUMBER OF CARDS" ;N

TOEDY THEN Na=h—1

CIF BEN O THEM
70 PRINT STRE$(S
80 IF S=1 THEN 1¢
2 B0TO S0
100 PRINT
110 PRINT “NUMEBER
120 END
FRLIN .
NUMBER: 0OF CARL
24 B 16 32 13
NUMBER: OF SHUFFI.

SHUFFLES "o

David Shaw,
Geelong West Technical School.

#* # B #

Since the time of its beginnings in Egypt and Mesopotamia
some 5,000 ysars ago, progress in mathematical understanding has
been a key ingredient of progrese in science, commerce, and the
arts. We have made astounding strides since from the thecorems of
Fythagoras to the set theory of Georg Cantor. In the era of the
computer, more than ever before, mathematical knowledge and
reasoning are essential to owr increasingly techriological world.

The application of mathematics is indispensable in  such
diverse fields as medicine, computer sciences, space exploration,
the skilled trades, business, defense; and government. To help
encourage the study and utilization of mathematics, it ig
appropriate that all Americans be reminded af the importance of
this basic branch of science to our daily lives.

Ronald Reagan

* # ¥ & F
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