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THE FRONT COVER

Ovals are defined as egg-shaped curves - indeed the word
derives from the Latin ovum, meaning egg. The best known such
.curve is the ellipse, which we encounter as the shape of a circle
seen in obligque perspective. This is one special case and
indeed the circle is a very special case.

The mathematical properties that an oval shape might adopt
have never been completely agreed by mathematicians, who tend to
regard the word as rather imprecise (like "average", which you
"will have been warned about at school). Certainly an oval is to
be a closed curve, that is to say we should be able to trace
around it from any point on it and arrive back where we started.
Frobably most people would also insist that it bhave a smooth
boundary without corners or sharp points and perhaps that it be
convex — i.e. "bulge outward" everywhere.

In practice, it is convenient to forget this last
requirement at times : there are curves, known as ovals, that
disaobey it.

ttany ovals are expressed by equations in bipolar
coordinates. Take two points, 01, O, a distance 2z units
apart. These will be our two origins. Now consider a point
P. This will be distant. ry from 01 and r., from O_. See
Figure 1. These are called the bipolar coeordinates of F.
Note that P always has the same bipolar coordinates as another
point A° lying on the other side of the line joining 01 and

Q)

e
-~

The ellipse has a very simple equation in bipolar
coordinates. It is

rytra = 2a. (1)

Refer to Figure 1.  If & string of length Za were fixed by its
ends (e.g. pinned down) at 01, 0., and stretched out by a pencil
at £, the pencil could be swung round and would trace out an
ellipse. This is, in fact, one of the standard ways to draw an
ellipse. You may already know it.

The ratio =/a iz called the eccentricity and defines the
shape of the ellipse. Clearly « % a, as otherwise the string
would. not reach +from 01 to G, and also c/a @ 0. Thus

Q2 o/a = 1.
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When the eccentricity is zero, we have a circle of radius

asg and . as c/a increases, the corresponding ellipses become
more flattened, as well as becoming shorter. In the other
extreme case, </a = 1, the ellipse is flattened into the line

segment 010?.

A generalisation of Equation (1) is

mr1 + nr., = 2a, (2)
where a,n are constants. This equation produces many curves,
known collectively as the Ovals of Descartes. All are symmetric
about the line Glaﬂ. Indeed any curve whose equation is given
<

in bipolar coordinates must possess this property because of the
symmetry between P,P’ already noted.

Qur curves, computed by Geoff EBryan of Monash University,
give m = 3, n = 2, a = 10, and < going from 0.5 to 5 in steps of
0.5. The corresponding curves ‘for n» = -2 are shown on the back

cover .




CHINESE GAMBLING GAMES
IN NSW IN 1891
Frank Hansford-Miller,

Murdoch University

1. Introduction

The Census of 1891 showed that the Chinese population of New
South Wales in Australia was 14,156, This total was sub-divided
into Chinese of Full Elood or of Mixed Blood, and into Male and
Female. There were 13,289 Chinese of Full Blood, of whom as
many as 13,133 were Males (98.82%) with only 156 Females (1.17%4).
The Chinese of Mixed Blood were of a much smaller group and were
almost equally divided into 422 Males (48.467%) and 445 Females
(S1.33%) in a total af 84&7 persons. Taking the Chinese of Full
and Mixed Elood together, the grand total becomes 14,154 persons,
with 12,955 Male (95.75%Z) and 401 Female (4.23%) (Census, 1891).

In such a situation Chinese males resorted in large numbers
to gambling, so much so that a Royal Commission was set up in
Sydney on "Alleged Chinese Gambling and Immorality and Charges of
Eribery against the Folice Force", and this Royal Commission
published its Report in 18%91. The Chinese at this time were not
confined ta Sydney although the report reveals that the Chinese
population in Sydney and suburbs was some 3I500. Of these,
however, no less than 700 were said to be practically subsisting
on the proceeds of gambling houses, which were principally
centred in George Street North, .Goulburn Street and its
neighbourhood, and at Alexandria (Report, 1891-92).

The situation was -similar in Victoria, as shown by the
"Minutes of Evidence of the BSelect Committee of the Legislative
Couwncil on Chinese Immigration” in ‘the Report of 1854-1857
(Minutes, 183546-57), and the "Report on the Condition of the
Chinese Fopulations in Victoria" by the Rev. W. Young of 18&8
(Young, 18&83). Many of the Chinese market gardeners and cabinet
makers on their Sundays off went along &t this time to the
gambling dens of Little Bourke Street in Melbourne, just as they
did to Campbell Street in Sydney. The Minutes of Evidence also
show that gambling was rife among the Chinese immigrants on the

Victorian Goldfields.

Z. Fan—tan
A veaery 'Eopdlar Chinese gambling game of this period was
Fan-tan. The name is derived +rom the Chinese "fan t an',

meaning "repeated divisions", which is an apt description of the
game (0.E.D., 1933). Writing in 1878 in her "Voyage of the

TThis article is reprinted, with permission, from the Newsletter
of the Statistical foclety of Australia, No.3I5 (IZ1/3/7°'86). We
thank Dr Hanstord-tiller and the Society for their permission to
reproduce this material in Function.



Sunbeam", Lady Brassey, traveller, refers to “"natives playing at
fan—-tan" (Brassey, 1878) and among the early Chinese goldfield
workers in Australia the only known gambling game was in fact
Fan—-tan (Repaort, 1891-02).

Fan—-tan remained popular in New South nges in 1891 and is
described in the Report of the Royal Commission, as follows:

"Fan-tan is played on & table with'the aid of square sheet

of metal, a cup, and a few dozen brass coins. The sides of the
square are numbered 1, 2, I, 4, and the players select the
particular side upon which they will place their stakes. The

banker then takes a handful of counters and throws them in a heap
on the table, covering a portion of them with the cup, and after
sweeping the remainder away, lifts the cover and counts the coins
that. were beneath it in sets of four, and the player whose money
lies on the side of the square corresponding to the number of
coinsg left after the last fouwr have been subtracted trebles his
stakes.," ’

I only four counters are left on the sheet, then these are
not gathered up into the cup, but are left to indicate that side
4 has won.

Qwners of gambling housez are not usually in the game for
amusement so it is reasonable to assume that, contrary to
to-day’'s racing practice, the punter’'s original stake was not
returned in addition to the winning odds of 3 to 1. Without
this assumption the banker would be working on a nil profit
basis.

Fan~tan is thus seen to give the gambler & probability of
174 of winning each time he plays, and when he wins he will

receive three units of his stakes. Theoretically, therefore, on .
a long series of games the gambler will receive back only 73% of
his stakes. On the other hand the gambling house banker will be

getting the very comfortable retuwn of 254 on all stake money.
~

-

T Fak—-ah-pu

The other highly popular activity of the Chinese in their
gambling houses in New South Wales in 18%1, according to the
Royal Commission Report, was Fak-ah-pu (Report, 18%1-92). This
is the spelling of the Report but other versions are pakapoo,
pakapu, pak—a-peu and paka pu, all deriving from the Chinese.
This is & gambling game resembling lottery, with entries made on
sheets of paper which to the uninitiated are sdid to be

indecipherable. - This incomprehensibility has produced the
Australian slang phrase “like a pakapoo ticket", with the Oxford
Dictionary supplement definition of "untidy, digarder":

(Burchfield, 1982).

To develop this Australian phrase further, "Fackapoo ticket"
appears in "The Macquarie Dictionary of Australian Colloquialisms
- Aussie Talk" as & noun, with the meaning of Y“something that
looks confusing or incomprehensible”;, as in the usage “"marked
like a pakapoo tickeit" (Delbridge, 1984) ., The Fartridge
"Dictionary of Slang” relates the phrase not just to Australia



but especially to Sydney (Fartridge, 1970). It would be false,
however, to consider the game itself localised to Sydney and New
South Wales. The Chinese toak it with them wherever they went.
The "Daily Mail" of Fleet Street in England reported in 1923:

"Five Chinese pleaded guilty at Liverpool Assizes to éharges of
running a gaming house ... For the defence it was argued that
Fak—a—-peu (or Fuck—a-pu) was a game of skill." (Daily Mail,
1923) .

Another case of the game being played in England was
reported.in the London "Daily Express" in 1927:

"A Japanese ship’'s captain ... appealed against a conviction ...
for employing two other Japanese to sell chances in an unlawful
lottery known as ‘Fuka pu’. It is a favourite game with the
Japanese and Chinese living in Limehouse (in the East End of
Londan),  explained Mr Horace Fenton." (Daily Express, 1927).

So we see that it was also popular with the Japanese as well
as the Chinese. New Zealand also had its Pak—-ah-pu gambling
areas, as reported by the "New Zealand Listener" in 1960:

"Some of the last of the old Chinese dwellings of the
opium—smoking and pakapoo-playing generation are being pulled
down in Haining Street in Wellington." (New Zealand Listener,
1960) .

The Royal Commission Report describes how the game was
playad in 18%1 in New South Wales as follows:

"Fak—ah-pu is a species of lottery. For Sixpence the gambler is
entitled to draw a mark through ten out of eighty Chinese
characters printed on a ticket, and the game is determined by the
number of characters thus obliterated corresponding with mottoes
subsequently drawn by the banker from a bowl containing twenty
characters selected haphazardly from a toctal of eighty similar to
those on the ticket. If all the tickets were effective, when
‘the bank is drawn the odds would be eight to one against any of
the mottoes marked by the client corresponding with any of those

drawn by the bank. But as a matter of fact the laws of the game
demand a correspondence in five mottoes to entitle the purchaser
to the smallest prize : ls.2d. The prize for six successful
marks is 10s.0d.3 for seven &£4.%s.4d.; for eight &£2%.4s.8d.3
ftor nine £41.13Zs.4d.: and for ten 4£83.é&s.8d." (Report,
1871-92) .

To examine Fak—ah-pu statistically we need only consider the
basic population of the eighty Chinese characters. These can be
divided into those with an attribute, namely those that have been
marked by the gambler on his ticket, and those without,. namely
those not so marked. Numerically, with the gambler entitled to
mark 10 such characters +or his stake of sixpence, this means
that 10 characters have the attribute, and 70 have not.

The game thus becomes a problem in sampling without
replacenant, and the hypergecmetric distribution applies. For
the Fak—-ah-pu gam= as played in 18%1 theé probability of a score

of x is



10 - 70
( X :) 2(:)—‘,\'3

plx) = ——=mmoe— e X = 5,6,7:8,9,10.

The probabilities aof success, p, for the winning scores of 5 to
10 correct mottoes are shown in the second column of the Table.
They range from 0.0514276 far 5 correct marks on the ticket to

the very low probability of 1.12212 x 10“7 for 10 correct marks.
4. Mathematical Euxpectation in Fak-ah—pu

The Chinese who frequented the New South Wales gambling
salons at this time were addicted gamblers. The average gambler
at Fak—ah-pu would obviously not buy just a single ticket for
siupence, but- would settle in Yor a session of play in which his

pwrchases would probably run into hundreds. The Table shows the
expected winnings of the gambler and, by subtraction, the
resul tant expected gain to the banker. The expectations, using
the hyper—geometric probabilities, have been displayed for a
single bet of 6d. and for a maore realistic stake of £100. For
his £100 stake, the gambler can, in the long run, expect to win
back oanly &£75.5075. The banker's long run gain is thus

24.4925%.

TAE!LET
Number of Hypergeometric Frize Money Expected retuwn to
Successful Frobability per 6d. Gambler
Markings Ticket (ar (b)

Fer Single Fer £100

bet of éd. Stake
(=4000
tickets@ o6d.)

5 0.0514277 1s.2d. 0.72d. £11.9998

éa 0.01147%4 10s.0d. 1.38d. £22.9588

7 t.61114x10° " £4. 3s.4d. 1.61d. £26.852Z

=4 1.35419%10~4 £2E. b6s.8d. 0.76d. &12.6391

G &.12065%10—6 £41.13s.4d. Q. 06d. £1.0201

10 1.12212x10° 7 £%. &s.8d.  0.002d, £0.0374

Gambler 's expected winnings 4.,532d. £73.3075

Banker "s expected gain 1.468d. £24.4928
TThe money predates decimal currency. In the old system, 1%
pennies (d) made one shilling(s), and 20 shillings made one pound
(£). Thus £27%.6s.8d. is 2T pounds, & shillings and & pence, or
235 1f3 pounds. At the time of conversion, one pound became two
dollars and so we would now represent this as #£46.67. QF

cowrse, the valus of money has alsc changed greatly over ths
vears, L[Eds.1



The psychology of the game no doubt contributed to its
widespread appeal. It will be seen fraom the table that the
first four categories of prizes provide a reasonable overall
return. In every &75 winnings nearly &27 comes from winning
£4.3s.4d., prizes for 7 correct marks. For & correct marks he
receives back nearly £23 in Ten Shillings prizes, whilst the very
nice win of &23.6s8.8d. for B correct provided &£12.6 of the
winnings in every &100. No doubt, too, the gambler was helped
towards his addiction to the game by the fairly continuous ls.Zd.
returns for 3 correct, amounting to a total of £12 in £100. At
the same time the gambler would obviously keep in his sights the
possibility of winning one of the two top big prizes of
£41,1Zs.4d. and &83.6s.8d., for 9 and 10 correct marks,

respectively. Yet the Table shows that his mathematical
expectation ot return for these was very small, the
hypergeometric chances against winning tickets being
astronomically high. Ten correct marks will occur,
theoretically, only once in 8,911,703 games. Ferhaps this was

another source aof attraction of the game, leading to addiction -
seeking the almost unattainable. :

S. Relationship with the Fresent Time

The Royal Commission Report on Alleged Chinese Gambling and
Immorality of 1891 was concerned with the harm and privation done
not only to the Chinese, but also to the European children,
sailors, wharf—labourers and coal humpers. It recommended that
the police authorities should take tougher measures in the
suppression of gambling (Repart, 1891-22). In 1904 the
Secretary of the Shop Assistants Union advocated the segregation
of Chinese so as to reduce their ‘“demoralizing influences"
(Sydney Morning Herald, 19045 . In. the same vyear the
Anti~Chinese and Anti-Asiatic League of Sydney "was {founded and
this also emphasised the evils of Chinese opium taking and
gambling (Sydney Morning Herald, 1904). In Victoria such
sentiments had surfaced earlier, for it was in 1868 that the Rev.
William Young published his "Condition of the Chinese Fopulation
in Victoria" (Young, 1868) which asked for legislation to be
provided "“to save the Chinese from ruining themselves and the
society around them." (Young, 1977).

Today the story is very different. Seven legal casinos
already operate in Australia, and others are under. construction
o planned. It is estimated that as many as 15 casinos could be

operating within 13 years (The Weekend Australian, 198%).

We have seen that the house percentage in the 1891 Chinese
gambling saloons was 20%4 in Fan-tan and 24.49% in Fak-ah—-pu.
These percentages are much higher than those for Roulette in

casinos today. The house percentage in Roulette in United
States casinos is from S.26% to 7.89%, whilst in European casinos
it is 1.35% to 2Z.70%. In the dice game of Craps, however,
American casinos retuwrn from G.&8% to 2.74 less than the correct

odds, depending ‘on the type of bet made (Encyclopaesdia
Britannica, 1978).



Fak-ah-pu is, of course, a form of lottery, and these go
back a very long way in the history of mankind. In the 0ld
Testament we can read that the Lord instructed Moses to take a
census of the people of Israel and then to divide the land among
them by lot (0Old Testament, Numbers). In France there were
lotteries in 1520 and 15329, but the first public lottery to have
paid money as prizes is believed to be La lLotto de Firenze, in
Florence, in 1330. It was a great success and spread to other
Italian cities. .

In their love of gambling the Australian and the Chinese can
be seen to have much in common. If the Chinese can be called
"the world’s most enthusiastic gamblers", together with other
South—east Asians (Encyclopaedia Britannica, 197&), then as
counterweight we find "Australia has been called the real home of

State lottery"” (Encyclopaedia Britannica, 1976). New South
Wales had lotteries as early as 1849 and the glorious Sydney
Opera House is one of its results. Today, however, instead of

marking off our ten from eighty Chinese characters in an
opium—Ffilled Chinese gambling saloon we go along in millions to
our local Lotto agent and fill in our choice of six numbers from
45, ensuring, I am sure, that our coupon is neat and tidy and
with little resemblance to its Chinese "incomprehensible”
antecedent - a Fak-ah-pu ticket.
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THE PROBLEM
OF FACTORING NUMBERS

~ Christine Jones,
10 Garfield Ave, Dunedin, NZ

Ever since Eratosthenes discovered his "sieve" method to
determine whether a number is prime or composite, mathematicians
have been trying to find a formula which produces only prime

numbers. Many attempts have involved algebraic expressions for
generating primes : Ffor example n? - n + 41 which yields prime
numbers for all values of n up to and including 40, or the famous

suggestion by Fermat : 2 41 , where r is a power of 2, but this

fails for n = 32.

As early as 300 BC, Euclid proved that there is no largest

prime number. He did so by multiplying a given list of primes
2 X 3 X S5 X 4«00 X py where p is the largest prime on the list,
and then adding 1 to this product, This new number, if it is

composite and not itself prime, is divisible by at least two
primes not on the original 1list, so no such list can ever be
complete. The reason for this is that no prime on the list can
divide the number exactly - rather the result will always be a
remainder of 1.

Consider these cases:

If p = 7, 2 X I X S X 7+ 1 =211, which is prime
I+ p = 11, 2 X 3 X 9 X 7 X 11 + 1 = 2311 which is prime
If p = 13, 2 X EZT X S X 7x 11 x 13+ 1 = 30031 = 59 X 509,

In this last example, the factors (3592 and S0%) were both
larger than 13Z.

We could, instead of adding 1, have subtracted 1. This

produces similar results. Consider thess cases:

If p =7, 2 X I X5 X 7-1 =209 =11 x 19

I+ p =11, 2 X 2 X S X% 7% 11-1 = 2209, which is prime

If p =13, 2 X Z X5 xXx 7 x 11 x 13-1 = Z00¥?, which is prime

If p =17, 2@ X I X S X 7 X 11 ¥ 13 ¥ 17-1 = $10307 = &1 X BI&9.

Notice that 11 » 7, 19 » 7, 8369 » &l * 17,

It is interesting to notice the prime factors that appear
when the number is composite. 209, for example, is composite
and, since V209 = 14.45 and 11 divides 209, the co-factor, 19,
must also be prime because 19 < 112 = 121. Thus 2209 is the

product of exactly two prime factors.
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In general, let P be the smallest prime factor of a number N

* P : . .
and let # be its co-factor. I+ £ is not itself prime, it must
be the product of two or more primes, each being greater than or

. # ;
equal to P, the smallest such factor. So P » PP, Conversely
if P* < P2, it cannot have two such factors and must therefore

be prime.

So if all the factors of a number N are required it is
useful to know the cube root as well as the square root, and to

test N for divisibility by all primes up to JN. Consider the
case N = IZ0031. Once we have found that 59 is a factor, there
is no need to test for the remaining primes up to 173, as

3/30031 « 21,09, As 59 > 31, we know that the co-factor (509)
is prime as it must-be smaller than 31% (= 9&1). However, in the
case of 3J103509, whose cube root is approximately 79.92, we
discover that 6! divides 510509, But because 61 < 79, its

cofactor, BI&7, could be either prime or composite.
J/BI69 =« 91.48, so it must be tested for divisibility by 6t
{again), 67, 71, 73, 79 and B9.

We leave to the reader the task of factorizing S5108511.
Fortunately there is an even better method to test if a
number is prime or composite. It was discovered by a French

judge, Fierre de Fermat (1601-1665), when he was investigating
numbers of the form

—————— (= a +a T e L.+ a+ 1),

At present, numbers of this form have been investigated for
large values of n in the cases a = 10, 2 and for smaller values

in the cases a = %, 5. In the case a = 10, the numbers have the
form (107 - 1)/9 and are called "repunits"; which is short for
repeated units, as they -are made up entirely of ones (units).
When a = 2, the term ‘repunits’ is also used (especially if they

are written in base 2), but more frequently they are called
Mersenne numbers.

I+ n is composite, then (an ~ 1)/(a - 1) is also composife,
for if n = pg, then

P9~ 1 = @ - 0GP TP L QPITER L P e ).
I, on the other hand, r is prime, (a"- 1)/¢a~1) may be prime ar

composite. Take the case a = 6 and tabulate &° - 1 in
factorised form.
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, New Frime Factors
1

n & =1
Base 10 Base 6

1 S S ]
2 S X7 7 11
3. 5 X 4% 43 111
4 S X 7 X 37 . 37 101
S 5 %X 5 X 311 311 : 1235
b S K 7 X 31 A 43 31 51
7 S x 55987 55987 1111111
8 S X 7 X IZ7 % 1297 1297 10001
? S X 19 X 43 X 24467 19 2467 1 185271
10 S X9 X 7 X 11 x 101 ¥ ZF11 i1 101 15 245
11 S x 2T x 3184757 23 3184787 35 1513412095
12 S X 7 % 1Z X 31 X ZT7 X 43 X 97 13 ?7 21 241

=

Notice that all the primes in the last column end in 1 or S
(all primes greater than I are of the form &k t 1) and that all
primes in the previous column are of the form &4in + 1, if n is

prime. Hence it appears, and Fermat proved, that if n is prime
and a”" - 1 is composite, then one of its factors will be of the
form 2%n + 1. S0 in order to write out the 13th line of the

table, we neaed only test
(613 - 1) /5 (= Z&1213BBOD)

for divisibility by primes of the form 26x + 1, up to its sguare

root, which is approximately S110%.0%. This is still quite a
big task, and the number may in fact be prime (factor tables go
only to 107). However there are two further methods for

reducing the number of primes to test.

The first has to do with the ‘“primitive root®. I+ 1/p is
written as a repeating "decimal" in base a and if the number of
digits in the period is p-1, then a is called a primitive root of

. Fermat showed that no primitive root of p could be a factor
of (ap—i—l)/(a—l). The primes having & as a primitive root are
all of the forms 244 + 7, 244 + 11, 24& + 13 or Z4& + 17. So we

can test Z6121388B0Z completely. by testing for its divisibility by
primes of the form 26k + 1, which are not also of the form 24& +
Ty 24k + 11, 24k + 1IZ or 24 k£ + 17, This means they must be of
the form 244 + 1, 244 + 3, 244 + 19 or 24k + 2%, as all other
possibilities give numbers that are never prime.
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The first prime we need to test is 53 as

el

=

= 26 K 2+ 1 = 24 %X 2 + 8.

We check the primes successively from 53 on. Most do not

need to be tested. E.g. 131 = 24 X § + 11 and so we need nat
test it. We do need, however, to test 313 (why?) and this is

the next one requiring testing, after 53.

The second method I call "pinching the prime". Suppose we
want to find factors of (&'% '~ 1)/5. We need. only test primes
of the form &24 + 1 which are also of the form 244 + 1, 244 + §,
24L&k + 19, 244 + 23, For example,

il = 62 % 5 + 1 o= 24 X 12 +.2%
so we should test it. But notice that 311 already appears in
the table as a factor of (6% — '1)/5 and it cannot also divide
& - 1y/E; this is because it divides exactly into 11111

(base &) and this is the zmallest number made up of ones into
which it will divide, so it cannot possibly divide into a number
made up of 31 ones (base &), as 31 is naot a multiple of S. We
say that the prime 211 is "pinched” +ram row 31 of the table to
row 5, and need not be tried in row 31.

For any prime of the form Znk + 1, where & » n, the prime is
pinched from row n.

12

I tested (&°° ~ 1)/5 on my scientific calculator, making use
of the above simplification, and Ffound that 2WG6I2IABBROIT is
divisible by Z43Z. The cofactaor is 760821 which is also prime.

I have found that (&7 - 1)/5 is prime if rn is 2, - 7 or 29
and I have complete factorisations for n = 5, 11, 13 and 17
(counting only prime n). I have incomplete results for n = 19,
23, 31, 37, 41, 4%, 47, 5%, 599 and 6l.

Other workers have looked at (an - 1)/{a - 1) and its
factorisations far different values of a going from @ = 2 to
a = 13, In fact all the easy work has been done, but much

remains which is not known.
> o oo oo we
WHAT INDEED?
What science can there be mare noble, more excelient, more
useful for men, more admirably high and demonstrative, than this

of the mathematics.

Benjamin Franklin
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HOLY MATHEMATICIANS!

. Michael A.B. Deakin,
Monash University

A recent article in American MNathematical Honthly (April
19846, p.324) drew the mathematical world’'s attention to a 15-year
old development. In 1971, the mathematician Francesco Faa di
Bruno (1825-1888) took a major step towards sainthood.

First, let’'s look at the process involved in this. Then
we’'ll comea back to the man.

When a man or woman of the Catholic Faith dies, it may be
that he or she is regargded as having led a particularly pious’

life. A local cult may then grow up in which the faithful see
in this person’'s life an example worthy of being admired and
followed. In the belief that the person is naow with God, they

may even address prayers to him or her, in the hope of his or her
intercession with God, Who, in recognition of the virtuous life
led on earth, will be favourably disposed to such requests.

At this stage, such cults have no official status, but in
some cases local bishops take up the cause and ask the Vatican to
endorse them. The Vatican may then open a +file on the
individual in question, who acquires the title "Servant of God".
I+, as a result of these enquiries, they do grant an initial
limited endorsement of the cult, the person becomes known as "the
Venerable" (Francesco Faa di Bruno, in this case).

There are twa further and less limited endorsements. If
the next stage, known as "Beatification", is reathed, the person
is referred to as "Blessed ...."; and if the +final stage,
"Canonigation' is achieved, as "Saint ....". These latter two

stages are the culmination of legal processes probing the status

of miracles (usually cures lying beyond the power or scope of
orthodox medicine) attributed to th= venarable person’s
intercession with Gad.

Now to the mathematician. Francesco Faa di EBruno (Fax di
Bruno was his surname) was born on March 2%, 18&5. MHe was a
sickly infant, in danger of d=ath at his birth; however, he not
only survived but came to thrive and grow to manhood. His

family was wealthy and perhaps he owed some of his new—found
robustness to their ability to provide adequate care. Indeed, he
made his career in the army and would probably have continued to
do so but for his being provoked into a duel.

As a Ffirm Catholic, he could not, in conscience, go through
with this, and so, according to the code of honouwr then in force,

found it necessary to resign his commission. He travellsd to
Faris to attend classes in Mathematics and received his doctorate
in 18%6, so founding a new career for himseldf. He then returned

to Turin, his home town, and took up a professorship of
Mathematics, a post he held for the rest of his life.
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During the years 18356-1886, he published over 30 technical

papers in Mathematics, four treatises on Mathematics or
Astronomy, and a two-volume text-book on Fhysics; he was also

responsible for a number of inventions, most notably a typewriter
tor use by the blind. Mathematicians today remember him best
for “Fah di Bruno's formula” - the generalisation of the chain
rule, for finding the nth derivative of fFlg(x)). This formula
is very complicated and I do not give it here. Interested

readers will find it on p.50 of D. Knuth’'s The Art or Computer
Programming, Vol.l.

As well as working consistently at Mathematics, he was
active in church affairs and good works, administering funds for
the poor, and indeed supplementing these from his own resources.
He founded a school far the education of girls and a hospice for
the rehabilitation of "fallen women”, as the Vatican put it. A
church and a religious order were founded by his initiative and
his financial help. At the age of 1, later in life than is
usual, he was ordained to the priesthood. He lived till 1888,
s0 his centenary is imminent.

It is undoubtedly this aspect of his life, rather than his
Mathematics, which has led to the campaign by the diocese of
Twrin for the canonisation of one of their faithful. He did in
saome of his writings, draw together the two aspects of his life,
in that he sought &a higher unity, we are told, between the
factual truths known by reason and the moral truths known by
faith.

R.F.EBpas, drawing the mathematical community’'s attention to
these develaopments, wonders if any other mathematician has
proceeded so far towards sainthood. I don’t know either, but
711 offer a few comments,

There are at least two full saints with tenuous claims to
being mathematicians. Albertus Magnux (Albert the Great)
(c.1200-1280) was a pioneer scientist, who wrote two volumes,
unfortunately lost, on Mathematics. He seems not to have
grasped, however, what later thinkers did, that much of Science
iz best expressed in mathematical form. Robert Bellarmine
(1542-1621), a controversial Figure, was finally canonised in
1930, He had some mathematical skill, though he can hardly be
called a mathematician. Regrettably, he is now most readily
remembered for the part (it is a matter of dispute how extensive
this was) he played in the persecution of a much greater
mathematician, Galileo.

Three members of the Jesuit order, to which Bellarmine also
belonged, achieved fame as scientists and mathematicians:
Chriztoph Clavius ({(1537-1&12), Athanazius Kircher (16027-1680)
and Rudier Boskowvid® (1711-1787). The +First named is the
best-known, and his most immediate claim to fame is his part in
the setting up of the Gregorian calendar, which replaced the
pravious, and less accurate, Julian one. (See Function, Veol.l,
Part 1, p.l1%.) 0Of these three, howéver,_HoschiE is probably
the greatest mathematician. He worked on the theory of optics,
the paths of comets, and so also the theory of conic sections
(see Function, Vol.l0, fart 2), meteorology and geophysics. He
promoted international coopesration on geodesy (determining the
detailed shapes of the sarth) and worked on the theory of gravity.
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0f course, membership of & religious order is no guarantee
of heroic sanctity, although it 1is said to help 1in this
direction. Fresumably it also helps in the promotion of the
" prospective saint’'s cause with Rome. I don’'t know how far, if at
all, these three have advanced along the path to sainthood.

Similar remarks apbly to Marin Hersenne (1588-1648), not a
Jesuit, but a Franciscan, and a much better—known mathematician.
He is the Mersenne after whom Mersenne Frimes (i.e. primes of the

form 2'-1) are named. He also contributed to the foundation of
probability theory and to the theory of equal temperament.
(See Function, Vol.l0o, Part 4.) It was he who discovered that

the period of a pendulum varies as the square root of its length.
Several of his biographers make reference to his outstanding
piety.

Another possible candidate is B8lalise Pascal (1623-16651),
atter whom Fascal’'s Triangle is named. His mathematical
achievements were considerable, inveolving projective geometry,
mechanical computation, theory of fluids, probability theory, and
what we now recognise as an early form of the integral calculus.
He also produced an extensive body of religious writing and has
achieved a reputation as a mystic. The Catholic Chuwch, of
‘which he was at all times a loyal member, has not always looked
with +Favouwr on his writings, regarding them at times with
suspicion, or even banning them. Other Catholic writers,
howsver, see them as possessing great spiritual significance.

Among the things he is remembered for is "Fascal ‘s Wager",
nowadays viewed as a misuse of probability theory. I+ one lives
one‘s life on the basis of a belief in God, the argument goes,
one has an infinite expectation i+ He xists and & +Finite
(possibly negative) one if He doesn’t. The total expectation is
thus infinite. I1¥, by contrast, one lives one’'s life on the
bazsizs of a belief in there being no God, one’'s expectation,
depending on how one calculates, is either Ffinite, or minus
infinity! This sort of moral book-keeping does not today strike
all who read it as being commendable.

. Yet ancther possible mathematical saint of the fulture is
Haria HAgrmesi (1718-1799), whose story was told in the last issue
aof Function. ‘It is interesting to contrast her life with that
of Francesczo Faa di Bruno.

Wheresas Agnesi abandoned Mathematics for good works, Faa di
Bruno combined ths two. Yatican I1I, the last council of the
Catholic Chuwch, is widely seen as having endorsed the view that
a life of piety 1lived in the world of work and day-to-day
activity is preferable to such a life lived in withdrawal from
that world. So, if one ware & gambler, perbaps Fai di Bruno
would be the one ta back. There might then one day be prayers to
Elessed (or even Saint) Francesco Faa di Bruno.
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LETTERS TO THE EDITOR

FOWER 'S FOSTULATE AND THOMFSON'S THEOREM
Begin with a definition.

A multiply—pertect number iz one Tor which the sunm
of Its factors, Iincluding one and the number itself,
is a multiple of the given number.

Fowarr ‘s postulate states that:

This multiple is egqual to the number o¥ distinct
prime Tactors of the given number.

This problem was prompted by Guestion 30 in the senior
division of this year’'s Australian Mathematics Competition. Qurr
bursar, M- Frank Fower, advanced his postulate in the course of
discussing this question.

The following EASIC computer program will print
multiply—-perfect numbers and the sum of all their factors.

10 N=Z start search at 2

20 8=0 initialize factor sum to zero

25 R AR (N limit of First factor

IO FOR D=1 TO R ‘crude’ laoop for finding factors
40 IF N/7D=INT(N/D)THEN 8=5+D+M/D add factor pair to factor sum

S0 NEXT D increase divisor by one

&0 IF R=INT(R) THEN 5=85-4 remove twice counted factor in

. square number
70 IF S/N=INT(S/M)THEN FRINT N3S check of multiply-perfect
80 M=pMN+1 try next numbetr
70 B0TO 20

Using this program, I constructed the following table, going
on until I +ound a counterexample to Fower's postulate; the
numbat ZE750 is multiply-perfect but the multiple is 4, whereas
{It is easy to overlook

there are 9
¥ 2% apd many may (wrongly)

this case as 3
assum2 71 ta be prime.)

MULTIFLY=  8UM OF  MULTIFLE FRIME NUMBER OF DISTINCT

FERFECT FACTORS FACTORS FRIME FACTORS
MUMBER
14258 2 2
13 - 4 4
c a 5




18

I gave up checking odd numbers for being multiply-perfect as
I conjecture (Thompson's Theorem) that none are.

Leigh Thompson
Bairnsdale High School.

LThe so—-called perftert numbers= are a special case ot
Hr.Thompson's multiply-per¥ect numbers: that Tor which the
mnultiple iz #two, Thus there are more multiply—perfect numbers
than there are perteit numbers. (E.g. 120 ix npultiply-pertTect
but not pertect.) It Is not known whether there are odd perfect
numbers (it there are, they are greater than 10%%), z0 Thompson's
Theorem, which would imply as a corollary that there are not, isx
apen. It would seem to be wvery difficult to prove or to
disprove it. Ed=s.] ’

MORE ON FYTHAGORAS

The June, 1986, edition of Ffunction presented a pictorial
proaf of Pythagoras’' Theorem using six diagrams. Here is a
proof using only two diagrams.

~

Figure 1 Figure 2

‘Both diagrams represent the square on the sum of the legs of the
right triangle. In Fig.1l, this square is decomposed into four
copies of the triangle together with the squares on the legs.
In Fig.2, this square is decomposed into four copies of the
triangle tagether with the square on the hypotenuse.

J.G.FEupka
Monash University.
1984
In regard to R.D.Coote’'s letter on p.25 of the June, 198&,
issue of Ffunction, describing the formation of expressions for
numbers 1 - 100 using the digits 1986 in order, I found

97 = 1 + ((SP ) 2 8 + b.

Anthony Roylance,
Geelong West T.S5.
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' CARD SHUFFLING
G.A. Watterson, Monash University

In the Monash Mathematics tea room, a lot of Bridge is
plaved at lunch times. But this not why 1 decided to write this
article. Une morning recently, I went to morning tea only to
find that there was nobody there. So I sat down and read the
first article in the May issue of the American HMNathematical
Honrthly, which happened to be on the table. The authors of the
article (David Aldous and Fersi Diaconis) solved the problem of
how long you have to shuffle a pack of cards to get it into
random order. And their results really surprised me, although I
must admit that I didn't understand all that they had written.
About 7 (or so) "riffle shuffles" are needed, for randomness for
a pack of S2 cards. We will describe a riffle shuffle later.
For a pack of n cards, perhaps about (3/2)1092(n) riffle shuffles

are needed. We shall look at a simpler shuffle first.
ONE~CARD-AT—A—TIME SHUFFLE

Aldous and Diaconis first describe a very simple shuffling
method, different from the riffle shuffle. They then use a very
simple argument to show that about nloge(n) shuffles are needed

forr randomness of n cards. . Define a shuffle to consist of
taking the first card off the top of the pack, and then placing
it in any one of n positions: above the second card (i.e. back
where the first card was, originally), or between the second and
third cards, or between the third and fourth card, or .... , or
batween the second bottom and bottom card, or underneath the
bottom card. You continue taking top cards off and slotting
them in somewhere. Each time, we assume that it is equally
likely just which of the n positions is chosen to slot the card
back in.

Top
Card
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Now, how do we argue that approximately nloge(n) shuffles

are needed? Concentrate on the card which was originally on the
bottom; suppose it was the Ace of Spades. As shuffles are
carried out, gradually more and more cards Will be slotted in
underneath the Ace of Spades, and these cards will be in
perfectly random order amongst themselves, because they were
slotted in at random. By the time the Ace of Spades comes up to
the top position, all the other cards will be in a random order.
And then it is the Ace of Spades’ turn to be taken from the top,
and slotted in somewhere, at random. At exactly that time, all
the cards are in random order.

We let Tj be the number of shuffles required to increase

the number of cards underneath the Ace of Spades from 7 - 1 to i.
In particular, T1 is the number of shuffles required to get one

card slotted in beneath the Ace of Spaces, while T(n—i)’ is the

number of shuffles required to bring the Ace of Spades from being

second, to being at the top, of the pack. Consider Ti; while
there are i - 1 cards underneath the Ace of Spades, there are 7
positions below the Ace of Spaces, and n — i positions above ity
where the top card may be slotted in. At any shuffle, the
probability is p = ji/n that the top card if slotted in somewhere
below the Ace of Spades, and the period Ti ends. The average

number of shuffles required +or this to happen when it has

probability i/r of happening on any one shuffle, is n/i. That
is,

mean of Ti = E(Ti) = n/i. (1).
This is easy to understand. For instance, if vyou toss a

six-sided die until a six turns upy it will take .six tosses, on
average, because the probability of it happening in any one toss
is 1/6.

The total time for the Ace of Spades to rise from the bottom
to the top, and then to be slotted in at random, is

o= T, 4+ T+ Ty + . T 13

+ 1, shuffles (2}

i

s0 that the expected (mean, or average) time Ffor all the cards to
be shuffled into random order is

E() = /il + 0/2 + 0/3 + ool + n/n=1) + 1

i

nli/1 + 172 + 1/3 4+ ... + 1/¢n~1) + i/n1 shuffles. (3)
But it is known that, for fairly»large n,

1/ + 1/2 + 1/% + ... + 1/p = lage(n) Apprax.
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(Actually, you might 1like ta check that an even better
approximation is loge(n) + 0.,377Z1. Get your computer to

calculate these quantities for various values of n.) So, a good
approximation to £(3) is

E(S) = n[loge(n) + 0.577211. (4)

For instance, we can use (3) to get exact answers and (4) to get
approximate answers, as illustrated in Table 1.

Table 1
n 2 & 10 30 52 100
EXZ) in (3) = 14.7 9.3 119.8 235.0 518.7
E(S) in (4) 2.5  14.2 28.8 119.4 235.5 519.2

Remember that here, a single "shuffle" consists of moving only
one card, so that each card iz moved rather few times (for
instance, once!) in order to achieve a random order.

The above discussion highlights only the expected number of
shuffles needead. . But sometimes & will be smaller than expected
and sometimés it will be larger. £ is a random variable, and
its variance is given by

c? = Var(5) = Var(T,) + Var{(T_) + ... + Var(T )y
1 2 (n=1)

nin-1)/1%+ n(n-2/2 + ... + nod/ 102,

rLr=1)/71%2 + (n=2)/2% + (n=-3)/3% + ... + 1/(n—-1023. ()

The standard deviation of & is, of course, the square root of its
variance:

¢ = 3.d.(8) = [Var(s)1}"?,

To see why (8) is correct, you might like to check out that 7T
has a geometric probability distribution:

- (-1 . ’ -
Pr('i = t) =g py, for v = 1, &2, I, 4, ... ,

where
p = i/n and g =1 - 1i/n
and this geometric distribution has mean and variance given by

E(Tx) = 1/p0 and Var(Ti) = g/p* .

As uwsual, it is very likely that a random variable, such as 2,
will take values within two standard deviations of its mean
value. So we are ablz to put bounds on how many shuffles will
prabably be srnough to achieve randomness, namely
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E(S) ~ 20 < & < E(5) + 20 , very praobably. (&)

The bounds in (&) are illustrated in Table 2.

Table Z
n 2 & 10 30 52 100
EE) - 2¢ 0.2 2.2 6.5 46.9 107.0 267.1
E(S) + 20 S.B 27.2 51.7 i92.8 365.0 ; 770.4
Motice that the bounds are somewhat far apart. Take the upper

bound,; to be safe!

RIFFLE SHUFFLES

Let us now get back to riffle shuffles. A riffle shuffle
is when you divide the pack of cards into roughly equal halves,
and then interleave (ar "riffle") the two halves together. I

won 't discuss the theory that Aldous and Diaconis used to draw
their conclusions about riffle shuffling, as it is too

complicated. But one comment in their article interested me
very much. Before Diaconis became a mathematical statistician,
he was a professional magician and gambler. He says that such

professionals can do a riffle shuffle which is not random at all.
They can divide the pack into two exactly equal halves (26 cards
each) . Suppose that originally the cards were numbered 1, 2, =,
ce. y 92 from the bottonm. The perfect division would have cards
1, 2, «v. §y 26 in one pack and cards 27, 28, ... 4y 52 in the
othet. Then, in riffling, card 1 would be dropped first, then
card 27, then card 2, then card 28, and so on. The perfect
ritffle shuffle would produce a pack, from the bottom, in the

order:
1, 27, 2, 28, 3, 29, 4, T0, ..., 952, 51, 26, 32.

Suppose that we continue riffle shuffling the pack, in the
same perfect way, for several shuffles. It suwprised me to
learn that, in only eight shuffles, the pack returns back to
exactly its inmitial order 1,2,3%, ..., 51,32 (from the bottom). I
wondered if that happened +or packs with anry even number of
cards. So I wrote the following computer program to find out,
for each even number » (up to IQO), how many perfect riffle
shuffles would be needed to return the pack of n cards back to
their original position. The program is for running on an
AFFLE II computers your camputer might need a slightly different
program.
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10 REM RIFFLE SHUFFLE FROBLEM
20 NMAX = 100 ‘
T0 REM N DENOTES THE SIZE DF FACK< NMAX THE LARGEST N
40 DIM X (NMAX) , Y (NMAX)
SO REM 36333636 33330 3 3636 3 30 36 2 4 # 3¢
&0 REM #WE START THE N LOOP#
TO REM %8333 H% 3 53 49036 3 3 49 H
80 REM X(I) DENOTES THE NUMEBER OF THE I-TH CARD FROM THE BOTTOM
85 REM AND S0 DOES Y(I), TEMPORARILY DURING SHUFFLING
90 REM WE START WITH X2I0 = 1
100 REM:
110 FOR I = 1 TO NMAX
120 X(I> = 1 -
130 NEXT I
140 COUNT = 1 : N2=N/2 :REM THESE ARE USED OFTEN LATER
150 REM %3636 % 35 3 33 33 6 8 336 30 5 H % % #3836
160 REM #NOW WE SHUFFLE THE PACE#*
170 REM #%3##¥4538 %% 54355 %3830 33323303
180 FOR 1 = 1 TO N STEF 2
185 J = (I+1)/2
190 Y{(I) = X{(J) : REM BOTTOM HALF CARD DROFS
200 Y{I+1) = X(N2+J) : REM TOP HALF CARD DROFS
FOR I = 1 TO N
X(I) = Y(I> : REM THIS NUMBERS THE NEW FACK ORDER
NEXT I
REM 39 3 36 96 9636 46 3056 36 36 36 360 338 36 34 30 96 36 36 96 36 3536 36 3 36 36 96 9630 36 96 48 9630 36 3¢
REM #NOW WE CHECEK FOR RETURN TO ORIGINAL ORDER¥
REM 95053596356 3006 9 5 2R 369609 303 3303 55 K 03 3 3360 R R A 3
FLAG = 1 : REM THIS INDICATES ORIGINAL ORDER
FOR I = 1 TO N
IF X(I) I THEN FLAT = 0:REM NOT ORIGINAL ORDER
NEXT
IF FLAG = O THEN COUNT = COUNT + 1 : BOTD 160
REM COUNT COUNTS THE NUMBER OF SHUFFLES
FRINT "SIZE OF FACKE = "N" NUMBER OF SHUFFLES = "COUNT
NEXT N
END

I found the results given in Table 3.

Table =

n shuffles n shuffles n shuffles n shuffles n shuffle

2 i & 42 20 &2 &O 82 54
4 2 11 . 44 14 &4 & 84 82
b 4 20 46 12 && 12 g6 8
8 3 16 48 23 68 88 28
10 & 28 50 21 70 0 i1
iz 10 5 52 =] 72 9 12
14 12 10 54 S52 74 24 10
16 4 2 Sé& Z0 76 96 Ié
18 8 L) 58 i8 78 8 48
20 18 12 &0 o8 - 80 100 0
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There are some very interesting results in Table 3. For
instance there are never more shuffles needed than n-2 (except
when n = 27, You might have eupected that for some sizes n, the
pack would rever return to its original order. But . n - 2
shuffles are quite often needed: on other occasions, very many
fewer shuffles are needed. For instance in the important case
with » = 82 cards, only 8 shuffles are needed, as Diaconis said,
to return the pack to its original order.

A couple of problems suggest themselves. Can you work out
a faormula which tells you how many perfect shuffles are needed to
restore a pack of n cards? And what happens when there is an
odd number of cards?

° oo on oo on

PROBLEM SECTION

We have quite a large number of outstandlng problems and so
here we "zlear the decks".

SOLUTION TO PROBLEM 10.2.1

The problem was to describe the possible m-circuits of the
Fetersen graph connecting lw points by 15 lines as shown.
An m-circuit is a path
through the graph that
takes one of the lines
from marked point tao
marked point, followed
by another to a new
marked point and so visits
on points in twn each
exactly once and returns to
the initial point. In
particular we asked for a
proof that no 10-circuit
can exist.

Mark Short, a student
at Monash, supplied this
analysis. .

Any 10-circuit must use some of
the thick edges - otherwise we
would have two S-circuits instead.

In fact, it must use an even
number of them : for each edge on
the circuit going inwards there
must be another going outwards,
since the circuit is a closed
path.
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This means either 2 or 4 of the thick edges are used and

symmetry reduces these possibilities to I cases:

Now, if one w=dge at a vertex is noet used in the 10-cycle, the
other two must be used. This implies that the following edges
(also drawn thick) are necessarily present in the 10-circuit in
the % cases:

1. <§ii§é%§%§ii;7 E-

Cases 1| and & now violate the circuit condition at the circled
vertices. As for Case 3, the dashed edges can not be used, so
we're forced to use AB to get a circuit through A,B: ’

But now we have closed a S-circuit, so we
cannot extend it to a 10-circuit.

Examples of 5-, &-, B~, 9—circuits:

@ G0

S & a ?

I think it is fair ‘to claim there are no 2-, 33— and 4-circuits
"hy inspection", though this may be stretching it a bit for the
d—circuits.

— AR VAN — — — — .
= denotes prohibited edge
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As far the nonexistence of 7-circuits, one can argue again
that - any 7-circuit must use an  even number of the edges
connecting the outer pentagon to the inner star, and the number
has to be 2, because if there were 4 their ends on either the
outside or the inside could not be joined up by the 3 remaining
edges in the 7-circuit. )

So we are reduced to the cases:

4, S.

The inner ends of the The inner ends of the thick
thick edges can only be edges can be connected in
connected like so. two ways:

in which case it is in this case the in this case the
impossible to connect outer ends cannot be outer ends cannot
the outer ends by the connected by the be connected by the
3 remaining edges 4 remaining edges 1 remaining edge.

SOLUTION TO FROBLEM 10.3.1

Take a, &, < to be any three digits, where a > <. From
these form the three digit number

100a + 10b +
and its reverse

100 + 106 + a.

Subtract to find 99(a — =) .
Now 99(a - o) = 100(a - ) - (a - <)
100(a — = = 1) + 100 - a + -~

|

100C¢a — o - 1) + 90 + (i0 - 5 + <) .
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The reverse of this is
100(10 -~ a + o) + Q0 + (a -~ ¢ - 1),
Add these two together to get’

101¢a — ¢ = 1) + 180 + 101(10 - a + )
= 909 + 180 = 1089,

The problem was to show that 1089 is always the result of
this operation. This solution is due to S. EBigelow of Eltham,
who also provided the next.

SOLUTION TO FROBLEM 10.3.2

We asked for the value of

S+ S+ S+ e =y (say).
Square both sides and find

1+ x5 = x7,

This gives

X o= (1t /952,
and, as the answer must be positive, we choose the + sign.-.
SOLUTION TO PROBLEM 10.3.3

To prove that the product of n consecutive numbers is
divisible by n!, let (& + 1) be the first. The product is then

b+ 1)k + 20k + 3) .. k + 1),

which is (& + m) /&,

Form
(b + n)i 1
T nt
(b + ) !
YT
(& + pit
KUk + m = B
_ O (T
= Q & ,

a binomial coefficient, egqual to thz number of ways in which &
abjzcts may be chosen from a set of & + n objects, and clearly
integral.

This solution is by Tim Arneld, Year 12, Scotch College.
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SOLUTION TO PROBLEM 10.4.1

If x5 v, = may be any integers and 0 is an operation which
satisfies

NO y + ) = yOx + zOx 5
show that unv = vOu for all integers u,wv.

David Shaw of Geelong West Technical School and John BRarton
of North Carlton bath sent solutions. This is David Shaw's.

1. Fut x = y = z = 0,
oo o= 200 0).

Se O0n 0 = g.

Lo’
[=]
L
fl
=]
(o]
+
L]
o
<

[
.
iy
=y
o+
~x
L}
H
]
o]

S0 0O x = 2000 x).

and O 0 x = Q,

XD =00 x5+ 0 x
= 0 x ,

and the result foilows AS X,T may be any integers.
John Barton ‘s solution was similar,

SDLUTfDN TO FROBLEM 10.4.2.
Sprague’s series u,, Ugy Uz, .. satisfies

Yy *ug b sLo= oy = 5, where 5 = 1 and s =z + lyx |
n n n n+1 n n

We asked for a simple approximate formula for .

David Shaw writes:

+ &+ =
n—1 :rl“i



In general,

NS

Now put n

=2
Tr+2
I.e.
=2
“n
°
and
-.‘Tl
Jahn

conditicon

(= + 2
=2

s 0+ 4
n—2

52+ &, etc.
n—-2

52 + 2r (n z r + 2).
n—r

=k 2 (rox Q).

2

= S, 4+ 2

= 4 + Zr

= Zr + ).

= 2n

= VZn.

Earton salved the problem differently.

- 1
5 = 5+ ‘[z
n+l n n
as
As = 1/=
n n
and  approximated this dJifference equation by

equation which he then solved to find

wherea a i

He

+ a =

V2inrls

the error,
wa choose
aof a give

& an arbitrary constant.

notes that

J2n + a + 1/ Zn+a).

if n o is large, being approximately
a8 = 0, we get an exact value for n =
better approvximations for other n.

1/ a2/ .

<,

29

He wrote the

a differential

I+
other choices



30
We conclude with some new problems.
PROBLEM 10,5.1

It is easy enough with a calculator to show that

e"(x 23.14)- 3 n° (= 22.46), but can you shaw this without

computation.
PROBLEM 10.5.2

If x : 0, v ¥+ 0 and

=25 +y £ 50
Ix + 2y 2 TOo
X+ y 2 B0
and Xooi 90

?

what is the maximum value of x + v

on o op o0 oo

[Continued from p.%9.1

Fartridge, Eric (1970). “A Dictionary of Slang and Unconventional
English." 7th Edition. Routledge and Kegan Faul, London. Val II
(Supplement), 1316,

Report of the Royal Commission on Alleged Chinese Gambling and
Immorality and Charges of EBEribery Against The Folice Force
(1891-92). N.S.W. Farliamentary Fapers, 8, 19. Yong (ibid), 174
and 254,

Sydney Morning Herald (1904) , . 22nd August, 1904, Yong (ibid),
242,

Weekend Australian (1983), August 3I-4, 1785, 23,

Yong, C.F. (1977), “The New Gald Mountain®”, Richmond, South
Australia, Raphael Arts, 174,

Young, Rev. William (1868). "The Condition of the Chinese
Fopulation in Victoria", Victorian Farliamentary Fapers, 3,22/56.
Yong (ibid), 254.

o op od oa oo

"The originality of mathematics consists in the fact that in
mathematical science connections between things are exhibited
which, apart +from the agency of human reason, are extremely

unobvious. Thus the ideas, now in the minds of contemporary
mathematicians, lie very remote from any notions which can be
immediately derived by perception through the senses; unless

indeed it be Perception stimulated and guided by antecedent

mathematical knowledge.”
A.N.Whitehead
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PERDIX

Here are the questions set in the 1986 International

Mathematical Olympiad in Warsaw. The first three questions were
set on the first day, July 9, the next three on the second day,
July 10, For each paper a time of 4!'/2 hours was allowed.

Each guestion was worth 7 marks.
Send me your solutions.

1. Let 4 be any positive integer not equal to 2, 5 or 13.
Show that one can find distinct a,b in the set {2,5,13,4>
such that ab -~ 1 is not a perfect square.

2. A triangle A;A;Az and a point P, are given in the plane.
We define A_ = A_ . for all = : 4. We construct a
= 5=

sequence of points Py, Py, Pz, ... such that Pk+1 is the

image of Pk under rotation with centre AA through angle

o |
1200 clockwise (for & = O,142500a) Frove that if
Prage = Py then the triangle A;A;43; is equilateral.

Z. To each vertex of a regular pentagon an integer is
assigned in such a way that the sum of all the five
numbers is positive. If three consecutive vertices
are assigned the numbers x,v,z, respectively and y « ©
then the following operation is allowed: the numbers

X,Yy¥ are replaced by x+y, ~y, z+y respectively. Such
an operatiaon is performed repaatedly as long as at least
one of the five numbers is negative. Determine whether

this procedure necessarily comes to an end after a finite
number of steps.

4. Let A.8 be adjacent vertices of a regular n—-gon (n @ S)
in the plane having centre at 0. A triangle xY2Z,
which is congruent to and initially coincides with
OAB, moves in the plane in such a way that ¥ and £ each
trace out the whole boundary of the polygon, X remaining
inside the polygon. Find the locus of X.

. Find all functions ¥, defined on the non-negative real
: numbers and taking non—negative real values, such that:

(i) Ty FUy)3 Fly) = fix + yv) for all XNyy 2 0,
(iiy () =0 ,
(1ii) Fix) # O for O 2 x < % .
b One is given a finite set of points in the plane, each
point having integer coordinates. Is it always possible

to colow some of the points in the set red and the
remaining points white in such a way that for any

straight line £ parallel to either one of the coordinate
axes the difference (in absolute value) between the

numbers of white points and red points on L is not

greater than 17 Justify your answer.
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