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Another year comes to a close for us all. Next year will
be Function's 10th year of pqblication, and to make it an even
better magazine, please send us your articles, problems, etc.
We enclose your subscription form.

For this issue, we continue with John Stillwell's histor­
ical articles, this time on Complex Numbers, and conclude the
articles by Profes$or Cheryl Praeger, who now discusses how to
set up a loom to weave a particular design. As usual, we also
pinch some articles from our sister magazines. Well, they
pinch from us, too~ But we didntt pinch the Rambam from Rambo;
no fear.
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THE FRONT COVER
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I

If the Front Cover diagram is rotated about its centr~l

vertical axis, the triangle sweeps out a 3-dimensional region
which is a cone, the ellipse sweeps out an ellipsoid, and the·
outer rectangle sweeps out a cylinder. The volumes of these
figures are in the ratio

Cone : Ellipsoid : Cylinder

which is surprisingly neat.

1 2 3

To see this,

1 . 1 2 2 2Volume of co~e :::: 3" area of base x helght::::"3 1Ta (2b)::::"3 7Ta b,

V 1 f 1 .,· . d 4 2 bo ume 0 e 1.1PSOl :::: "37fa ,
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Volume of cylinder = area of base x height

7f a 2 (2b) 2 1T a 2b ,

which are, indeed, in ~he ratio 1 2 : 3 •

The Front Cover design is incorporated in a sculpture at
San Jose State University, U.S.A.

KAPREKAR'S CONSTANT

Take any number of four digits., not all equal, say 5080.
Write its digits in decreasing order (8500) and in increasing
order (0058) and subtract (to get 8442 in this case). Repeat
the process: 8442-2448 = 5994.

Repeat again 9954 4599' 5355
And again 5553 3555 1998
And again 9981 1899 8082
And again 8820 0288 8532
And again 8532 2358 6174

We have applied the process seven times to the origiqa1
number and h~ve reached the number 6174. If we apply the
process to this number, we get

and so on for ever.

7641 1467 6174

It is a remarkable fact that no matter what four-digit
number we start with (as long as it does not have aZl
its digits equaZ), we end up with (after at most seven
applications of this process) the number 6174.

This was first discovered by D.R.Kaprekar, who has written
several times for Function. The process is now termed the
Kaprekar process and the number 6174 Kaprekar's constant.

Projects: check the ~esult with a computer program;
explore the situation for two-, three-, five- and six-digit
numbers.
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COMPLEX NUMBERS· IN ALGEBRAt

John Stillwell, Monash University

1. Introduction

-The introduction of complex numbers clarifies and unifies
many different areas of mathematics. They throw light on what
would otherwise be mysterious relationships between these areas.
That complex numbers do all this, and more, is one of .the
miracles of mathematics. At the beginning of their history,

complex numbers a + b I=T were considered to be' "impossible
numbers", tolerated only in a limited algebraic domain because
they seemed useful in the solution of cubic equations. But
their significance turned out to be geometric, and ultimately
led to the unification of algebraic functions with the theory of
map projection, .the study of gravitation and electromagnetism,
and another "impossible" field, noneuclidean geometry. This
resolution of the paradox of 1-1 was so powerful, unexpected
and beautiful that only the word "miracle" seems adequate to
describe it. .

This article will show how complex 'numbers emerged from the
theory of equations and -enabled its fundamental theorem to be
proved - at which. potnt it became clear that complex numbers
had meaning far beyond algebra. The fundamental theorem of
algebra states that each polynomial equation p(x) = 0 has a
solution x in the complex ~umbers. Its proof was achieved)
after considerable struggle, through a geometric understanding
of complex numbers and polynomial functions.

2. Quadratic Equations

The usual way to introduce complex numbers in a mathematics
course is to point otit that they are need~d to solve certain
quadratic equations, e.g. the equation x + 1 = O. However,
this did not happen when quadratic equations first appeared,
since at that time ~here was no need for all quadraiic equations
to have~solutions. Many quadratic equations are implicit in
Greek geometry, as one would expect when circles, parabolas,
etc. are being investigated, but one does not demand that every
geometric problem have a solution. If one asks whether a

t For related articles, see Funotion, Volume 3, Part 5 and
Volume 5, Part 3.
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particular circle and line intersect, say, then the answer can
be yes or no. If yes, the quadratic equation for the inter­
section has a solution; if not, no solution. An "imaginary
solution" is qui te uncalled for in this context.

Even when quadratic equations appeared in algebraic form,
with Diophantus and the Arab mathematicians, there was init­
ially no reason to admit complex solutions. One still wanted
to know only whether there were real solutions, and if not the
answer was simply - no solution. 'This is plainly the appro­
priate answer when quadratics are solved by geometrically
completing the square as was still done up to the time of
Cardano (150l~1576). A square of negative area did not exist
in geometry. The story might have been different had mathem­
aticians used symbols more,' and dared to consider the symbol

~ as an object in its own right, but this did not happen
until quadratics had been overtaken by cubics, at which stage
complex numbers became unavoidable, as we shall now see.

:3. Cubic Equations

The solution of the cubic equation

3
Y = py + q

was discovered by Scipione del Ferro of Bologna early in the
16th century. After being kept secret for some time, the
solution was revealed in Cardano's A1's Magna (1545).

y = I! + /(;t - (~f + Ii -/1;)2 (;)3
The formula involves complex numbers when (;)2 _(~)3 < 0 .

However, it is not possible to dismiss this as a case with no'
solution, because a cubic always has at least one real root

(since y3 - py - ~ is 'positive for sufficiently large
positive y , and negative for sufficiently large negative y).
Thus this formula raises the problem of reconciling a real
value, found by inspection say, with an expression of the form

Cardano did not face up to this problem in his Ars Magna
He did, it is true, once mention complex numbers, but in
connection with a quadratic equation, and accompanied by the
comment that these numbers were "as subtle as they are useless",

The first mathematician to take complex numbers seriously,
and achieve the necessary reconciliation, was Bombelli in 1572.
Bombelli worked out the formal algebra of complex numbers, with

the parti cular aim of reducing expressions 3l :t + b /-1 to the

form c + d ~. His method enabled him to show the reality



6

of some expressions resulting from the formula. For example,
the solution of

3 15x + 4x
3 3

is x = 12 + 11 g + 12 11 g

according to the formula. On the other hand, inspection gives
the solution x = 4. Bombelli had the hunch that the tWD
parts of x in the formula were of the form 2 + n I=I ,
2 - n g, and found by cubing these exp!essions formally

(using (/_1)2 = -1) that indeed

3 /2 + 11 1-1 2 + g

3 /2 - 11 1-1 2 - I=I

hence the formula also gives x = 4 .

Much later, Holder (in 1896) showed that any algebraic
formula for the solution of the cubic must -involve square roots
of quantities which become negative for particular values of
the coefficients.

4. Wallis'. Attempt at Geometric Representation

Despite Bombelli's successful use of complex numbers, most
mathematicians regarded them as impossible, and of course we
call them "imaginary" even today, and use the symbol i for
the imaginary unit ~. The first attempt to give complex
numbers a concrete interpretation was made by Wallis in 1673.
Th{s attempt was unsatis.factory, as we shall see, but neverthe­
less an interesting "near miss". Wallis wanted to give a
geometric interpretation to the roots of the quadratic equation
which we shall write as

2
~ 2bx + 2 0x a

where b, c >- 0 The roots are

= _b±!b2 2
x c

and hence real when b >- .~. In this case the roots can-be
represented by points PI' P2 on the real number line which are

determined by the geometric construction in Figure 1.

When b < c, lines of length b attached to Q are too
short to reach the number line, so the points PI' P2 "cannot

be had in the linetl, and Wallis seeks them "out of that line ...
(in the same Plain)" (sic). He is on the right track, b.ut
arrives at unsuitable positions for PI' P2 by sticking too

closely to his first construction. Figure 2 compares his
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Figure 1.

o

representation of PIP2 = -b - ,~ Ic 2
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the modern representation.
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~allisl representation

Figure 2.

Modern representation
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Apparently Wallis thought + ~nd should continue to
correspond to "right ll and "left", though this has the unaccept­
able consequence that i = -i (let b"+ 0 in his represent­
ation). This was an understandable oversight, since in
Wallis' time' even negative numbers were still under suspicion,
and there was confusion about the meaning of (-1) x (-1) , for
example. Confusion was compounded by the introduction of
square roots, and as late a§.. 1770 Euler gave a "proof" in his
Algebra that 1-2 x 1-3 = 16 .

5. The Fundamental Theorem of Algebra

The assertion that an nth degree algebraic equation has
n roots, and the cons~quent acceptance of imaginary roots, is
usually credited to Girard (1629). Descartes, in 1637,
observed that if x = a is a root of p(x) = 0 , then
p(x) - pCa) is divisible by x - a , hence p(x) = (x-a)q(x)
where q(x) is a polynomial of lower degree, and one can
recursively factor any polynomial p(x) into linear factors
given a single root of each algebraic equation. The funda­
mental theorem can therefore be restated as the assertion that
any algebraic equation has a root, and the existence of n
roots is a corollary.

The first attempt at a proof was made by D'Alembert in
1746. In fact, D'Alembert usually receives more credit for
making the attempt than actual execution, though his idea was
eventually developed into a rigorous proof by Weierstrass in
1891". A better, though still unsatisfactory, attempt was
made by Euler in 1749. It, was Gauss who, in 1799, gave the
first reasonably satisfactory proof~

This proof, in Gauss' doctoral dissertation, departed
radically from previous approaches by employing topological
arguments_~ That is", Gauss was concerned wi th qualitative
properties of curves, such as whether they intersect or not,
rather than quantitative properties such as the position of
intersection. His topological arguments were plausible
rather-than rigorous, nevertheless he correctly judged that
the fundamental theorem of algebra is best viewed topologically.
By basing his proof on qualitative arguments he was able to
show the existence of a root to any polynomial equation,
without having to produce an algebraic formula for calculating
it. This was a shrewd_move because such formulae do not exist
for equations of _degree ~ 5 , as Gauss himself suspected, and
Ruffini attempted to prove, in 1799. (The proof ~hat there is
no algebraic solution,of 5th degree equations was completed by
Abel in 1826.)

The other striking aspect of Gauss' proof is its full use
of the geometric nature of complex numbers. The idea of the
complex plane had crystallised around 1800 in the works of
Wessel (1797) and Argand (1806), in addition to Gauss' much
deeper contribution, but Gauss was unaware of Wessel's work
and evidently believed his contemporaries were not ready for
the complex" plane" (as he later believed they were unready for
noneuclidean geometry). He concealed the complex elements in
his proof by working with real and imaginary parts, and only
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much later (in 1849) did he rework the proof to make the complex
numbers explicit.

The gist of Gauss' proof is as follows.

If we write z = x + iy , then a polynomial function
fez) can be separated into real and imaginary parts:

f (x + i y) = T(.x, y) + i U(x , Y) ,

where T(x,y) ,U(x,y) are polynomials obtained by multiplying
out the powers of (x + iy) in f(x + iy). The points (x,y)
in the plane for which T(x,Y) = 0 form certain curves, as do .
the points for which U(x,y) = O. We want to show there is a
point where a U = 0 curve meets a T = 0 curve, because there
we have

f(x + iy) = 0 + iO = 0

and hence a solution z = x + iy of the equation fez) = 0 .
Gauss shows the existence of such a point by showing that there
is a certain large circle which the T = 0 and U = 0 curves
meet alternately , which implies th~y meet each other somewhere
inside the circle (Figure 3).

u=o

/
/

/,
/

/

/ T=O

Figure 3.

u=o

, , ,
" T=O

"', ,
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SAME SUM, SAME PRODUCT ..

Do you see something special in the following four
t~iples?

(14, 50, 54)
(15, 40, 63)
(18, 30, 70)
(21, 25, 72)

No?

Then quickly get your calculator (of course you can also
use pencil and paper'!) and add the numbers of each triple.

You get a nice result but of course that's no big deal.
You're quite right.

Now for multiplication.

Again calculate the product of each separate triple. You
have already seen the. result in the title of this article. If
you want to know if this really is something special, consider
the following questions.

Can you find a fifth triple with the same sum and the
same product as the triples shown" above?

Or to start simply: can you find two triples which
have equal sums and equal products 'but different from
the above sums and products?

Three triples?

Is it perhaps easier with pairs?

Or with quadruples?

To show that the example.shown above is not so special,
here is a solution with five triples.

( 6, 480, 495)
(11, 160, 810)
(12, 144, 825)
(20, 81, 880)
( 33 , 48, 900).

t This article is a translation from the Dutch by A.-M. Van­
denberg. It first appeared in the journal Pythagoras~

Vol~ 24, and is reproduced under an exchange agreement.
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To our great astonishment~ in a booklet on mathematical.
puzzles we found another such example interwoven into one large
magical squ~re! You can see this 8 by 8 square below. All
rows, all columns and both the diagonals, all eighteen of them,
have a sum 840 and also all have the same product. We could
only believe it ourselves after we had completely cheeked it
out - and now let's hope no printing error has crept in.

46

19

216

135

150

119

116

39

81

60

161

114

261

104

25

34

117

232

17

50

45

108

133

138

102

175

52
87

38

23

120

243

15

54

171

184

91

174

51

100

76

69

90

189

136

225

26

29

200

153

58

13

92

57

162

105

203

78

75

68

27

30

207

152

You are probably rather reluctant about checking it. The
addition is fairly manageable bu~ ~u1tip1ication seems a lot
more tricky. The product becomes a number of sixteen digits,
much too large for your calculator .

. But it isn't necessary at all to "figure out" such a pro­
duct: it's much neater to factorize all the numbers of the
square into prime factors and then to compare the products of
those factors. For each row, column and diagonal it has to

be: 27 . 38 . 53 . 7 . 13 . 19 . 23 . 29 .

BROCHURE

The Australian Mathematical Society has published a
brochure called I'Mathematics Graduates are Highly Employable'.'.
The brochure discusses the advantages of a Mathematics
education, employment facts and figures, a list of who employs
mathematicians, and an outline of what Mathematics graduates
do. For information about the brochure, write to Dr J.D. Gray,
School of Mathematics, Univ~rsity of N.S~W., P.O. Box 1,
Kensington, N.S.W. 2033.

The brochure records, "for instance, the information that
out of 34 SUbject areas, mathematics has the 8th highest
employment rate (below medicine, health sciences, law,
accountancy, but above computer science, other sciences and
economics.
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MATHEMATICS AND WEAVING:
II. SETIING UP THE LOOM AND

FACTORIZING MATRICES+
...- ~ -,

Cheryl E. Praeger,
University of Western Australia

The aim of this paper is to describe mathematically how a
loom can be set up ~oweave a given design.

1. Designs

A fabric is described mathematically as follows. Vertical
strands represent warp threads and horizontal strands represeat
weft threads (where a strand is the set of points in the plane
lying strictly between two infinite parallel lines). The
intersection of a vertical strand and a horizontal strand,
called a square, is coloured black or white when the vertical
strand passes over or under the horizontal strand respectively.
All the fabrics considered in this paper are·periodic, that is
they consist of·a finite block of squares which is simply
repeated as we move across or down th~ fabric. Such a block of
squares is called by weavers a design, diagram, draft,draw-down
diagram or point diag;ram and is the way a weaver.would usually
describe a weaving pattern. We associate with each design a
matrix of O's and ITs that is a binary matrix, by replacing

_each black square by a I and each white square by a 0 , see for
example Figure 1.

(a)

(b)

Binary matrices corresponding
to the designs in (b).

(a)

(c)

(c)

Figur~ 1. Plain weave.

A design for the fabric~ (b) The smallest possible
designs.

Y This article continues Professor Praeger's discussion of
weaving; see Punction, vol.9, Part 4 for the earlier part.
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So when we talk of a desigh D we will mean either an array of
black and white squares or its corresponding matrix. Our
problem is : given a design D , describe mathematically how to
set up a loom to weave D .

2. Looms

Figure 2.

A loom (see Figure 2) can be regarded as a device the
purpose of which is to hold the warp threads parallel to each
other and under tension. There is usually a mechanism for
separating the warp threads into two layers so that the weft
threads can be inserted in the space between the two layers;
this space is called the shed (see Figure 3). Thus the weft
threat passes over some warp threads and under others. Before
the weft thread is passed
across the warp threads
each time, the composition
of the two layers is changed
to produce the desired
pattern. For the
simplest woven pattern,
that of plain weave
depicted in Figure 1,
there are just ,two warp­
weft interJacement
sequences which alternate
as we move down the
fabric, namely under­
over-under-over ... and
over-under-over-under.
How do we go about setting
up the loom to weave the Figure 3.
fabric represented by a design D ?
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The description given below is based on work by mathemat­
ician and weaver, Janet Hoskins. She has also investigated
the similar problems of weaving a given pattern on two types .of
multiply threaded looms. We will show' that D is the matrix

product D = ABTC of three binary matrices A,BT,C ; where A
is called the shed matrix, B is cailed the t~e up matrix3 C
is called the threading matrix~ and BT is the transpose of B
(that is the matrix obtained from B by interchanging the
rows ~nd columns of. B , for example the transpose of

[~
o
1 ~] is

Each of A~B~C provides significant information about the
processe~ of weaving the design D , and A~B and C together
give enough information to ~lloW a loom to be set up to weave D.

Figure 4.

On some looms, operation of
a treadle causes its harness to
move up~ards. From now on, we
will assume we have such a loom.

3. Factorizing D

The loom is prepared as follows. The warp threads are
connected to object9 called harnesses (see Figure 4). Each
warp thread is 'connected to exactly one harness. Certain
combinations of harnesses are
then connected or "tied Up"
to objects called treadZes ;
(think of a. treadle as a
foot-pedal). When a treadle
is operated those warp threads
whose harnesses are connected
to it move downwards ·to pro-

. duce a. shed through which the
weft thread may move. Thus }
we require (i) one harness . Harness
for each warp thread - noting
that a given harness may be
tied to several warp.threads,
and (ii) one treadle for each
row in the design D - noting
that when several rows of D
are the same then the same
treadle can be used for each
6f them.

We now define the matrices A~B and C with particular
reference to the example given in Figure 5.

First we number the harnesses 1, h. in some way.
The threading 'Imatrix" C as shown in Figure' 5 has one column
for each warp thread, (the warp threads correspond to the
columns of D remember), and one row for each harness; there
is a cross in the row i column J position if warp
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thread j is tied to harness i , otherwise the position is
blank. This threading "matrix" C is conve,rted to' a binary
matrix by substituting a 1 for.each ~ and a 0 for each
blank. Thus C = (c .. ) has exactly one 1 in each column.

1"J

C threading "matrix"

x· X
X X

X X

B tie-UD "matrix"

x
'X

')(

x
X

X
X

X
'X

A
shed

"matrix"

D design Fig;ure 5.

Next we number the treadles 1, ... , t in some way_
The tie up "matrix" B as shown in Figure 5 has one row for
each harness and one column for each treadle; ~here is a
cross x in the row i column j position if harness i is
tied up to treadle j , otherwise this position is blank.
This tie up "matrix" B is converted to a binary matrix
B = (b ij) by substi t~ting a 1 for each .x and a 0 for

each blank.

Finally the shed "matrix" A has one column for each
treadle and one row for each row of D , that is for each weft
thread; there is a cross x in the row i column j
position if' the shed for weft thread i is created by oper­
ating treadle j , otherwise this position is blank. As for
the 'threading matrix, this shed "matrix" A is converted to
a binary matrix by substituting a 1 for each x and a 0
for each blank. Thus A = Ca .. ) has exactly one 1 in
each row. 1"J

For the example given in Figure 5 we obtain the following
binary matrices A,B,C and D and a little checking shows

that D = ABTC; we shall show that this equation always holds.
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1 0 0

gI =[~ 1
0 1 0

=[~
0 0 1 0 0 1

A 0 0 l B 1 C 1 0 0 1 0
1 0 0 0 0 0 1 0 0
0 I 0
0 0 I

I 0 0 1 0 0
0 I 0 0 1 0

D= 0 0 I 0 0 I
1 0 0 1 0 0
0 1 0 0 1 0
0 0' I 0 0 I

We show that for all designs, D = ABTC. We denote the
row i column j entry in A,B,C,D by a .. ,b .. ,c .. ,d ..

1"J 1"J 1"J 1"J
respectively. The entry d .. of D is I (that, is,. weft

1"J
thread i passes under warp thread j)" if and only if the
treadle k which is operated for ~ow i is connected to the
harness t to which warp thread j is tied. In terms of
the entries in the matrices: did = 1 if and only if the

unique non-zero entry aik in row i of A, and the unique

non-zero entry C tj in column j of C are such that the

tk-entry b tk of B is also non-zero, 'that is,

Note that all of the expressions 'a. b c .as x(x=l,2, ... , t)
. 1"X yx YJ

~~d y(y = 1,2, .,. h) run over all allowable ,
values, the only one which has a chance of being non-zero is
aikb~kctj and this one is non-zero if and only if b~k = I .

Thus

d ..
1"J

1 if and only if a. be.
1"X yx YJ

1 ,

where the summation is over all allowable x and Y
Moreover d .. = 0 if and only if this sum is zero. This

1,,;)

result, in terms of matrix products, is.precisely the equation

D = ABTC , because the sum

,L a. be.
1"X yx YJ

is the (i~j) element in ABTC , by the definition of matrix
product.
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4. Methods of factorizing D

Thus we~have_seen that the factorization of D as the

product of A,B
T and C gives us enough information to set

up a loom and weave the design D , provided of course that the
the number of rows of C (that is the number of harnesses
required) is at most the number of harnesses available on the
loom, and the number of columns of A (that is the number of"
treadles required) is at most the number of treadles available
on the loom. The problem "therefore reduces to the following:
given D , find an efficient method "of factorizing D as

the product of three b~nary m~trices A~~T and C such that
each column of C contains exactly one 1 and each row of A
contains exactly one 1. A solut~on of this problem was
published-in 1981 by J.A. and W.D. Hoskins. Thetr method
involves first partitioning the set of columns of D into
classes such that two columns are in the same class if" and only
if they are equal. Each class corresponds to a harness,-that
is a row of C, and the matrix C is easily constructed as
follows: the rows of C correspond .to harnesses and the
columns of C correspond to columns of D; the row i
column j entry of C is 1 if and only if column j of D
lies in the class corresponding to harness i. This part of
the method w~s well known and used by weavers. Partitioning
the rows of D in a similar manner produces A. Finally T
a particularly easy computer solution of the equation D = AB C

was possible which yielded BT and hence B. A computer is
helpful because a typical matrix D in practice could have of
the order of 1000 rows or columris!-

5. Conclusion

In this paper I have shown how to obtain mathematically
enough informatiop from a design to set up a 100m to weave the
design. I remind the reader that not all designs when woven
produce a fabric which hangs together, but that this can be
tested using the method discussed in the earlier article,
Function Vol.9, Part 4.

The largest prime number so far discovered is 2216091 -1 ,
~ccording to the 'Los Angeles Times' of 18th September. This
number, of 65050 digi ts, was discovered by an oil company_ in
Houston, Texas, not by drilling below the ground, but during
trials of their new Cray computer, which works at 400 million
calculations per second.
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FOLDING A 60° ANGLEt

How would you fold an angle of 600 in a strip· of paper?
Folding a right angle is easy - just fold the paper back on
itself and crease.

0_-
Folding an angle .of 450 is also easy: fold the strip down
along the first crease.

How would you fold an angle of 600 ? The following procedure
is due to Professor Jean Pedersen, of the University of Santa
Clara in California.

Start with a strip of paper about 25cm long and 4~cm wide
(a piece of gummed brown paper tape is ideal) and fold any
angle you like at the ~eft hand end by folding the right hand
end.up.

Crease firmly and unfold.

7
Now fold the right hand end of the strip down along the first
crease (similar to the second diagram above), crease firmly and
unfold.

!\

t This article is .reprinted under an exchange agreement with
MathematicaZ Digest (RSA) in which it first appeared (No. 59,
April 1985).
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Now fold the right hand end of the strip'up along the second
crease, crease firmly and unfold.

7\/
Continuing in this way, folding alternatively up and down
along the previous crease, you obtain a pattern of creases
along the strip.

Now for the surprise: whatever the angle you foided at
the first crease, the angle at the seventh crease will turn
out to be 600 when you check it with a protractor! If you
don't believe it (scepticism is a very healthy mathematical
attitude), do it again with a new strip of paper, starting
with a different angle. The angle at the seventh crease will
again be 600

, according to your protractor.

What is the explanation? Suppose the first angle folded
.was Al and the second A2 . Since the second crease bisects

the angle between the first crease and the edge of the paper,
we have

aNow write Al = 60 + EI . The angle

negative, measures the amount by which

It follows that

!(1800

~(1800

E I ' which could be

Al differs from 600
.

60
0

- tEl,

n 1 (A 600 ) .So A2 - 60 = - tEl 2 I - !

This shows that A 2 is closer to 600 than AI' Similarly,

if the angle at the third crease is. AS ' we find that
a 1 0 1 . aAs - 60 = - z(A 2 - 60 ) = 4(A I - 60 ), and AS is closer

to 600 than A2 .

At each crease, the angle is closer to 60° than the angle
at the previous crease. In fact, the difference between the
angle and 600 is halved at each stage. .
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Take a specific case, with Al

64° , A
4

= 5So , A
5

= 61° A
6

This illustrates wgy your protractor measured the angle at the
seventh fold as 60 . The angle was not exactly 60 ,but the
amount by which it differed from 60 0 was too small to be
detected.

SOLVING QUADRATICS

Garnet J. Greenbury, Brisbane

To solve ox
2
-ax = b

2
, Descartes is said to have pro­

ceeded as follows.

Draw a circle centre 0 ,
and radius OP = a/2. Draw
PT = b , perpendicular to OP
Join TO cutting the circle
at M and L. Then ° TM = x.

Proof·

By Pythagoras' theorem

T0 2 = Tp2 + op2

i.e. (TM _~)2 ~ b 2 + (~)2

i.e. (TM)2 - a(TM) = b 2 .

This shows that x = TM is a
solution of the equation.
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THE RAMBAM
Hans Lausch, Monash University

Those who appear to be talented and to have
capacity for the higher method of study~ i.e.
that based on proof and on true logical argu­
ment~ should be gradually advanced towards
perfection, either by tuition or by self­
instruction.

This quotation is a guide to our learning community t'oday
as much as it was 850 years ago. 1135 was the year when
Henry I died after having lost his Matilda, but it was also the
year.when Rambam was born. Who was the Rambam? There is an
extremely brief answer to this question: he was Abu ~mran Musa
ibn Maimun ibn 'Abdallah ·al QurtubI al-IsratIlI. He became
better known by his proper Hebrew name R(abbi) Mosche ben
Maimon, hence the acronym Rambam, but also as Moshe hazman (the
Moses of his' time), Moses Maimuni, Moses Aegyptius, Hanesher
hagadol (The Big Eagle), and especially Maimonid_es. He was
born in Qurtuba in the country of al-Andalus, i.e. Cordoba in
Spain, on the eve of .Pesach (Passover). He died in Fustat
(Old Cairo) on 13 December, 1204 and was buried in Tiberias in
the Holy Land, where his tomb can still be seen. His family
lived in Cordoba until 1148/9 when the North African Almohades
conquered Spain and began their rule with religious persecutions.
Moshets family left Cordoba and is believed to have lived for a
dozen years in various places in Spain; in 1160 they settled in
the Motoccan city Fez, but had soon to move again~ reaching
Fustat in 1165 after a brief stay in the Crusader Kingdom of
Outremer. Moshetsfa-ther soon died and Moshe practised
medicine to support the family. He spent th~ rest of his life
in Cairo and became a famous physician. He was patronized by
~ala~ al-dln'~ (Salad~n, King_Richard Coe~r_de Lionts chivalrous
opponent) wazir, al-Qa~i al-Fa~il al-Baisani; later he became_
physician to Saladin himself and his son. From 1177 he was
nagid, i.e. leader of the Jewish community in Egypt.
Maimonides' most popular work is I'Dalalat al-tta ' irIn", better
known by the name of its Hebrew translation "More nevukhim"
which means "teacher of the confused" or "guide of the
perplexed'! .

In a Function article, it is perhaps not quite appropriate
to .depict Maimonides as the old philosopher with turban and
beard, nor is there any need for doing so tradition has it
that Moshe wrote the important work "Maqa a fi sina 'at al­
mantiq", a tr~atise in the art of logic, n fourteen chapters,
when he was about sixteen. It is partly lost in Arabic. .
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Its first translation into Hebrew, "Milot hahigayon", is by
. Moses ibn Tibbon (1254), and amongst scholars, it became widely
known in this form. Maimonidestells us in his introduction:
"An eminent person, one of the masters of the juridical sciences
and the possessor of clarity and eloquence in the Arabic lang­
uage, has asked a man·who studied the art of logic to explain to
him the meanings of numerous terms frequently occurring in the
art of logic: to interpret to him the technical language
commonly adopted by the masters of the art, and to endeavour to
do this with extreme brevity and not to indulge in details of
meaning, lest the discourse become too long. 'I He then pro­
ceeds to explain 175 logical terms. Maimonides' astonishing
knowledge at the age of 16 is based on work by two great Moslem
scholars: Abu ~asr ~u~ammad ibn Mu~ammad ibn Tarkhan ibn
UZlagh al-Farabi (873-951) and Abu ~amid MUQammad ibn Muhammad
al-TtisI al Shafi'i al-Ghazzall (1058-1111). Ultimately·the
treatise rests on Aristotle's eight books of logic. Here are
a few "dictionary entries" drawn randomly from amongst the 175
terms ("Milot"): individual, accident, definition, categories,
compound expression of information, distinct, mathematics, the
art of logic, physics, laws, right, wrong, prior in excellence,
together in order, correlation, opposites, difference, elements,
agent, form, first ideas, syllogism, premise, conclusiop, con­
tradiction, binary sentence. Here are some of Maimonides'
definitions:

I' ... the subject and the predicate together is called a
. proposition."

"Every proposition either affirms something of something,
e.g., "Zayd is wise") °IlZayd stands", or negates something of
something, e.g.) "Zay d is not wise", !!Zayd does not stand".

liThe affirmative proposition may affirm the predicate of
all of the subject, e.g., "Every man is an animal'; and we
call it a universal affirmative,· and we call 'everyl a
universal affirmative sign."

"[The affirmative proposition] may affirm the predicate of
a part of the subject, e.g., 'Some men write'; and this we
call a particular affirmative, and we call 'some' a particular
sign."

In chapter 6 and 7, Maimonides uses these and other explana­
tions to tell us about syllogisms, i.e. correct management qf
propositions, the daily bread of the mathematician. The .
essence of what he explains can be illustrated by means of
"more modern" examples which were invented by Lewis Carroll,
best known through his "Alice t s Adventures in Wonderland't.
You are invited to'useo your logical skills foro finding correct
conclusions, as a practical introduction into the art of
syllogisms.

(1) Everyone who is sane can do Logie;
(2) No lunatics are fit to serve on a jury;
(3) None of your sons can do Zogic.

Conclusion?
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(Answer: If your sons were fi t to serve on a jury, they woul.d
have to be sane (2). They would thus have to be able to do
Logic (1). But they cannot do Logic (3). Conclusion: Your
sons are not fit to serve on a jury.)

Now try these yourself.
Editor ._

Please send your conclusions to the

A . ( 1 ) Babi e s al?e i II 0 gi c a ~ ~ ( 2 ) Nobody i $

despised who can manage a crocodile;
(3) IlZogical persons are despised.

Conclusion?

B. (1) Gentiles have no objection to pork;
(2) Nobody who admires pigsties ever reads
Hogg's poems; (3) No Mandarin knows Hebrew;
(4) Everyone who does not object to pork>
admires pigsties; (5) No Jew is ig~orant of
Hebrew.

Conclusion?

C. (1) The only animals in this house are cats;
(2) Every animal is suitabZe for a pet> that
loves to gaze at the moori; (3) vlhen I detest
an animal> I avoid it; (4) No animals are
carnivorous> unless they prOWl at night;
(5) No cat fails to kill mice; (6) No animals
ever take" to me~ except what are in this house;
(7) Kangaroos are not suitable for pets; -
(8) None but carnivora kill mice;
(9) I detest animals that do not take to me;
(10) Animals~ that prowl at night> always love
to gaze at the moon.

Conclusion?

Another work of Maimonides which is of great interest to the
mathematician and" astronomer, deals with the calendar. But
that is another stor~

"After a low of 14, tomorrow's top temperature should
reach 23 degrees."

ABC weather forecast (3AR)



PROBLEM SECT.ION

SOLUTION TO PROBLEM 9.1.1.
A boy took a calculator with him when he went to the

store. He bought four items and calculated correctly that
their total cost was $7.11. The only trouble was that he
used the multiply key to reach his answer. What did the
items cost?

Let a,b,c,d be tne costs. Then we have

a+b+e+d abed 7.11.

If we work in cents, let A = 100a , B = 100b , C = 100e ,
D = 100d. Then A,B,C,D are integers, and

A + B + C + D = 711 ABCD = ~ll x 108 79 x 26
x 32x 56.

One.of A~B~C~D must be a multiple of 79. If we try, for
example, D = 79 we get A + B + C = 632 and

ABC = 26
x 32

x' 56 = 9 000 000. For all positive A,B,C, the
1

"arithmetic" mean 3(A+B+f) has to be greater than (or equal)l

the geometric mean (ABC)3, and indeed %(632) > (9 000 000)3

So far so good. If:, instead, we had tried D = 79 x 2 , or

D = 79 x 22 ,or D = 79 x 3 , then again %(A+B+C) > (ABC)~ in

each case, as has to·be true. But if we tried any other
available mul tiple of 79 , e. g. D = 79 x 5 or D = 79 x 2 x 3
etc., we find an impossible situation arises for A,B~.,C .

Whichever of the cases D = 79 ,or 79 x 2 ,or 79 x 22

or 79 x 3 we consider, at lsast one factor, say C, has to be
a multiple of 25 (because 5 has to be shared between three
factors). But if we tried, for instance, D = 79, C = 25,

then. A + B = 607 and AB = 26
x 32

x 54 = 360 000 ind this

combination violates the inequality !(A +B) ~ (AB)2 which

must always hold. Arguing in this way, we find there is only
one combination of values which is possible

A = 120 , B = 150 , C = 125 , D = 316

except for rearrangements amongst themselves.
amounts were $1.20 , $1.50 , $1.25 , $3.16 .

The original
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. SOLUTION TO PROBLEM 9.1.3.
The decimal representations of n113, n =1,2, ... , 12

each have a period of 6 and belong to one of two families
(each of which has 6 members).. ·If il13 belongs to one
family, then (13-i)/13 also belongs to that family. 'Why is
this so?

If you write out the decimal representations of the twelve
numbers, you find six of them involve repetitions of 076923 and
another six involve 153846.

Wben 10, 20, 30,
remainder, as follows:

are divided by 13, there is always a

10 remainder
7 remainder
4 remainder

remainder
11 remainder
8 remainder
5 remainder
2 remainder
12 remainder
9 remainder
6 remainder
3 remainder.

with
with
with
with 1
with
with
with
with
with
with
with
with

o times
1 times
2 times
3 times
3 ·times
4 times
5 times
6 times
6 times
7 times
8 times
9 times

13 goes
13 goes
13 goes
13 goes
13· goes
13 goes
13 goes
13 goes
13 goes
13 goes
13 goes
13 goes

divided by
divided by
divided by
divided by
divided by
divided by
divided by
divided by
divided by
divided by
divided by
divided by

10
20
30
40

:50
60
70
80
90

100
110
120

Each number from 1 to 12 appears as a remainder ex~ctly

once.

In converting n/13 into a decimal, one adds zeros ~nd

divides, going through the above table in.a pattern that goes
from the line with remainder n t-o the line that starts with
IOn. This procedure puts one into orie of two endless loops,
producing the two families of decimal representations.

1/13 and 12/13 are in the same family for the following
reason:

771001 x 1/13 1000 x 0.076923 + 1/13

76.923076 + 1/13

And of course, .~2307~ = 12/13. Thus 12/13 and 1/13 not only
must be in the one family, but must be three digits apart in
their representations. A similar argument can be given for
any other pair n/13 and 1 - n/13.
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SOLUTION TO PROBLEM 9.3.1.
(Solution submitted by John Barton, North Carlton, and also by
the proposer, Garnet J. Greenbury, Brisbane.)

(iJ Show that any positive integral power of the
product of the first four odd numbers leaves
a remainder 1 when divided by 8 or 13.

Since 1.3.5.7 = 105 = 8.13 + 1

= l3e + 1, say,

we have

(13e + l)n = (13e)n + (~) (l3e)n-1 + ... + (n~l) C13e) + I
M( e) + 1

where M(e) denotes a multiple of e , that is, of eight.

This establishes the first result, and the second one (dividing
by 13) is done in exactly the same way, by writing 105 = 8t + 1.

(ii) Find the set of numbers~ such that anyone of
them when divided into (5 x 7 x ll)n ~ where n
is any positive integer leaves a remainder of 1.

5 x7x"11 = 385 = 1 +'384 1 + 3.27 .

Bearing in mind the argument of (iJ , it is clear that the
required set Ls the set of factors of 384, viz.

3

2

6

4

12

8

24

16

48

32

96

64

192

128

384

(iii) Is there a similar result for (7 x 11 x 13)n ?

7x1l x13 = 1001 = 1 + 103 = 1 + 2 3 .5 3

The required set is the set of factors of 1000, viz.

2

20

4 8

100

5

500

25

40

125

200

10 50

1000

250

We note, concerning these sets, that they are complete, because,
although there may be larger sets with the required property for
values of n > 1 , the requirement that n be any positive
integer and so po~sibly =1 restricts the sets to the factors as
given.
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Solution to PROBLEM 9.3.3. If 0 is the centre of a circle
and M lies on its circumference and if A,B lie outside
the circle~ show that AM + ME wiZl be maximised if OM
bisects ~AMB. Show the same property if this distance is.
to be minimised.

This problem was submitted and solved by Hai Tan Tran,
Plympton Park, S.A., and two other, very different, solutions
were offered by John Barton. Here is Hai Tan Tran's solution.

Let AM + MB = 2a , the sum of the distances from M to
the two fixed points A and B. Take A and B as foci,
and draw the ellipse consisting of all points (including M )
where distances from A and B sum to 2a.

For different positions M
on the circle, we get different
values of 2a and "different
ellipses. The ellipse which
maximises 2a just touches the
circle tangentially. But
according to the properties of
ellipses, MA and MB make
equal angles with ~he tangent
to the ellipse at M, which
is also,tangent to the circle.
But for the circle, OM is
perpendicular to this tangent,
so that OM bisects ~AMB

M

A similar line of reasoning can be given for the case of
a minimum.

Here are some new problems to try:

PROBLEM 9.5.1 (submitted by John "Mack, Sydney)
I ha~e N weights weighing 1 kg, 2 kg~ ... , N kg respectiveZy.
I wish to remove one weight of m kg so that:

Sum of (weights < m kg) sum of (weights> m kg ).

For what values of N, m is this possible?

PROBLEM 9.5.2 A rectangular sheet of paper measuring a em
by b em isfo lded so that one corner' jus t reaches an opposite
edge. Show how the paper must be folded in order that the
length of the crease shall be a maximum. .

PROBLEM 9.5.3 Two cylinders of equal radius, r, intersect at
right angles. Find the volume common to the cylinders, assum-
ing their axes of symmetry intersect.
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PERDIX

Question 6 of this year's international olympiad compet­
ition (Function, Vol.9, pt.4) has aroused much interest. The
solution offered below is largely taken from written communic­
ations (for which many thanks) from John BartoD, formerly of.
the mathematics department of the University of Melbourne, from
Geoffrey Watterson, an editor of Funotion, and John Miller,
both of the mathematics department at Monash University.

The problem is (No.6, IMO, July 5, 1985):

For every real number xl ' construct the sequence"

xl' x 2 , ... , by setting

x .= x . (x + 1) (1)
n +1 n n n

for each n ~ 1. Prove that there exists exactly one

value of xl for which 0 < x n < x n +1 < 1 for every n .

Solution. Some preliminary results on inequalities.

LEMMA 1. Let
coefficients.

P(X)
Then

be a non-zero polynomial with positive
o < a < b implies PraY < P(b) .

Proof. This follows because 0 < a < b impl~es that at < b t

for any positive integer t ,whence kat < kb t if k > 0 .
Q.E.D.

COROLLARY. Let P(x) be as in lemma 1, and let Q(x) be
obtained from P(x) by possibly increasing any or alZ of the
(non-zero) coefficients. Let 0 < a < b. Then
a P(a) < a Q(b)

Proof. pea) < PCb) > by lemma 1. PCb); Q(b) > by con­

struction. Hence pea) < Q(b) ,whence a PC a) < a Q(b) .

Q.E.D.

Let·us call sequences xl' x 2 ' ... , determined from xl by

the formula (1) of the problem, C-sequences. For this problem
wecan assume that 0 < xl <·1; we assume this for alZ

C-sequences in what follows. Notice that it then follows from
(1) that every term of each C-sequence is positive.

LEMMA 2.

and x n

Proof·

x < x + 1 in a C-sequenee if and only if x > 1_1 .
n n 1 n n°'

x n + 1 if and onZy if ,xn 1 -n
By (1) we have

x 2 + 1:. x - x = x (x - (1 _l)x n + 1 - x n n n n n n n n
whence, since x

n
> 0 , the result follows.
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Lemma 2 shows that there are two types of C-sequence

Type I : such that there is a k (k may equal 1) such that

xl < x 2 < .•• < x 7c ~ x k + 1 > x k + 2 > ..• > xk + t > •..

Type II: such that the sequence steadily increases, i.e.

< x < •.• <
n

We say also that x is of type I or of type II according
as the c-series it starts is of type I or of type II, re~pect­
ively.

-k
Then x n < k +1 for some

in the C-sequenoe started by

xl be of type I .

k and for all x n

LEMMA 3. Let

fixed integer
xl .

Proof. Take k as in the C-sequence of type I exhibited
above. Then x k ~ x k + I;' so by lemma 2, x k ; I - k .

Ilk
But I - k < 1 - k'+l = k +1' Thus xk ' the largest term of

k
the C-sequence, is < k +1 . Q.E.D.

LEMMA 4. Let be of type I and b l . be of type II .

Then a l < b 1 ·

Proof· Formula (1) ensures a l ~ b l implies. a2 ~ b 2 '

which in turn implies as ~ b S and so on, a > b ,for
n = n k

all n. By lemma 3 there then exists k such that· an < k +1 '
k

for all n ,whence bn < k + 1 for all n In particular,

I
th~n b.k + I < 1 - k + l' and so bk + 2 < bk + I ' by lemma 2.

Hence. b l is of type I , contrary to assumption. Q.E.D.

Denote the set of all type I numbers by A , and the set
of all type II numbers by B. It is easily checked that

~ is of type I and 'that ~ is of type II So, by lemma, 4 ,

it follows that the numbers x such that 0 < x < 1 have been ­
divided into two non-overlapping sets A and B such that all
the numbers in A are less than all the numbers in B .
There must therefore be a number 0 , say, separating A and B
with the property that 0 < x ~ a for all x in A and
a ~ x < 1 for all x in B . - [0 ~ 0.645928 , found by trial
and error with a computer.]

In which set does a lie?

We now show that c is the least element of B , and
thence that c is the unique Xl sought as the solution to the
problem.

We need a couple of formulae.
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the

Let xl

C--series

start the C-series

Let

Xl' x 2 ' ... ,

Xl < Yl .

and Y1
For each

start

n set

£ n
£n+1 = Y n+1 -Yn +1

y - X Then by (1)
n n I

(Y n -xn)(Yn +xn +n)

[(Y n -1 -xn -1)(Yn -1 +xn -1 +n :1)]

i.e. (2)

This is the first formula needed.
into a differe·nt form.

We now put this ·formula

From the definition of

Yl +x1 +1 = £1 +2x1 +1 .
£1 '

Hence

so

X 2 + £1 (Y1 +'x1 + 1)

x~ + £1 (£1 +2x1 + 1)

and so
.1

£ 1 ( £ 1 + 2x1 + 1) + 2x 2 + 2"

2 1
£ 1 + (2x1 + 1 ) £ 1 + 2x2 + 2"

Continuing in this way we see that Y
n

+xn +~ is a polynomial

in £1' with coefficients that are polynomials in

x
1

,x
2

' ... , x n with all non-zero coefficients positive.

Hence the same is true for the product
1(Yl +x l + 1) ... (Y n +xn + n) Substituting in (2), we have

LEMMA 5. (3)

where Pn(£l) is a polynomial in £1

are poZynomials in x1~ x2~ x n ~

coefficients are positive.

with ooeffioients that

aZl of Whose non-zero

LEMMA 6. Let Xi and Y1
the C-sequence begun by Yl

be in B with Xl < Yl. Then

has a term greater than 1 •
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Proof· We use formula 2. Since xl and
1 1

type II, x k > 1-7<. and Yk > 1- k for
1 1

Yk+xk+I>2-I' for all k.

Yl are of

all k. Hence

(2) ,Thus, for 1 3
k ~ 2, Yk+xk+k~2. Hence, in

En +1 ~ (Y1 -x1 )(Y1 +x1 +l)(lf -1 .
Consequently, since Yl > xl' for some n, Yn+l > 1 .

Q.E.D.

Q.E.D.

B •be inLet Then
c +x1

since c separates .A and B ---2-- is also in B By the

lemma therefore, there exists a member x n +1 of the C-sequence

starfed by xl such that x n + 1 > 1 .

COROLLARY. No element of B~ exoept possibly c -' generates a
C-sepies for' which 0 < x n < x 1 < 1 -' for all n ·

n + c +x
1

o < --2- < xl' and,Proof·

LEMMA 7. The number . C does not lie in A •

Proof. Suppose 0 lies in A ,. and so is the largest number_.
of A. Set· xl = c and Y 1 =xl +£1 ,where £1 is a pos-

itive number. Then for the C-series Xl' x 2 ' and

Yl' Y2' setting £k = Yk - x k ' for all k ,

£
n +1 £1 Pn e£l)

('
by formula (3). If is£1
by lemma 1, since by lemma 5,

lemma 1 to hold. Now here,

less than 1 , then Pn(£l) <Pn(l),

P satisfies the conditions for
n

o = Xl' x 2 ' ... are constants,

and YI' Y2 ... depend on the choice of £1· Hence Pn(l) is

a constant, depending on n, P
n
(l) = K

n
~ say, and when

o < £1 < 1, £k + I < £1 Kk .

Now choose k as follows Xl is of type I and so', by
klemma 3, we can choose an interger k such that x n < k +1 '

for all n .

Next choose £1 small enough to make
k

x k + 1 < Yk+ I = x k + 1 + £k + 1 < k + 1 (for example

1 k
£1 = K

k
(k +1 - x k +1) will do).

but this is a contradiction, since

largest number of type I.

Thus is of type I ;

c and c is the
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Consequently c cannot belong to A .

Thus c is the least eZement of B .

FINAL RESULT .. The C-series cl~ c 2~ started by c ::::
C 1 ~

satisfies 0 < c < c n + 1 < 1 for alZ n ; and c is then
only number with this property.

Proof. Consider the C-series of type II started by Yl:::: C

and that started by xl:::: YI - E: I ' of type I since xl < Yl :::: c ,

and so xl is in A. Of course we choose £1 so that 0 < Xl.

By lemma 3 there exists an integer k
for a'll n. Thus, setting

k
such that x n < k+l

i.e.

whence

E: n + 1 Y n + 1 - X n + 1

k
Yn + 1 - E.: +1 < k + in

<
k +Yn + I k + 1 E: n +1

Yn + 1 < 1 + £ n + 1
, for all n .

But £n + 1
:::: £1 Pn(E: I ) , by lemma 5. Let Qn(£l) be

obtained by replacing Xl by !fl , x 2 by Y2 , and X n
by Yn Since Pn(£l) has the form described in lemma 5, by

the corollary to lemma 1, choosing E1 < 1, we have

En +1 = E l Pn(E l ) < E: l Qn(l) .

Here Qn(l) is a constant Ln ' say, depending on the con-
stants Yl:::: C , Y2~ Yn ' Thus

En + 1 < £1 L n
so En +1 can be made as small as we please, by choosing E l
sufficiently small. This is true for each n. Hence, for
each n ,

Y n + I < I + En + 1

says that Y
n

+ I is less than any number greater than 1 . .So

Yn + 1 cannot be bigger than 1. Hence

for all n .
< I (4)

But clearly no Y. n :::: I; for if y :::: 1 then v > 1 - 1:.
n' "'n n'

and so by lemma 2, Y
n

+ 1 > Y
n

:::: 1. This contradicts inequali ty

(4) . Hence Yn < I for all n .
This completes the proof.
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