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Function is a mathematics magazine addressed principally
to students in the upper forms of schools. Today mathematics
is used in most of the sciences, physical, biological and
soclal, in business management, in engineering. There are few
human endeavours, from weather prediction to siting of traffic
lights, that do not involve mathematics. .Funetion contains
articles describing some of these uses of mathematics. It also
has articles, for entertainment and instruction, about mathe-
matics and its history. Each issue contains problems and
solutions are invited.

It is hoped that the student readers of Function will con-
tribute material- for publication. Articles, ideas, cartoons,
comments, criticisms, advice are earnestly sought. Please send
to the editors your views about what can be done to make
Function more interesting for you.
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One of Funection’s predecessors was the widely read and in-
fluential Ladies’ Diary, an intellectual journal for women,
notable for its inclusion of a mathematical section. Over 100
years ago, mathematics was seen as part of the general culture
and no one saw anything strange in a women' s magazine d1scuss1ng
mathematics. How times have changed!

The concept of area and its generalisations have generated
much important mathematics from the days of Archimedes to the
present. Concepts 1mportant to calculus and probability theory
find their origins in this aspect of mathematical enquiry.

Just two of the stories told in this issue of Funetion.
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THE FRONT COVER
J.C. Stillwell and M.A.B. Deakin
Monash Umversny

b/

If a circle ¢ is rotated about an axis 4 that lies in its
plane but does not intersect it
(Figure 1) the result is a cir-
cular tube - a donut-, or ring-
shaped object now referred to as
a torus. The torus was one of
the few surfaces studied by the \\—/f
Greeks of antiquity. (The others
were the sphere and its genera-
lisation the spheroid, the

cylinder and the cone.) The : r
Greek name for the torus was
spira.

i
: |
Imagine now a plane :
slicing through a torus in a 7
direction parallel to the axis Y Y——
A. The intersection will be a !
curve whose shape depends on the
distance between the plane and A
the axis. 8Six such curves are : Figure 1
shown in perspective on the
cover. From left to right they are

(a) a convex, or outwardly bulging, oval
(b) a pinched or squeezed oval

(c) a pair of ovals

(d) a figure eight curve

(e) another pinched oval

(f) -another convex oval.

These curves are known as spiric sections, and it is
believed that they were first discussed by the Greek geometer
Perseus. Very little is known about Perseus. It is thought
that he lived in the third century BC, but even this date is
doubtful. We know about him from two rather obscure passages
in a work by the later Greek geometer Proclus, who relied on
the account given by yet another author Geminus.

+This is based in part on a discussion in E. Brieskorn and

H. KnSrrer's Ebene Algebraische Kurven (Algebraic Plane Curves)
published by Birkh¥user (1981). Birkh#user will also be
publishing the English translation of this work, prepared by
J.C. Stillwell.
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If p is the radius of the circle C, and if g is the
distance between the axis and the centre of this circle, and
k is the distance from the axis to the plane intersecting the
torus, then we have convex ovals (a), (f) if

a <k <a+r.

This one Proclus listed as the second curve '"broad in the -
middle". Pinched ovals (b), (e) are produced if

a~-r <k <qg
(Proclus' third type 'narrow in the middle'). 1If
k=a-np,

the figure eight curve (d) isvproduced. This was Proclus' first
type, which he called the "hippopede", or "horse-fetter'.

Finally, if
0Lk <ag-mn,
a pair of ovals results.

; Quite what Perseus discovered of all this is a matter of
some doubt. One authority, Ivor Bulmer-Thomas, believes that
he ignored the 1last possibility and the case a = % (absorbing
it as we do into the case a < k ) and thus found three types
out of a possible five. Proclus wrote "Three lines upon five
sections finding, Perseus made offering to the gods therefor'.
Other different interpretations have been advanced to explain
this obscure passage.

For a suitable choice of torus, the figure eight curve be-
comes the lemniscate of Bernoulli, named after the seventeenth
century mathematician James Bernoulli. This curve, whose
equation is

=2+ 392 = 2 - ya? + 22 (1

in the notation used above, was the cover illustration for
Function Vol.1l, Part 4 (1977). .

The convex ovals specialise in this case to the so-called
Cassini ovals, named after the astronomer Cassini (1625 - 1712)
who also gave his name to a prominent division in the rings of
Saturn. Cassini opposed Newton's theory of gravitation and be-
lieved that planets travelled along Cassini ovals, not ellipses
as Kepler had proposed. Needless to say, this theory is now
discredited.

Equation (1), containing powers up to, but not exceeding,
the fourth, is an example of a fourth degree equation. Curves
whose equations are fourth degree equations are called curves
of degree four and their investigation goes back to the seven-
teenth century. The spiric sections are all curves of degree
four.



PROPERTIES
OF A CYLINDRICAL COIL

Neil S. Barnett,
Footscray Institute of Technology

Some time ago a radio technician approached me regarding
the following problem. ) :

A difficulty had arisen in connection with the use of a
cylindrical antenna. For reasons I can't now recall he needed
to know the inter-relationship between the antenna length (%),
cylinder diameter (D), wire length (I), the number of coils (z)
and the so-called pitch (p). Figure 1 illustrates these di-~
mensions.

A
Y

Figure 1

One relationship is quite trivial, namely & = xp (assuming
that the antenna is made up of equally spaced complete coils).-

To relate the wire length (the total length of wire used in
the coils) to the other dimensions we need, for a start, the
length of wire used in a single coil. To calculate this, con-
sider a hollow cylinder with a single coil drawn around the out-
side, as illustrated in Figure 2.
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Imagine, now cutting along AB and opening out the cylinder;
this gives rise to Figure 3. :
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Figure 3.

Lines GH and CF are the two parts that combine to form the
single coil when the cylinder is re-constructed.

If you find this hard to visualise, then actually do it,
in reverse: cut out a rectangular strip of paper (say 5Scmx1l2cm)
and rule lines joining the mid points of adjacent sides as in
Figure 3 (i.e. draw CF and GH). Press hard then turn the strip
over and go over the impressions of these lines on the reverse
side. Label the corners 4, B and the point C on both sides of
the paper. Now bend IJ to meet AB to form a cylinder and you
will observe that the drawn lines on one side of the paper
strip form a single coil round the outside of the cylinder.

From Figure 3 the geometry to obtain the length of wire
used in a single coil is straightforward.

Note that CF and GH are the same length. By Pythagoras'
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Theorem CF = %T + 2 . The same result could also be

obtained by cutting Figure 2 along CH to obtain Figure 4.

D

Vp2.r2p2

Figure 4.

Thus if z is the number of coils in the antenna,

I = a(p? + 12p2)?

Lp? + 2BHE (1)

It would be expected that L and 2 be almost equal when D
is very small - we say that we would expect L to approach 2 as
D approaches 0 i.e. L[ - 2 as D =+ 0. Putting D = 0 into
(1) we obtain I = % consistent with this expectation.
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FROM THE INDIAN SCRIPTURES

This beautiful well in the form of mathematics excels even
the orb of the full moon (with all its digits) for it increases
in form even when it is tasted (multiplied) by the learned ones,
unlike the moon, who decreases in foim when tasted by the Gods;
and also this science of mathematics has both wings or sides
(of an equation in a primary division) quite distinct, unlike the
moon, who is hardly seen on the first day of both the fortnights
of a month. What is the good of saying too much? Whatever there
is in three worlds moving and non-moving - all that cannot be
understood without the help of mathematics.



A DIARY FIT FOR
EVERY LADY’S TOILET,

AND GENTLEMAN’S POCKET "

Gilah C. Leder, Monash University

In the eighteenth century illiteracy was still widespread
in England. It is commonly believed that in the 1750's,
approximately 60 per cent of adult males and perhaps 40% of
adult females were literate. As "writing was taught to those
who could read 'competently well®, and figures were taught
only after the art of writing had been mastered", (Schofield
1968, p.316) levels of numeracy would have been considerably
lower still. The prevailing attitude that only the leisured
classes should be educated and have leisure pursuits and that
anything which distracted the labouring classes from their
labours was dangerous, can be used as one very rough indicator
of those with and without education. Schools that provided
elementary education were few and grossly inadequate. For
girls the educational picture was particularly dismal. Typi-
cally, girls born into aristocratic families received their
education from a governess in their own home, while the
daughters of successful tradesmen and merchants were more
likely to be sent to boarding school where the main emphasis
was placed on accomplishments such as singing, dancing, paint-
ing and needlework. In addition they might be taught a little
French, reading, writing and sufficient arithmetic for them to
be able to keep household accounts.

It is against this background that John Tipper launched
(in 1704) a new periodical, the Ladies' Diary. The scope of
the publication was set down in the preface of the first
issue.

¥ ’

This quotation has been taken from the front page of the
Ladies' Diary published in 1753. The word toilet is archaic.
We would say Zandbag.



The Woman's Almanack is
a book designed on
burpose for the diver-
sion and use of the
fair sex, which shall
contain (besides those
things common to other
almanacks) something to
suit all conditions,
qualities and humours .
The ladies may here find
their €ssences, perfumes
and unguents; the wait-
ingwomen and servants,
excellent directions in
cookery, pastry, and
confectionery; the
married shall have medi~
cines for their relief,
and instructions for the
advancement of the fami-
lies; the virgin direc-~
tions for love and
marriage...; mothers
shall have rules for the
education of their chil-
dren, and those that de-
light in gardening,
painting, or music,
shall not want assis-
tance to advance their
pleasures; in sum, the
ingenious shal]l have
something exalted to
exercise their wit, and
the meanest some sub-
Jects adapted to their
level ...

agreeable.

It appears that Tipper wanted
al as well as entertaining.
wrote: ’

There is nothing
bersons than the
the sun and moon, I
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arithmetic enigmas used in the Diary of 1707 when he sent in
his answers to two enigmas posed in the Ladies’ Diary of the
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brevious year. It is also possible that Tipper responded to

the main theme of the influential "Essay on the usefulness of
mathematical learning", published in 1700, that with the

growing relevance of mathematics to an ever widening field of
activities the study of mathematics should be readily accessible
to more people. The inclusion of some mathematics problems in
his annual publication may have been an attempt to meet this
need. The first two questions give an indication of the level
of mathematical proficiency involved.

1. In how long time would a million of millions of
money be in counting, supposing one hundred
pounds to be counted every minute without inter-
mission, and the year to consist of 365 days, 5
hours, 45 minutes?

2. If to my age there added be one half, one third,
and three times three; six score and ten the sum
you'd see, pray find out what my age may be?

Tipper's innovation seems to have been welcomed by the Diary’'s
purchasers, for more mathematical questions were inserted in
all subsequent issues. In fact, by 1710 most of the domestic
articles were omitted so that the Diary contained predominantly
mathematical questions and poetical enigmas.

The emphasis of the Ladies' Diary on the mathematical pro-
blems was continued by Henry Beighton, who became its second
editor in 1714. He Jjustified this bias in his editorial com-
ments in the issue of 1718: '

I believe that the Diary has the good fortune to fall
into a multitude of hands which mathematical books

seldom or never would ... Foreigners would be amaz'd

when I show them no less than 4 or 500 several letters
from so many severail women, with solutions geometrical,
arithmetical, algebraical, astronomical and philosophical.

Subsequent editors also retained the Diary’s mathematical sections.

For well over one hundred years, from the modest two problem be-
ginning in 1707 until the final issue in 1840, the Ladies' Diary
made contemporary mathematicsvreadily available to women and men
with some education. It is worth recalling that throughout this
long publication history, the word Ladies' was retained in the
title, Presumably because women continued to buy the Ladies’
Diary. 'This impression is heightened by the inclusion, perio-
dically, of problems which seemed to be written particularly

for a female readership. :

One question is reproduced here:

Dear Ladies fair, I pray declare,

In Dia's page next year, .

When first it was I 'gan to pass

My time upon this sphere.

My age so clear; the first o' the year

In years, in months, and days

With ease you'1ll find, by what's subjoin'd*
Exact the same displays.
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¥ty + z = 238) where x = the year, y = the months,
xz + y = 158) and z = the days of my age, the 1st
39) January, 1795.

r+y + z
(Question 984, 1795, submitted by Miss Nancy Mason)

However, while the mathematical content of successive
issues generally reflected the increasing mathematical sophisti-~
cation of the eighteenth and nineteenth centuries, it continued
to be the somewhat simpler arithmetic and algebra questions
which were addressed to women. Questions that had direct appli-
cation to navigation, to engineering, to physics and other
Sciences, i.e., questions with practical applications and which
improved 'youth in numbers and fitted them for business'" were
stated without this bias. Thus one is left with the impression
that women participated predominantly in those areas of mathe-
matics consistent with leisure pursuits rather than in those
with vocational overtones.

The general importance attached to the mathematical content
of the Ladies’ Digry is perhaps best illustrated by the publi-
cation of two sets of books. In 1775 Charles Hutton, professor

Ladies' Diary from 1774 to 1818, published the Diarian Miscellany.
Its subtitle indicated that the book combined "all the useful and
entertaining parts, both mathematical and poetical, extracted
from the Ladies' Diary, from the beginning of that work in 1704,
down to the end of the year 1773". :

Before actually publishing the Digrian Miscellany Hutton
had tried to assess public demand for his initiative. "Such
gentlemen as please to encourage this undertaking are desired
to signify it by a line directed to Mr Hutton'" (The Ladies'’
Diary, 1771, p.46). Its acceptance seems to have been consider-
able, for in 1817 the venture was repeated by Thomas Leybourn.
The latter also modified some of the original questions. Those
which had originally appeared in verse "which in almost every
case was bad, and often hardly intelligible, are, generally
speaking, changed into plain but perspicuous prose" (Leybourn
1817, vi). It should be noted that the preference of many of
the contributors, particularly in the early years, for mathe-
matical problems posed and answered in verse was hardly con-
-ducive to mathematical sophistication.- Nevertheless, in the
prefaces to their books, both authors emphasized the contribution
of the Ladiee’ Diary to the study and improvement of mathematics.

They also stressed that the mathematical section of the
Ladies ' Diary was "the result of the joint labour of almost all
the mathematicians of eminence, that have appeared in England
in the course of the last century" (Leybourn 1817, vi).

(Hutton singled out in particular the contributions of William
Emerson, John Landen and Thomas ‘Simpson.) Yet the editors never
lost sight of their primary target audience; the amateur mathe-
matician. In one issue (the Lagdies' Diary of 1748) contributors
were urged to check carefully the problems they submitted '"be-
cause if errors are printed they reflect upon the Diary as well
as the. contributors'. They were also urged to work on their
solutions until they were satisfied with their quality.
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Possibly to stress this point, particularly elegant solutions
were singled out for praise. In yet another issue (the
Ladies' Diary of 1791) a contributor using the pseudonym of
Dynamicus, was warned that his "ingenious problems and dis-
sertations ... are rather too long, and of too intricate a
nature, for the plans of the Diary". He was advised that his
contributions might be more suitable for inclusion in a more
extensive work like the Philosophical Transactions.

The flavour of the mathematical content of the Ladies'
Diary can perhaps be best conveyed by reproducing some of the
problems it contained. They are taken from Leybourn's (1817)
compilation of the Diary's mathematical sections.

Question 76 (from the Ladies' Diary, 1720) proposed by
Mr W. Crabb.

If the side of the face of each of the regular
solids (or platonic bodies as they are called)
be 29 inches: What is the content of each in

wine gallons?

Question 597 (from the Ladies' Diary, 1769) proposed by
Mr Tho. Sadler.

. Dear Ladies, you with ease may find*
A matchless hero's name,
Who was beloved by mankind,
And mounted up to fame:
To serve his country boldly. dar'd
Hot sulphur, smoke and fire,
And long campaigns' fatigue be shar'd,
To conquer proud Monsieur. :

*viz. From the equations

(w+t+ax+y + 3z 52) where z, m,ry and z denote the

(wx + yz = 360) . places of the letters in the
(ws + zy = 280) alphabet, comparing the gentle-
(wy + yz = 315) man's name.

Question 1201 (from the Ladies' Diary of 1809) proposed by
Mr T. Myers, R.M.A.

What is the area of a right-angled triangle, the
radius of its circumscribing circle being twenty,
and the area of the inscribed circle a maximum?

The passage of time and the inadequacy of the historiecal
records make it difficult to quantify the full impact of the
Ladies' Dianry. Nevertheless, the Diary's contents offer a
fascinating overview of popular mathematics in the eighteenth
and early nineteenth centuries. Or, in the words of Thomas
Leybourn (1817, p.xi) they "exhibit to the public a picture of
the taste of the British nation, for the study of Mathematics,
which has certainly more cultivators --., than is commonly
supposed". The fact that a number of issues of the Ladies
Diary found their way into Australian libraries is suggestive
of the priorities of some of our early settlers!
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OUR 1985 OLYMPIANS

We now know who will represent us at the International
Mathematical Olympiad in Finland. They are listed below and
we wish them all well. For the first time we have a girl on
the team and we hope that this trend will continue.

Reserve:

Shane Booth" Wanganui Park High School,
PO Box 1429, Shepparton,
Victoria, 3630.

John Graham St Ignatius Collewe, Riverview,
Tambourine Bay Road, Lane Cove,
NSW, 2066.

Alasdair Grant Melbourne C. of E. Grammar School,
Domain Road, South Yarra,
Victoria, 3141.

David Hogan James Ruse Agricultural High School,
: Felton Road, Carlingford,
NSwW, 2118,

- Andrew Hassell Christ Church Grammar School,

Queenslea Drive, Claremont,

WA, 6010.
Catherine Loreto Kirribilli,
Playoust 85 Carabella St, Kirribilli,
NSW, 2061. .
Andrew Chen Prince Alfred College,

PO Box 571, Norwood,
SA, 5067.
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MATHEMATICAL MEASURE THEORY
I. ORIGINS

Joseph Kupka, Monash University

1. What is mathematical measure theory?

The art and science of measurement ~ which is the use of a
number to describe the amount of some characteristic or quality
possessed by an object - constitutes a cornerstone of modern
science, and perhaps of all civilized society. Among the
earliest qualities which were subjected to systematic measure-
ment were length, area, and volume. Knowledge of the area of a
plot of ground can be used to predict its crop yield or to help
estimate the size of an enemy force encamped upon it.

Most ancient civilizations developed the basic idea of
units of measurement. The Egyptian unit of length, for example,
was called the cubit. The Egyptians lived on relatively flat
expanses of ground, and it seems that they mostly subdivided
their territory into rectangular plots whose areas could be ex-
pressed in whole numbers of square cubits. The ancient Greeks,
on the other hand, inhabited hilly terrain with limited amounts
of flat land available for agriculture. They needed to ascer-
tain, and so to compare, the amounts of area in pre-existing,
irregularly~-shaped plots of ground. This accident of geography,
coupled with the ever-present military threat posed by the
Persian hordes to the east, is held to be largely responsible
for the vastly greater sophistication of Greek mathematics over
that of the Egyptians. And measurement is a key feature of
their mathematics, not in the modern sense of assigning a num-
ber to an object, but in the sense of establishing exact re-
lationships between various quantities (mainly lengths and

areas). DPerhaps the most famous example is the “a2 + b2 = g

relationship of the Pythagorean theorem. The Greeks looked
upon this as the equality of two areas.

2,,

Mathematical measure theory is a branch of modern mathe-
matics which deals with systematic techniques for measuring
complicated or irregular objects when the measurements of simple
objects are known in advance. Its central idea has a long
lineage dating back to a technique invented by the Greeks.
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2. From Euclid to Archimedes: The paving stone technique.

The first great mathematical treatise, Euclid's Elements
of- Geometry, was written around 300 B.C. . It contains many re-
sults about the areas of rectangles and triangles (or, strictly
speaking, about the regions enclosed by these figures). These
were to be the "simple objects' .of area measurement. To obtain
the areas of more complicated regions, the Greek mathematicians
employed a natural elaboration of the already ancient practice
of specifying lengths or distances in terms of whole numbers of
unit lengths (as in a '"span of five cubits" or a "journey of
twenty leagues'). Their idea, which we shall refer to as the
"paving stone technique', was to let the simple objects stand
in place of the units, to treat these objects as 'paving
stones', and, in effect, to '"pave" the given region as exactly
as possible with variously chosen stones, thus:

—

A

vz

The unknown area is then approzimately equal to the paved area,
i.e. the area which is actually covered by the stones. It was
(and is) considered to be part of the intrinsic nature of area
that the whole should be equal to the sum of the parts, and so
the paved area, in turn, is equal to the sum of the known areas
of the individual (nonoverlapping) stones.

Such -approximations certainly could be made precise enough
to satisfy the practical requirements of the time. The greater
sophistication of Greek mathmatics came about because of their
desire for perfect exactitude. Consequently the triangle gain-
ed favour over the rectangle as a paving stone because any
region bounded by straight lines could always be paved exactly
by finitely many triangles, thus:
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The real ingenuity of the Greeks lay in their derivation of
exact information about the areas of regions bounded by curved
lines. Such regions could not be exactly paved by stones which
had uncurved edges. So the Greeks devised a "method of ex-
haustion" whereby the exact area is almost literally squeezed
out of a great many inexact pavings. This method was their
version of ‘today's "limiting argument". It is used in Book 12
of EBuclid to reveal the fact that the area of a circle lies in
constant ratio to the area of the square on its radius. This
famous ratio (the number =, as we know it) was later found by
Archimedes to be less than %% , but greater than %%g . Ve
now know that = cannot be expressed as the exact ratio of two
whole numbers.

To illustrate how exact area measurements may be squeezed
out of inexact pavings, we shall present a hybrid derivation of
the area A of a circle in terms of its radius r. The triangu-
lations (that is, the pavings with triangular stones) will be
precisely those which Euclid considered, but the notation and
limiting argument will be strictly modern. The basic idea is
to subdivide the circle, in the manner of cutting up a pie,
into a certain number, call it n, of equal slices, thus:
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With each slice (or sector) of the circle, we associate two tri-
angles, one lying entirely within the slice (the inseribed tri-
angle), and the second completely covering the slice (the
superscribed triangle), in the manner pictured below:

2n
angle = Y

(where 27r
is the circum-
ference)

radius = r

[~ "\

Notice that each triangle is isosceles and that the angle deter-

mined by the equal sides has radian measure . %} . A closer
look at the inscribed triangle, thus:
n
angle = by

height = r cos—:‘-l-

radius = r

~— -

base = 2 ¢ sing-
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. s . ki .
shows that its area is rz sin 5 cos % . Let us now consider

the n inscribed triangles as a paving (an inexact triangulation
of the circle).  The total paved area is then .
1, =7 rz sin % cos % . And since the paved region lies entire-

ly within <t follows that 4 > £, - But now observe that we

really may use any number #» > 3 ‘in this argument. So it
must also be true that

s ™
sin —
42 lim & = lim = r2 1 cos L = nrz
7 >0 71> — n
n
sin 8 . ' .
because =5 - 1 if 8 > 0, and cos 8 =1 if & » 0.

(This is the "limiting argument”.) A closer look at the super-
scribed triangle, thus: )

n
angle = by

height = r

N — _

i
base = 2 rtan;

shows that its area is rz tan % . The »n superscribed triangles
pave a region of total area u, =n r2 tan % . This region
completely covers the region inside the circle, and sc u > 4.
Hence, as before: n

sin % 1 5
A<limu=1imnr—n—————-—n-=1rr
nee T gee us cos ¥

n n

The demonstration is now complete. We have disqualified all
possible candidates for the true value of 4 except for one and

. one only: 4 =7 rz . Notice that it was necessary to consider

infinitely many triangulations in order to achieve this exact
result.
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In an even more ingenious demonstration, Archimedes found
the area of a parabolic segment by considering triangulations
of the sort pictured below: -

parallel

The uppermost vertex of the triangle labelled T is located at
the precise point where the tangent to the parabola is parallel
to the base of the segment. Archimedes showed that the area of

the segment is exactly % the area of T.

The tragic death of Archimedes at the hands of a Roman
soldier. in 214 B.C. marked the final stages of the Roman con-
quest of Greece. ©Nearly two millenia were to. pass before very
many exact results came to light which had not already been
known to the Greeks, although a good deal of effort was devoted
to approximations. Two things, perhaps, were needed before
further progress became possible: (1) A better developed
notion of number. Number is to measurement as money is to
commerce. It provides a 'common currency' for the description
and comparison of areas and other types of measurement, whereas
the Greek '"barter system' only permitted one area to be directly
compared to (or exchanged with) another. (2) The abandonment of
the triangular paving stone. It made the calculations too diffi-
cult, and each particular case required too much ingenuity in
order to ferret out workable triangulations. Undoubtedly such
a step was psychologically very difficult. To abandon the tri-
angle was to abandon Greek tradition.

3. From Newton to Riemann: The Fundamental Theorem of Calculus.

Near the beginning of Isaac Newton's Principia Mathematica
(1687) we find the following figures:
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M o
3
3
a3

A BFC D BP Q R § T

These figures depict a spectacular breakthrough in the use of
pavings to obtain exact numerical measurements of area. Tri-
angular paving stones are nowhere to be seen. Newton had re-
placed them by rectangles and, what is more, by long, thin rec-
tangles which cover the given region in the manner of wall-
paper (or floorboards). If a more accurate paving was desired,
the rectangles were made thinner, but not appreciably shorter.
The curved part of the boundary of the region was precisely
described by a mathematical function - f , the area of the region
was explicitly realized as a mathematical 1<imit of paved areas,
and this limit was called the integral of f over an interval

[a,b}, or b f(xz)dx for short. Most important of all, the
a

-Fundamental Theorem of Calculus made it possible (most of the
time) to caleulate this integral exactly, and to do so, more-
over, without so much as a sideways glance at pavings. One
simply needed to produce an antiderivative F of f, and the
unknown area became just F(b) - F(a). It is necessary to con-
sider pavings (and so to perform 'numerical integration") only
on the occasions when F is unavailable. In this way the ad hoc
methods of the past were supplanted by a systematic method of
great power and scope. )

All of these ideas appear in Newton's work, but they were
not expressed with precision until the work of Cauchy in the
1820's. It was actually Cauchy who clarified the notions of
derivative and integral by basing them upon the mathematical
idea of 1limit. Cauchy's work was extended by Riemann in the
1850's, and the resulting integral bears Riemann's name. This
is the integral which appears in all modern calculus textbooks.

Although the integral was originally conceived as a device
for calculating areas, it became in the hands of Cauchy and
Riemann more of an abstract technique of calculation. (Stu-
dents of calculus will be aware that some of the rectangular
"areas' are counted negatively in the "Riemann sums" which
approximate the integral.) This abstractness enables it to be
used in more than one way. It may be used to calculate areas,
volumes, arc lengths, -and many other physical quantities.
Velocity is the integral of acceleration with respect to time,
work is the integral of force with respect to distance, and so

on. However, the spirit behind all of these applications is
" the paving stone technique. Indeed, the ancient Greek idea
of using progressively smaller units of measurement (alias
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paving stones, alias gradations on some measuring device) to
measure a physical quantity to a specified degree of exacti-
tude is basic to virtually all numerical measurement in modern
science.

Riemann himself employed integration as an averaging tech-
nique in the mathematical analysis of trigonometric series. His
was perhaps the first voice of modern mathematics. The tradi-
tional mathematician said: "I see an attractive object. I
shall study its properties." For Cauchy the attractive object
was a continuous function. Its integral was one of its proper-
ties. The modern mathematician says: "I see an attractive
property. I shall study the totality of objects which possess
this property." Thus, a "Riemann-integrable function" is simply
any function, however bizarre, for which Cauchy's definition of
integral makes sense. The feelings of ‘the traditionalists to-
ward the modernists were summed up by the mathematician Hermite
when he wrote: "I recoil in fright and horror from this lamen-
table plague of functions which do not have derivatives!"

The modern view has spawned a kind of mathematical heroism,
a climbing-of-the-mountain-because-it-is-there. The result has
been an abstract mathematics of great generality, depth, beauty,
and unenvisioned application. The modern view has also spawned
a cancerous overgrowth of abstraction, a kind of art-for-art's-
sake. This disease, popularly known as abstractionitis, is
frequently marked by willful obscurantism, fueled by the des-
peration to publish, and sustained by cult worship. For better
or for worse, the evolution of the traditional mathematical
study of measurement into modern mathematical measure theory
will be governed by the modern view.

@ 0 ® W @ ® W 0 ® ®

STATISTICS IN GOVERNMENT

Each month, the Bureau of Labor Statistics (BLS) of the U.S.
Department of Labor announces the Consumer Price Index and the
unemployment rate - the two most politically sensitive statis-
tical indices in the country. These indicators are so critical
because they directly concern anyone who worries about his or
her pocketbook. About half of us, for instance, have some part
of our income escalated by the CPI. Calculating these figures
as accurately as possible - and presenting them as objectively as
possible - involves some unique scientific challenges for the BLS,
as well as some formidable political pressures.

The ability of the BLS to provide accurate statistical in-
formation on the economy has grown by leaps and bounds in recent
years. It is striking to think that up until the late 1960s, the
BLS calculated its figures by hand. Advances in computation have
enabled the Bureau to change its approach fundamentally, since it
is now possible to process so much more data. According to BLS
Commissioner Janet Norwood, '"there has (recently) been an enor-
mous emphasis on statistical validity and on mathematical
approaches, because the state of the science has developed so
far that we find there are a lot of things we can do."

From SIAM News (newsletter of the (US) Society for Industrial
and Applied Mathematics), March, 1985.
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MATHEMATICS IN TENNIS
Stephen R. Clarke,

Swinburne Institute of Technology

In recent years there has been an increasing interest in
the application of mathematics to problems in sport. Students
interested in a range of mathematical applications in sports
such as baseball, American football, basketball, hockey, cricket,
tennis, golf, athletics and rowing should read Ladany and Machol,
(1977), Optimal Strategies in Sports, North Holland Publ. Co.

As an example, we will look at applying some probability to in-
vestigate the effects of different scoring systems in tennis.

Consider a 5-set tennis match between McEnroe and Cash.
Suppose McEnroe has a 60% chance of winning any set. The follow-
ing matrix can be set up, where the body of the matrix shows the
probability of McEnroe winning the match when the score is as
shown.

Cash's Score

3 2 1 0

McEnroe's

1 1 1
Score *

QO C x

3
2
1
0

Thus the cell marked * would contain McEnroe's chance of winning
when the score is 2 all.

The first row is all 1's since McEnroe wins if he reaches
3 sets, and the first column is all O's since he loses if Cash
reaches 3.

A tree diagram now allows us to calculate the number in
the cell marked *. .

McEnroe wins set, probability

//;i/////”’// of winning match now 1.
Score 2-2 _
\\TZ\\\\\\\\\ McEnroe loses set, probability

of winning match now O.

Hence the number in cell at 2-2 is 06 x 1404 x 0 = 0.6.
In a similar way the number in any cell is made up of 60% of the
number. above it plus 40% of the number to its left. We can pro-
gressively fill in the table using a calculator.
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The results are shown below.
Cash's score

) 3 2 1 0

3 x 1 1 1
2 0 +60 +84 -4
1 0 .36 -65 82
0 0 22 +48 -68

McEnroe's
Score

Thus we find McEnroe's chance of winning from any position,
and in particular that he has a 68% chance of winning a 5-set
match, but only a 65% chance of winning a 3-set match.

This is easily extended to any series of matches, seté,
games, or points for any head to head contest in any sport.

In general, if P(Z,j) 1is the probability that player 4
wins a match up to n points when 4's score is ¢, and B's is 4,
and p is the probability that 4 wins any point, a tree diagram
gives .
A wins, score goes to (i + 1,j5)
Score (Z,7)
1-p A loses, score goes to (i, + 1)

Then P(Z,J) =p.P(¢ + 1,5) + (1 - p).P(Z,§j + 1).

Player 4 wins when A's score is n and loses when B's score
is n, so

P(n,q)
P(i,n)

B

O
AN
.

<
<

0
0 <

3

The short computer program below, written in Microsoft
Basic, solves these equations progressively, for any match up
to 25 points.

10 DIM P(25,25)

20 INPUT"number of points in match'",N

30 INPUT'probability of player A winning point",P
40 FOR I=0 TO N:P(I,N)=0:P(N,I)=1:NEXT I
50 FOR I=N-1 TO O STEP -1

60 FOR J=N-1 TO O STEP -1

70 P(I1,J)=P*P(I+1,J)+(1-P)*P(I,J+1)

80 PRINT P(I,J), :

90 NEXT J -

100 PRINT

110 NEXT I

120 END

In general we would be interested in P(0,0), the chance of
winning at the beginning of the game, but the program gives us
the chance of winning from any position. The previous results
were obtained by running the program with n = 3 and p = 0.6.
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When applying these equations to a set of tennis, where P
is now the probability of winning a game, p may alter depending
on whether 4 is serving or not. We would then need to input the
two values of p at line 30, and incorporate a line at 65 which
chooses between them depending on whether < + j§ is even or odd.

Situations such as deuce cause a slight problem since at
advantage the score 'reverts' to deuce. Thus we need to know
the answer for the deuce cell before calculating the advantage
cell, but we need the advantage cell before calculating the
deuce cell. This can be handled either by iteration - letting
your computer program repeatedly calculate each one until its
answers are not changing, or by more simply considering 2
points ahead. Again a tree diagram-helps.

A wins point - 4 wins

r game
A wins point /////
(advantage up :
p 1):?\\

A loses point - Deuce
Deuce
A wins point - Deuce

1-p p
: A loses point e
(advantage down)

1 :;S‘A loses point - 4 loses
game

So if X is the probability that player 4 wins game at deuce, we
have .

X =p21+ (1 -p)20+20(1-0p)x.

Solving for X gives

2 2
x = 2 = 2

1-2p + 202 (1-p)° +p?

Also the chance of winning from advantage up is p.1+(1-p)x
and from advantage down is pX.

Since deuce usually occurs one point before usual winning
score (e.g. at 40 all in a game of tennis, 20 all in table
tennis etc.) we can incorporate these equations by adding to our
program: .

45 X = P*P/(P*P + (1-P)*(1-P))
48 P(N,N)=X: P(N,N-1)=P+(1-P)*X: P(N-1,N)=P*X.

The scoring systems of most sports are nested - e.g. in
tennis a certain number of points wins a game, a certain number
of games wins a set, a certain number of sets wins a match.
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This is most easily incorporated by working through a
series of recurrence’relations. Starting with the probability
of winning a point, we can calculate pP(0,0) the probability
of winning the game. This then becomes P in the next set to
calculate the probability of winning the set etc. It is quite
surprising how a small advantage in winning a point gives a
large advantage in winning the match.

For example, suppose McEnroe wins 70% of points that he
serves. Running our program with #n = 4, p = -7 show that
* McEnroe will win 90% of his service games. Suppose Cash wins
65% of points that he serves. The program shows, with #n = 4
and. p = +35, that McEnroe will win 17% of Cash's service games.
‘Using a slight approximation, (we could avoid this with some
extra work) the program with #»n = 7 and p = (-70 + 35)/2 = 525
tells us that McEnroe will win approximately 58% of tiebreaker
games. By inserting this in. as lines 45,46 and making other adjust-
ments so that when ¢ + j is even, p = .17 but when < + J
is odd, p = -90 we find that McEnroe will win 65% of sets.

Now running the original program (without lines 45,46) with
n =3 and p = 65 we get that McEnroe wins 76% of matches.
Thus a very slight advantage in each point (winning 70% of
serves against opponent winning 65%) means the better player
will win over 3/4 of best of 5-set matches.

In many cases we may be interested in the length of a match.
If u(<Z,j) is the mean number of points in the rest of the
match when the score is (Z,j), then it can be shown that the
basic recurrence relations become

W(4,d) = 1+ pau(i + 1,5) + (1 - plu(i,§ + 1)
u(n,j) =u(i,n) =0, 0<<,j<n

Some of the problems which can be investigated using the
above techniques are:

* The .effect of 3-set, 5-set, 6, 8 or 10-game advantage, no
advantage, tie breaker sets on chances of better player and
length of game.

* Probabilities of winning from any position in tennis, table
tennis, etc.

* The effect of giving players starts,e.g. if you beat a player
21 - 15 at table tennis, is it fair that you give 6 start
next game?

* The most important points in games, i.e. at which scores does
the probability of winning/losing alter the most?

* The efficiency of scoring systems - which system gives the
better player the most chance of winning in as few points
as pqssible?

In a later article, we may look at squash and badminton,
where you only score points on your own serve.

+See Function}VoZ.z, Part 5 and Vol.3, Part 2.
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GURSON’S CONSTANT

George J. Strugnell,
1106 Bell St., Coburg

The death of J.G. Gurson in Adelaide late last year
passed almost unnoticed: he was a strange old fellow, a
supporter of lost and unpopular causes, who constantly advo-
cated reforms based, as he claimed, on logical conclusions.
When decimal currency was introduced, he proposed a ten-month
yvear with alternating 36- and 37-day divisions. The abolition
of death duties, he claimed, would widen the gap between the.
rich and the poor and he urged not only their reintroduction,
but also their more stringent imposition based upon an exponen-
tial equation heavily loaded against the wealthy. "What they
(the heirs) have never had they will never miss." ‘Moreover, he
recommended that all taxes, duties and imposts should be calcu-
lated in a similar fashion. The Upper House of Parliament, he
argued, should consist of technocrats and its membership deter-
mined not by election, but by qualification in the various
fields of science, art and literature, with their academic merit
tested by oral and written examination and their admission de-
cided by the drawing of lots. Not surprisingly, he was gener-
ally regarded as an eccentric mathematical dilettante and on
the few occasions newspaper editors saw fit to publish his
numerous letters, they made them appear as hoaxes.

My introduction to the affairs of the late Mr Gurson
occurred in the following circumstances. His executor, a
solicitor practising at a seaside suburb of Adelaide, wrote to
me seeking advice and enclosing a copy of the Will and a ’
voluminous note-book found amongst the deceased's papers. The
estate was substantial and Gurson, who had never married, lived
frugally and died the only child and orphan of immensely wealthy
parents. He bequeathed a generous portion of it to form a per-
petual trust fund, from which the interest should be paid
"annually as an honorarium for the welfare and support of such
retired mathematician living in indigent circumstances as my
trustees in their absolute discretion consider to have made
during the previous year the greatest contribution to the
furtherance of my research into the innate commensurability of
nature."

The executor's dilemma was that he did not know what re-
search the deceased had been pursuing and he could not make head
or tail of the contents of the note-book: this was understand-
able, for apart from masses of abstruse calculations with
strange signs and symbols apparently of the author's own con-
coction, the commentary is entirely and atrociously hand-
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written in classical Greek, with one exception, the following
enigmatic quatrain at the beginning:
My name is Jethro Glenelg Gurson,

I am a truly Jovial person:

Whilst all the earth around me slumbers,
I moonrake with lonic numbers.

Throughout the note-book, almost on every page, appear the ex-
pressions, 1+ 24 = 33 and ; -and towards the end, EYpyka!

But what had he found?

Many fruitless hours I spent studying Gurson's notes: one
of his devices I discovered was that to express a reciprocal he

simply turned the symbol upside down, e.g., & = %'. Suddenly

one night there occurred to me an inspiration, which led me
immediately to telephone the executor. Yes, the deceased had
subscribed to the Nautical Almanac: yes, he owned a telescope
and numerous sets of astronomical ephemerides. It all fell in-
to place: Gurson had been investigating celestial mechanics!
By 'Jovial' and 'Ionic' he was referring to the planet Jupiter
and to Io, one of its moons. Consulting the Encyclopaedia
Britannica, I ascertained that Jupiter has four principal
satellites (commonly called the Galilean moons after their dis-
coverer) named in order of their distance from their primary:
Io, Europa, Ganymede and Callisto. The second is very nearly
as large as our moon, the others exceed it in size and they all
orbit at astonishingly high speeds. Pierre Simon Laplace dis-
covered a remarkable relationship between the longitudes of the
three inner ones, namely, that that of Io plus twice that of '
Ganymede minus three times that of Europa is 180°, so that they
cannot all come into conjunction with one another or into
opposition or conjunction with the sun at the same time.

By taking 1, £, vy and « as representing the orbital
periods of those four satellites and transliterating Gurson's
often repeated expressions into more conventional mathematical
notation, I arrived at % + %A= g and % ? (a semicolon being
the Greek equivalent of a question mark). What had clearly
perturbed Gurson was the absence of Callisto, the largest of
them, from the Laplacian relationship and he set to to rectify
the omission. First he rearranged the equation to

(t-9-¢-2).

then to (% - %) =(%.- %) ,
and finally to (% - §—§—2> = (% - %) ,

where v equals any number. Adverting to the fact that on each
side of the last equation the second numerator exceeds the first
by 2 - v , and that each of the first and second numerators on
the right exceeds its respective counterpart on the left by

v - 1, by arithmetic progression he projected a third component,
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{1 3 - u) _ (g g) _ (Zv -1 v+ 1) .
thus: \1 - - *\e¢ " 7/)° p - p . By solving
the equation constituted by the second and third components
algebraically, he finally ascertained the value of v, now a
constant, to be 1-288 471 708 091, which by approximating
fractions may be reduced to %%%% . Here was the means whereby
the orbital period of one Galilean moon could be expressed in
simple terms of those of any two others, for there were now

available not only % + % = g but also
) 1 i
‘ v+ 1 _ 20 +1 v _ 20 +1% v+ 3§ _ v + 1 3
K - Y B e 1 - Y 1

For the convenience of sceptics particulars are now given
of the relevant orbital periods.

Sidereal Period in
mean solar days

Io 1°769 137 864 95
Europa 3°+551 181 106 65
Ganymede . 7-154 552 718 16
Callisto 16-689 018 606 10

You will see how accurately these fit Gurson's formula.
The result works equally well with the synodic periods which are
slightly different.
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PROBLEM SECTION

We begin by commenting on the incomplete solution to
Problem 8.4.4 in our last issue. We had to show that

uv(u2 - vz) could not be a perfect square and got around to

showing that u, v (and, as a result, u2 - vz) have no divisors

in common. There remains to be disproved one further possibility,

namely that each of u,v,uz - v2 is itself already a perfect

square. However, this cannot be.

SOLUTION TO PROBLEM 8.4.4 (CONTINUED).

If u = xz, v o= yz, u2 - v2 = 32 (say), then

x4—y4=zz.

It is known that this equation has no integral -solutions (see
Problem 9.2.2). Hence the problem is solved.

We now give the solutions to the other problems set in
Volume 8.
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SOLUTION TO PROBLEM 8.5.1.

We asked:

Let r, x, y and 2z be real or complex variables. Show that:

(i) y =z if y changes by a factor of r whenever z«

changes by a factor r. [Assume y is known to be a function of
x.]

(ii) 2 = xy if 2z =« z for each fixed y and 2z « y for
‘each fixed x. J[Assume z is known to be a function of both =z
and y, .i.e., to each suitable x and y, there corresponds just
one z.]}

Colin Wratten, who submitted the problem, sent this solution.

(i) Suppose y = f(x), then we must prove f(z) = kx for
some constant k, independent of =z, given that

F(ra) = nf(z).

For any non-zero *1:%5, put r = xl/xz and so find

xl xl
flxy) = fl== z,| = == F(x,)
1 (x2 “z) z, 2
and so )
‘ Flzq) flay)
b1 2

xX

Hence f(x)/x = k 1is a constant unless perhaps « = 0. But
7(0) f(2 x 0) = 2f(0) - and so f(0) = 0. We conclude that
f(z) kx, as required. .

ton

(ii) Suppose =z = f(x,y). We must prove that f(x,y) =kaxy,
for some constant k independent of both z, y. By Part (i) above,
we have

flz,y) = ky(y)x = ky(x)y,
where kl(y)’ kz(x) denote, respectively, functions of y,x
alone. Then

£y ) k)
Ty - Y N x

for non-zero z,y. And because
k() gy
Yy - x

kl(y)/y, is independent of y, and kz(x)/x is independent of x.

Thus these both equal some constant k. So f(x,y) = kxy, unless
perhaps x or y is zero. But this last case can be dealt with as
before, and so the result holds true generally.
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[This last result can be extended by induction to functions

of n variables.]

SOLUTION TO PROBLEM 8.5,2.

This problem,

follows.

Let

also submitfed by Colin Wratten, read as

= /5 + /22 + 2/5 and

= /11 + 2735 + /16 - 2/35 + 2/55 - 10V39 . Prove that 4 = B.

Hai Tan Tran of Plymptonr Park, S.A., writes:

Since

/16 - 2/39 + 2/55 - 10729

Then

So

B

J5 + 2/5/11 - 2/29 + 11 - 2/39

L}

/(B + /TT = 5735)2
/5 + /11 - 2729

/11 + 2728 + /11 - 2/29 + /5

¢ + V5 (say).

22 + 2 112

]

-4 x29=22+2/5.

V22 + 2/5 + /5 =

An essentially similar proof was also supplied by Colin

Wratten.

SOLUTION TO PROBLEM 8.5.3.

A particle is projected‘vertically into the.air; it
ascends to a certain height and then descends to the point of

projection,
tance into account,

all in the same Straight line. Taking air-resis-

show that the initial (projection) speed

is greater than the final (impact) speed and that the ascent
time (the time to reach max1mum height) is less than the
descent time.

Again the problem comes from .Colin Wratten, who also
supplied the following solution.

Let

V,(8),

V_(3)
G(S)

H

ascent speed at height S
descent speed at height S
gravitational potential at height S
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T, = ascent time

descent time

h = maximum height reached v
= mass of particle. + (
By conservation of total energy, h T f t_
(3mv2 + 6) - (4mv2 + 6) is the f
work done against air-resistance S

between successive appearances at
height 5, and hence is positive for
non-zero air-resistance. Thus

%me - %mV% >0, i.e.,
v,(8) > V_(8) >0, for 0< S5 < h, V,(h) =V (k) =0 . 'In
particular, V+(O) > V_(0), i.e. initial speed > final speed.

Since the upward and downward journeys are of equal length and
at any point on the flight path the upward speed exceeds the
corresponding downward speed (except at maximum height where
both are zero). It is physically evident that the ascent time
is less than the descent time. [Formally, if ¢ denotes time,

then V,(s) = § and v_(s) = £ -5) =-LE o

h 0 h
ds ds ds
r, = j and T = —j = I and therefore
+ o V+(S) - h V_(S) 0 V_(S)
r, <T_ since V+(S)'> V_(s8) >0, i.e., V+%S) <7 %S) , for

0 <S5 <hn.l
We conclude with two new problems.
PROBLEM 9.2.1 (submitted by David Shaw, Geelong West T.S.).

This problem came from Hall and Knight's Higher Algebra,
once a very widely used school text, first published in 1887,
and occurs in Chapter XXVIII of that work. In the 1974 edition,
the Dutchmen become Indians (Ram, Gopal,Amit; Jaya, Uma and
Sujata), the hogs become sheep and the shillings rupees. One
wonders why. The problem is credited to a 1743 Miscellany of
Mathematical Problems. :

" "There are three Dutchmen of my acquaintance to see me,
being lately married; they brought their wives with them. The
men's names were Hendriek, Claas, and Cornelius; the women's
Geertruij, Catriin, and Anna: but I forgot the name of each
man's wife. They told me they had been at market to buy hogs;
each person bought as many hogs as they give shillings for one
hog; Hendriek bought 23 hogs more than Catriin; and Claas
bought 11 more than Geertruij; likewise, each man laid out 3
guineas more than his wife. I desire to know the name of each
man's wife."

PROBLEM 9.2.2 (carried over from Problem 8.4.4).

Show that no integers x,y,z exist such that m4 - y4 = z2
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PERDIX

I continue with geometry problems. First please correct
an error in my article in the last issue: on page 28, in the
seventh line from the bottom, change '180' to '108'.

I shall continue the sequences of numbers for results,
remarks, etc., started in issue 1.

PROBLEM 6, Let O Dbe a point inside the polygon AlAz Y

Show that the sum of the lengths of 0A1,0A2, N OAk is
greater than half the perimeter of the polygon.

Solution. In the triangle 41420 the length of Aléz is
less than the sum of the lengths of OAl and 0A2 , i.e.
AlAz < OA1 + 0A2.
Similarly A2A3 < 0A2 + 0A3,
43A4 < OA3 + 0A4,
and so on. Adding up, we get
Perimeter = AlAZ + ... 4+ AkAl <f2(OAl + OA2 + ...+ OAk)'

DEFINITION 3.

Two triangles are said to be similar when the angles in
one equal the angles in the other. [It of course suffices for
similarity that 2 angles in one equal 2 angles in the other.]

RESULT 5. Let A4ABC be similar to ADEF, with /4 = /D,
/B = /E (and hence [C = [F). Then

0 " DF T FE : (1

i.e. the sides of one triangle are proportional to the sides
of the other.

Conversely, if equations (1) hold for the sides of A's
ABC and DEF, then the triangles are similar. [Show that
if just one of the equations (1) is assumed to hold, then it
does not follow that ABC and DEF are similar.]}
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PROBLEM /. 4B and CD are two parallel straight lines,

E - is mid-point of segment (D. Line AC meets BE at F
and AF meets BD at G. Show that Ff is parallel to 4B.
PROBLEM 8, Let 4BC be any triangle and draw parallel lines

’through the vertices A4, B, and ¢ +to meet the opposite sides
in D, E, and F, respectively. Show that the area of ADEF
is twice the area of A4BC.

Send me solutions please to Problems 7 and 8.

There are various ways of solving Problem 8. One method
would use the result in the next problem.
PROBLEM 9, Let 4BC and DBC be two triangles such that

AD 1is parallel to BC. Let BD and AC meet at E.
Draw a line parallel to BC through ¥ and let this line

meet AB at F and (D at G. Show that FE = EG.

We now introduce circles into the problems and begin by
stating some basic results that you should know. First some
definitions.

DEFINITION 4.

Let 4,B be two points on (the circumference of) a
circle. Then the segment AB is called a ehord of the
circle.

Let P Dbe a further point on
the c¢ircle. Then the angle
/P of AAPB is called the
angle subtended by the chord
AB at the cirecle.

RESULT 6. - If 4B is a chord of a circle and P and ¢
are further points on the circle, both on the same side of
AB, then the chord 4B subtends the same angle at P as it
subtends at ¢.

Conversely, if R is any other

point on the same side of 4B P
as P and ¢ such that
[ARB = P, then R 1lies on the Q

circle A4BgQ.

[We use P as an alternative nota-
tion for /P.]



RESULT 7. Any diameter of a circle subtends a right angle
at the circle.

Conversely, if ABP is a triangle and /P is a right
. angle, then P 1lies on the circle with diameter 4B.
PROBLEM 10, Let ABC be a right-angled triangle with hypo-
ténuse 4B and let X be the centre of the square on 4B
lying outside the triangle. Show that (X Dbisects /C.
Solution. Clearly /KAB = [KBA = 45° and /K = 90°.

Hence (by Result 7) both X
and ¢ lie on the circle with
diameter AB.

A4

Hence /XCB = /XAB (angles subtended by the same chord, KB,
Result 6)

= 45° (aiready shown).
Thus /XCB = 45° and, since JACB = 90° , KC bisects /C.

Here are some further basic results about circles, that
you will require to know. Check that you can prove them,
and remember them.

DEFINITION 5. If 4 points lie on a circle then‘they are said
to be cyclic and to form a eyclic quadrilateral.

RESULT 8. Let PQRS be a cyclic quadrilateral. Tgen
opposite angles are supplementary (i.e. add up to 180°).

Conversely, if PQRS is a quadrilateral such that
/P + /R = 180°, then P,Q,R and- § 1lie on a circle.

PROBLEM 11, The point 4 is taken on a circle whose centre
is 0 and X,5 are the mid-points of the two chords 4P,49.
Prove. that 4,0,X,5 1lie on a circle.

PROBLEM 12, ABCDEF is a regular hexagon with centre 0.

Show that ABOF is a parallelogram. Show also that BDF
is an equilateral triangle.
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