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Function's readership changes considerably each year, al
though we do have and value .faithful friends who have been with
us for a long time. To our new readers we say welcome, to our
old frierids welcome back.

This issue of Function ,contains articles on various aspects
of Mathematics and its applications. There are also the regular
Per-dix column concerl).ed with Mathematics competitions and the
Olympiads, and our own problem section as we·ll.. Often, normally
in fact, we also run a letters page, but none were to hand this
time at the time of our going to press.

It is a pleasure to acknowledge receipt of a grant from the
recently established Monash Mathematics Education Centre, set up
with the financial backing of eRA Pty Ltd. (See the inside back
cover.) Recently, 'Function, for reasons we needn't go into, has
had pro4uction difficulties,. particularly in relation to the art
work and the layout. We hope that this assistance will boost this
vital area.
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THE FRONT C.OVE·R

The curves shown on the front cover are theoretical flight
paths for gliders. They were first. calculated by the British
engineer F.W. Lanchester, one of the pioneers in the theory of
aerodynamics. Twelve such are shown varying from level flight
(1), through increasing degreesZof vertical instability (2 - 6),
to a critically unstable one {t) beyond which the glider loops
(8 - 12).

Figure 2,

p

mg cos ljJ - mk v 2
p

ma = mg sin tP
2mv

If we now use Newton's
second law of motion, we
may write down two equations,
one referring to the first
component of acceleration,
the other to the second.

These paths or Phugoids, as Lanchester called them, were
calculated on the assumption that the glider had negligible
size and that the dr&g could be neglected. In this case, we
have the forces shown in Figure 1 .

. There are two of these:
the lift and the weight. .Ia\
The weight, given by mg T
acts vertically downwards, mkv 2

while the lift is perpen-
dicular to the flight Flight Path
path and is proportional
to the square of V, the
velocity. (m is the mass,
and g the acceleration
due to gravi ty. )

The glider responds nng Figure 1
to these two forces by
accelerating. There are two components to the acceleration.
First the glider is being slowed down, as is evident from
Figure 1. Second, its path is curved and so another acceleration,
toward the centre of curvature, is involved. The situation is
as shown in Figure 2.
a is the (backward)
acceleration, the rate
of change of v. p is 'IJ \
the distance to the centre'
of curvature.



Lanchester wrote

v 2 2gy (an equation
derived from that for
free fall) where y is
the distance. from a
given (datum) line, and
was able to 'show that
the equations of motion
lead to the result

! = _ 2k + Ay-3/2
p 3 '

where A is a constant.
This last equation allows
the curves ·to be plotted.
Diffe~ent values of A give
different curves as shown
on the cover.

y

+~ t
Datum

line

.Fi.gure 3

3

The illustration is taken (slightly modified) from his
book Aerial Flight~ Vol.II of 1908. .

Paper aeroplanes follow approximately phugoidal paths, so
readers have a ready way to explore this matter further.

ADVICE FROM DR FRANKENSTEIN

I at once gave up my former occupations, set down natural
history and all its progeny as a deformed and abortive creaLioD
and entertained the· greatest disdain for a would-be science,
which could never ·even step within the threshold of real know
ledge. In this mood of mind I betook myself to the mathematics:
and the branches of study appertaining to that science, as being
built upon secure foundations and so worthy of my consideration.

Mary Shelley, Frankenstein, 1818.

If your wish is to become really a man of science, and not
merely a petty experime~talist, I should advise you to apply
to every branch of natural philosoPhy, including mathematics.

Ibid.

N.B. It is widely, and incorrectly, believed that Frankenstein
was the monster in Mary Shelley's story. This is not so.
Dr Frankenstein was a scientist who, in the course of his ex
periments, made a synthetic human being (the monster) who then
turned to a life of crime to the destruction of his creator.

00 00 00 00 00 00 00 00 00 00 00 00
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THE THRE~ POSTCARD TRICK
John Stillwell, Monash University

There are five so-called regular polehedra - the tetra
hedron, cube 3 octahedron, dodecahedron and icosahedron (Fig.i).
Of these, the icosahedron is the most complicated and subtle .

tetrahedron

Fig. 1

.........:- .

cube

icosahedron

It is a configuration of 20 equilateral triangle faces which makes
important appearances in many parts of mathematics, from the
solution of 5th degree equations to the theory of knots. While
these sophisticated aspects of the icosahedron may be unfamiliar,
the polyhedron itself probably is not. There are a 'number of
children's toys which permit the building o£ icosahedra, either
in skeleton form from rods or as surfaces made from cardboard or
plastic triangles.

In view of this, it may seem silly to ask:" does the icosa
hedron really exist? Let me put the question this way: can 20
equilateral triangles be" fitted together exactly to for~ a closed
surface? The plastic toys show that such a surface can certainly
be formed approximateZy, but the ideal, exact, surface can only
be constructed mathematically, if it exists at all.

When one tries to do this by calculating the distances and
angles which arise as the triangles are fitted together one by
one, there are horrible algebraic problems with surds. A large
part of Euclid's Elements (300 Be) is devoted to developing the
theory of surds and, ultimately, to a successful construction
of the icosahedron at the end of the book. This is perhaps the
oldest example of something which is now all too common in
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mathematics - a proof which everyone believes but does not have
the patience to check, because it is so involved. Nowadays we
are inclined to replace patience by the computer. If the surds
are too hard to handle, let the computer do them to 8 decimal
places. We might only confirm the existence of the" icosahedron
up to 8 decimal places, but this is a pragmatic world, right?
Near enough is good enough.

There is good reason to reject this anti-mathematic~l

thinking. The only satisfactory substitute for a long proof is
one which is shorter, but still a proof. As well as being more
comprehensible, a short proof usually throws new light on the
problem.

In the case of the icosahedron, a short construction was
found nearly 500 years ago by Luca Pacioli, a friend of Leonardo
da Vinci. The proof is ~asy (particularly with ·the help of modern
algebraic notation), and it reveals a beautiful relationship be
tween the icosahedron and another classical geometric figure, the
golden rectangle.

1 + 15The golden rectangle has sides of le~th 1 and 2
where the so-called golden ratio T = 1 +; 5 satisfies the

equation T
2 = 1 + T. Pacioli "takes three golden rectangles,

each with a cut lengthwise down the middle of length 1 (Fig.2)t.

T-l 1 T-l
< 1 I ......~IIii:llISl:ZIl~:IIi:IZllCllI£l3Z'l__m::llllSl:IilZlllllllill2llV' ••~.o.. 1

cut

Fig. 2

The three golden rectangles can
, then be slotted together, per

pendicular to each other, like
this (Fig.3).

Fig. 3

t The golden rectangle is in turn related to the regular pentagon.
See Function> VoZ.4, Part 1.
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Pacioli claimed that the 12
corners of the rectangles
are the vertices of an ico
sahedron. The 20 triangles
are found by joining each
corner to its 5 nearest"
neighbours (Fig.4), so it
only remains to check that
each triangle is equi
lateral.

Fig.~ 4

We look at a typical
triangle, ABC, the base
AB of which we already know to be 1 (Fig.5). With D the mid-

A

poinT of AB, we have AD = ~, and ED T - 1---2-- from Fig.2. Hence

:w~ ~~ Iso have EC

AE2 AD2 + ED2 (by Pythagoras' theorem)

Ct)2 + (T; 1)2 .

hence

EC2 + AE2 (by Pythagoras again)
2 2

(;) + Ct)2 + (T ; 1)
"[2 _ T + 1

2

1, since 2
T 1 + T •



Thus AC = 1. Similarly CB
indeed equilateral.

1, and so the triangle ABC is

7

Pacioli 1 s construction of the icosahedron was 'the climax
of a book he pUblished in 1509 on the properties of the golden
ratio 1'. He described it as "the twelfth, almost incomprehen
sible effect",following eleven other properties described as
"singular", "ineffable", "supreme" and "most excellent tl

, among
other glowing terms. The book was written at the suggestion of
the artist Piero della Francesca, with illustrations by Leonardo.
Many. Renaissance artists we~e scientists as well, and there was
great interest in the golden rectangle as a theoretical basis
for harmonious shapes in art and architecture.' Nowadays the
golden rectangle ekes out a more humble living as the shape of
the ideal postcard, which brings meta another do-it-yourself
construction of the icosahedron, and the title of this article.

Take three postcards~ and slit them in the middle as shown
in Fig.2. If the slit in the third card is continued to one
end, then the three cards can be slotted together to form a
model of Fig.3. Thus the corners of the postcards are the
vertices of an icosahedron.

The Pacioli construction allows a very ready solution to
Problem 8'.2. 2 in the icosahedral case. (See Function~ Vo Z. 8 ~

Part 2.)

ANOTHER LONGSTANDING ~ONJECTURE PROVED

In Punation~ VoZ.7, Part 5 we reported the proof of the so
called Mordell conjecture. Now comes the news of the proof of
another long-awaited resu~~.

One of the. longest-standing and most renowned problems in
mathematics has been solved by Professor Louis de Branges of
Purdue University.(U.S.A.).

Felix Browder of the University of Chicago describes the
.68-year-old Bieberbach conjecture as "p.erhaps the most important
single cdnjecture in classical analysis - one that has stood as
a challenge to mathematicians for a very long time". News that
the conjecture had been verified spread quickly through the
mathematical world last spring and summer as de Branges lectured
in Europe and as preprihts and informal communications circula
ted. At the August 1984 Joint Meetings of the MAA and the AMS
(American Mathematical Society) in Eugene, Oregon, talk of
de Branges' achievement was heard everywhere.

The technical details of the conjecture are rather too
complicated for Function. It concerns functions of the form

w = fez)

where both w,z are complex numbers. The branch of mathematics
(complex' analysis) dealing with such functions. was mostly
elaborated in the nineteenth century, but some problems have
remained.

Continued on page 32~
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WHAT IS .THE BEST BASE?

M.A.B. Deakin, Monash University

If we write numbers in the form of .a string of symbols and
if we use the useful convention of pZace vaZue, we must agree on
a base. That is, the string

means

2 n-1 n
a O + alb + a 2b + + an_lb + anb .

Here b is an integer (called the base) and aO,a l ,... are
other integers, satisfying

o ~ a. ~ b - 1.
1."

Thus each of the a. is chosen from a set of exactly b symbols
and we may represefit arbitrarily large numbers by (sufficiently
long) strings of these symbols.

Virtually every society that has developed a reasonably
advanced arithmetic has used base ten. The reason usually
given is that we have ten fingers, and there is some anthropo
logical evidence in support of this - many cultures do count
on their fingers, as do we at times (although we may joke about
it). .Base 20 (Mayan) and base 60 (Babylonian) have been found
(though the Babylonian system is perhaps better described as a
mixed base ten and base six system), but these are really the
only exceptions to the sway of base ten. Claims have been made
for two, five and even quite bizarre numbers like 47, but if
these are investigated, they are all found to depend on a less
precise notion of what is meant by "base".

From time to time, there are calls to reform the number
system by going to a base other than ten. Most would-be re
formers sing the praises of the number twelve. The New Zealand
born mathematician (and calculating prodigy) A.C. Aitken devoted
much of'his time to this cause, and there is a Duodecimal Society
of America who also promote· it.

Other bases sometimes suggested are 8 and 16, and we shall
look at these later. I am told, though I have no details, that
eleven has also been put forward, but I find it hard to see why.
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Now of course this will never happen. We are too set in
our ways and the widesp~ead use of ten suggests that there
may be sound human reasons for this. This article will also
show that ten is quite a good base. To judge such. questions,
let us'investigate what is involved mathematically.

First, as mentioned, if the base is b, there are exactly
b separate symbols. The smallest possible base is two and this
gives the well-known binary arithmetic using the symbols 0, 1.
B~nary arithmetic is very easy. Its addition table reads:

o + ° = 0, 1 + 0 = 0 + 1 = 1, 1 + 1 = 10,

where only the last entry is non-trivial. Its multiplication
table reads:

o x 0 =' 0, 1 x 0 = 0 x 1

which is completely trivial.

0, 1 x 1 1,

The trouble with binary is the length of the strings. Thus
73, which is a relatively small number, is 64 + 8 + 1 and so is
represented as

1001001.

In general, if b is the base and n is a natural number. the
string has length

1 + [logbn] ,

where the square brackets mean "the largest integer not greater
than l

'.

Thus in base ten, log1073 = 1 0 863 .... , and so

[10gl073] = 1 and the length of the string is 2. In base 2;

we have log273 (10gl073)/(log102 ),

1 0 863 /0-301 ...
6 ·189 .

and so the string is 7 symbols long. % For large numbers, the
string in" base two will be about 3-1 times as long as that for
base ten.

The size of the multiplication table may also be calculated.
If we ignore as trivial a x 0 = 0 and a x 1 = 1 x a = a, and
remember that a 1a 2 '= a 2a 1 we find that in base b, there are

t(b - l)(b - 2) basic mUltiplication facts td be learned. (Of
the b digits 0,1,2, ... ,b-l, omit 0,1, leaving b - 2. Of the

(b - 2)2 pairs of these, b - 2 have the form (a,a). The

others occur twice. Thus there are ![(b - 2)2 - (b - 2)]
+ (b - 2) pairs, i.e. t(b - l)(b - 2).) Our system gives a
fiul tiplication table of 36 entries. Base twelve gives .55
.entries, base 16 has 105, while in the 'other direction base 8
has 21.

If we think about the difficulty schoolchildren have in
mastering the multiplication table, we may well decide that
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base 16 is socially quite impractical.

Another argument easily appreciated is one to do with
packaging. If we are to pack b elements (as we might want to
do), we-might wish for a compact result. This argument favours
twelve or eight: 2 x' 2 x 3, 2 x 2 x 2 respectively. Ten results
in a long and relatively narrow package: 2 x 5 x 1. Still this
doesn't seem to bother most people, and when we pack 12(!) eggs,
we us.e 2 x 6 x 1, not 2 x 2,x 3, or 3 x 4 x 1. .

We may also say on psychological grounds that b should be
even. We like to divide things in half. Even bases also enable
us to check divisibility by two merely by examining the final
digit, and this i~ useful. In base 3~ 73 is represented as
2201, but 75 becomes 2210, and both numbers are odd, but this
fact is not immediately apparent.

There are other more subtle rules for determining divisi
bility. In base ten, we determine divisibility 'by three through
the use of a rule I will call Al. We add the digits in blocks
of one. 73 gives 7 + 3 = 10 and 1 + 0 = 1, which is the re
ma.inder when 73' is divided by 3. (In base 3, of course, we
determine this merely, by looking at the last digit.)

To determine divisibility by 5, we merely examine the
last digit, as 5 divides ten.

Seven is harder. The rule we need to use I call S3, sub
traction in blocks of 3. (This is'because 7 divides

103 + 1.) For example we might want to know if 7 divides

1 031 426 859 314.

We write

1 - 031 + 426 - 859 + 314

which equals -149 and is not divisible by 7 (since -149 has re
mainder -2 or 5, when divided by 7,and 5 is indeed the remainder
when the original number is so divided).

Eleven is decided similarly. The simplest rule here is S1,
and thirteen is decided by 83.

In base eight, divisibility by two is
2
readily determined by

examining the final digit. For 3, since 3 = 8 + 1, the rule is
Sl and' 5 may be tested as a divisor by 82, since 5' divides

8 2 + 1. 7 may be tested by A1, as 7 = 8 - 1. Eleven, however,

gives trouble, although thirteen divides 8 2 + 1 and so is
decided by 82.

Systematising and generalising these observations we see

that the ideal base··hast b, b - 1, b + 1, b 2 + 1, b 3 - 1, b 3 + 1
rich in small prime divisors. For base ten this yields the

t we omit b 2
- 1 as this is (b - 1) (b + 1).
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following list:

2, 3, 5, 7, 11, 13, 37, 101.

For base eight we have:

2, 3, 5, 7, 13,' 19', 73. .

For base nine:

2, 3, 5:, 7, 13, 41, 73.

For base eleven:

2, 3, 5, 7, 11, 19, 27, 61.

For base twelve:

2, 3, 5, 7, 11, 13, 19, 29.

Finally, base sixteen gives:

2, 3, 5, 7, 13, 17, 241, 257.

So from this point of view the choice must lie between ten
and twelve, with twelve yielding rather simpler rules.

The other matter affected by the base is the b - malt
expansion of fractions. Thus base ten gives for 1 the follow-
ing expressions: n

1
0 0 5 1 0 0 333 ... 1

0 0 252 "3 4
1 0 0 2 1

0°166 ...
1· 0 0 142857142 ..."5 "6 '7

1 0·125 1 0 0 111 ... 1 0·1"8 "9 10

1 0·0909 ... 1 0 0 08333 ... 1 o~076923076 ...11 12 13

and so on, two of those listed being rather cumbersome.

iIf n is priwe to b, the expansior of n cannotte~minate, but

must have a repeating element whose length. ~ divides n - 1.
1Thus 7 is as complicated'as it could possibly be, but we are

somewhat fortunate with 1~'

In base 12, we have (I follow the Duodecimal Society of
America in writing X for ten and ~ for eleven), writing the
fractions in base ten and their expansions in base twelve:

t b - mal is the base b equivalent of the word "decimal".
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1
0 0 6

1
0 0 4

1
0 0 3"2 "3 4"

1 0 0 249724 ... 1
0 0 2

1 Oo186X35186 ...5" 6" '7

1 0 0 16 1 0 0 14 1 0 0 124972497 ...8" g- 10

1 1 = 0 0 1 1 0·0&0&0& ...11 = 0 0 1111 ... 12 13

which some"may think simpler than ours, but I don't find it con-"
vincingly so. Base eight is not bad, but has a ten digit period

in the expansion of 1~' Base sixteen is very good. There is a

five-digit repetend in the 16-mal expansion of 1~ and nothing

very dreadful after that till we find a 9-digit repetend in the
. ,I

expansIon of 19 .

The computer sub-culture makes .some use already of' bases
eight and sixteen, so if we ever were to change to some other
base, sixteen might be seen as a logical choice. Against it,
however are its lack of a good test for divisibility by eleven,
the need for a much larger multiplication table, and the need
for six new symbols and four new number words. .

For special purposes, other bases like 100, 1000 may be
used. Indeed these relate to the earlier remarks on divisibility
rules.

All in all, best "stay with base ten~ It's pretty good, and
we're used to it.

ANOTHER MATHEMATICAL ADVANCE

A 28-year-old mathematician at American Telephone and Tele
graph's Bell Laboratories has made a startling theoretical break
through in the solving of systems of equations that often grow
too vast and complex for the most power~ul computers.

The discovery, which is to be published soon, is circulating
rapidly through the mathematical world." It has also set off a
deluge of inquiries from brokerage houses, oil companies and air
lines, industries with millions of dollars at stake in problems
known as ~inear programming.

These problems are fiendishly complicated systems, often with
thousands of variables. They arise in a variety of commercial and
government applications ranging from allocating time on a communi
cations satellite to routing millions of telephone calls over long
distances, or whenever a limited, expensive resource must be
allocated most efficiently among competing users. Investment com
panies use them to devise portfolios with the best mix of stocks
and bonds.

Continued on p.21.
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THE WONDER.SOF 13
D.R. Kaprekar, 311 Devlali Camp,

India

409 has 4 + 0 +9 13 and 4092 16 72 81 and 16 + 12 + 81 169 132 .

526 has 5 + 2 +6 13 and 526 2 27 66 76 and 27 + 66 + 76 169 13 2 .

607 has 6 +0 +7 13 and 6072 36 84 49 and 36 +84 +49 169 132 .

724 has 7 +2 +4 13 and 7242 52 41 76 and 52 +41 +76 169 132 .

823 has 8 + 2 + 3 13 and 8232 67 '(3 29 and 67 + 73 + 29 169 132 .

922 has 9 + 2 + 2 13 and 9222 85 00 84 and 85 + 00 + 84 169 132 .

1003 has 10 + 0 + 3 = 13 and 10032 = 1 00 6 00 9.

Here 13 and 169 are filled up with oO's. Also

1 0 3 0 5 o 3 o 1 has 1 + 3 + 5 + 3 + 1 = 13 and

1 0 3 0 5 o 3 o 1 2 = 01 06 19 36 45 36 19 06 01 and

01 + 06 + 19 + 36 + 45 + 36 + 19 + 06 + 01 = 169 = 132 .

103 050'30 1 is a palindromic number, reading backwards
the same as forwards, and so is

01 06 19 36 45 36 19 06 01

palindromic in base 100.

13 is the sign of the mathematiaian, because this word has
13 letters. ~lso mathematical items like aircumferenae~ approxi
mation~ perpendicular~ quadrilateral~ antilogarithm~ parallelogram
and many others all have 13 letters. '

Michael Deakin t has 13 letters and so do I. if you write' my
name in the script of my mother language.

For wonderful books' on numbers write to me and include the

Pin Number tt 422401,.which has 4 + 2 + 2 + 4 + 0 + 1 = 13, and
enclose ten dollars or eighty rupees ..

t The chief editor of Function.

ttlndian equivalent of Australia's postcode. Eds.
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THE PRISONER'S DILEMMA GAME
Bruce Taplin and Peter Kloeden

Murdoch University

One of the most popular games in mathematical game ~heory

will not be found. on a supermarket shelf, nor even in a specia
lized games shop. In fact, it is not much fun to play, because
the winning strategy is obvious. Nevertheless the game con
tinues to intrigue people on account of the insight it gives
about rational decision making and the nature of optimal
strategies.

The game is played by two players, each of whom secretly
chooses one· of two strategies "C" or "D tl

, and who then simul
taneously reveal their choices. Each player tries to rationally
maximize his own score, which however depends on the other

_ player's strategy choice as well as his own. Any malevolence
or benevolence towards the other player is supposed to have al
ready been included in the scores. These are indicated in the
flbimatrix" in Figure 1, where the first element in each pair is
player l's score and the second player 2'8.

Player 2

C D

C 3,3 1,4
Player 1 Figure 1

D 4,1 2,2

The numbers here are illustrative only. The general case
is indicated below ..

This game is called the prisoner's diZemma game, because it
describes the following scenario. Two criminals (the players)
are suspected of committing a serious crime, and are held in
separate cells for interrogation so t~at they cannot communicate
with each other. Each knows that if neither confesses (i.e. both
choose strategy C) then they can only be convicted on a lesser
charge, whereas if both confess (play strategy D) they will be
convicted of the serious crime~ though their confessions will
have a mitigating effect on their sentence. However, if only
one confesses he will receive lenient treatment while the other
will get the maximum sentence for the serious crime.
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The actual numbers in the bimatrix here are unimportant,
provided they bear the same relative orders of magnitude. T~e

general prisoner's dilemma game has the bimatrix given in
Figure 2, where outcomesR, T, P and S refer to the reward (for
reciprocal cooperation), the temptation (to exploit the other
player), the penalty (for failing to cooperate) and the "sucker's"
punishment (for being exploited).

Player 2

C D

C R~R 8.,T T > R > P > 8
Player 1

D T.,8 P~P 2R > 8 + T

The strategies C and D here correspond to cooperation (with the
other player) and defection (from possible cooperation), respec
tively. 'AII of the major results discussed below apply to any
game of this general class.

The prisoner's dilemma game describes. many other situations
too. For example, two companies (the players) are about to
launch identical products on the market. Each can charge a high
price (C) or a low.price (D). The scores in the bimatrix then
indicate the corresponding profits of the companies. Consider
able attention has also been devoted to pol~tical interpreta
tions ·of the prisoner's dilemma game. For example, two super-
powers (the players) must decide whether to mai.ntain existing
military expenditure (C) or to increase it (D) during a period
of international tension. Each would rather maintain parity in
expenditure at the lower cost, but then each is also tempted to
dominate the other. Alternately, in a nuclear crisis each
superpower has the option of waiting until attacked first (C) or
launching a nuclear strike first (D). Surely e~ch would rather
avoid a nuclear war, yet,if there were to be one neither would
want to wait before striking. .

Each of these real world situations has obviously been
highly simplified and many important factors ignored. Never
theless the prisoner's dilemma game does capture the essence of
choosing to cooperate or compete, and highlights the advantages
and disadvantages of both. .

A key requirement of the prisoner's dilemma game is that
the players make their choices independently ot one another.
They may have some prior agreement, but must make their choice
alone. Since both players are motivated only by the desire to
maximize their own score, they may renege on any agreement,
which may not be enforcable. To see what the best strategy is,
suppose that the other player chooses D. Then if we choose C
we would get S and if we choose D we would get P. Since P > 8,
it would be better for us to choose D. Similarly if the other
player chose C then we would get R if we chose C and T if we chose
D. Since T > R it would again be better ,for us to ~hoose D.
In either case if we were a rational player trying only to maxi
mize our score we would always play D. The other player, who is
supposed to have the same objective, would use the same reason-
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ing and also choose D. That is, both players would play strategyD and obtain the score P. Such an outcome is called a~ equiZibrium because nO,player can do better if he alone changes hisstrategy from the equilibrium one,.

It is ironical that "rational" maximizing,players shouldfinish with such a poor joint outcome, which in fact minimizes
thei~ average score., A frequently used criterion to judge thedesirability of an outcome is that it be Pareto optimaZ*, thatis when there is no other outcome which would increase oneplayer's score w~thout decreasing the other player's. In theprisoner's dilemma game the only outcome which is not Paretooptimal is the one described above, where both play strategy D.In fact this outcome is Pareto-minimal as every other outcomehas at least one player scoring more. Perversely, two "rational"minimizing players would both choose C and both score more thantwo "rational" maximizing players! It would seem that bothplayers would do better if they were less maximizing (or minimizing), that is less "rational". But surely' the reason thatboth players take the time and trouble to "rationally" maximizetheir scores is that they believe this would increase their expected scores. Indeed, how could maximizing one's score regardless of the other player's actions fail to proqucea maximumscore? If "rational" maximization does n.ot produce the bestscore, what method would?

This is the heart ,of the dilemma. Both players jointlyprefer to both play C rather than both play'D. Yet each playerprefers to play D regardless of what the other does. Both ofthese statements appear true, and at the same time contradictory!What the dilemma highlights is the difference between individuaZand coZZective gains, that is between individual rationality andcollective rationality. It is better for each individual playerto choose D because it increases his score relative to thealternative C. The problem is that playing D rather than C decreases the other playeT's score. If both players choose D theneach of their scores is decreased by the other player's choicemore than it is increased by their own choice. Thus both playersscore less if both play D rather than C. It is collectivelyrational for both players to prefer both to play C, but individualiy rational for each player to prefer to play D rather than C.

Since both players have to make their choices independently,they are unable to coordinate their choices to their mutual advantage. If they were able to 'coordinate their choices, theywould obviously both play C. Moreover if one contemplatedswapping back to D the other would threaten to do this, too. Thisthreat is believable because the second player would g~in in thecircumstances whereas the first would lose. The outcome whenboth players choose C is thus fairly stable as well as desirablewhen the players can choose their strategies together. 'When theplayers are not allowed to coordinate their choices the existenceof a governing body, the government say, that can, restrict matters
*Named after the Italian economist and sociologist V. Pareto who,during the last century, investigated how individuals coordinatetheir choices with each other.
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in some way may be beneficial to both players. For example, ifthe value of T were reduced so that T < R, then there would bean incentive to play C if the other player plays C. Both playing C is then an equilibrium, but so too is D. If P were alsoreduced so that P < S, then there would be an incentive toplay C if the other player played D. Then both playing C wouldbe the only equilibrium. In this way the government could makethe individually rational outcome coincide with the collectivelyrational outcome, that is it could increase the actual scoresobtained by the players by reducing the scores for certain outcomes. Ironically this is achieved by reducing the scoresavailable to each player.

Caution is of course needed in applying these results tothe real world. The prisoner's dilemma game is rarely a complete description of a real situation, although many of itscharacteristics can be observed in practice. In the example oftwo competing companies we would expect the companies to set alow price if ~hey could not coordinate their prices and a highprice if they could. However the Trade Practices Act prohibitscompanies from jointly determining prices. In this way the lawencourages the optimal outcome for society of a low price. Itdoes this not by prohibiting a high price, but, more subtly, bycreating conditions where individual self interest can be reliedon to create the desired r~sult. In contrast, various attemptshave been made to get the superpowe~s to make the collectivelyrational cho ice. . The role of the Dni ted Nations as a globalpeacemaker was designed with this in mind. Unfortunately,according to our theory it cannot fulfil this function properlybecause it .does not have sufficient power to limit the superpowers' strategy choices. The situation is however not asdepressing as' our theory predicts. Since nations interact moreor less continually the model of just one play of the prisoner'sdilemma game is not appropriate. Instead we should consider asequence of games played one after the o~her. Here there istime ·for trust to develop as a player can now make his choice
d~pendent on what the other player chose in the previous gameor games, and could reward (choose C) or punish (choose D) theother player as thought appropriate. Here each player mustalso consider the long term consequences of playing D as wellas the short term ·advantages. There is thus considerable incentive for mutual cooperation once the players realize the con-sequences of Their actions. .

A game Theoretic analysis of prisoner's dilemma situationsis very much a theoretical analysis of a highly simplifiedproblem. Nevertheless, it gives considerable insight into thedilemma of competition versus cooperation, of individual gainversus collective gain.

Aqditiona~ r~ading.

1. Bennett~ P.G. and Dando, M.R., The arms race: is it just amistakG? ~ i.n New Scientis·t, London, Vol. 97, 17 Feb .1983,pp.432-435. ---------.---

2. Hofstadter, D.R., Metamagical Themas: The oaloulus of 00
operatio~ is tested through a lottery in ScientificAmerican: New York, Vol.248, June 1983, No.6 pp.14-18.
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3. Hofstadter, D.R., Metamagical Themas: Computer tournaments
of the Prisoners' DiZemma suggest how eooperation evoZved~

in -Scientific American, New York, Vol.248, May 1983, No.5,
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QUALITY AND STATISTICS

Neil So Barnett

Footscray Institute of Technology

Most of us, atone time or another, have purchased a
particular it~m in good faith and discovered later that it was
of poor quality. Because we are often in danger of being
taken advantage of~ purchasing (especially expensive items)
can be a rather traumatic experience. It seems often'that one
has to be belligerent in order to obtain a fair deal or a
reasonable service for money paid.

Some 'shoddy deals', perhaps many, are commi tted wi·th in"
tent, others occur by default through genuine carelessness,
accident or through plain ignorance. These latter situations
are often remedied under warranty or guaranty conditions, laid
down at the time of purchase.

Top management may have no desire to market poor quality
goods but production workers may have little pride in their own
work. Management may ca~e little for quality and a lot for
making a quick sale. Unknown to management- the raw materials
of manufacture may be sub-standard. Perhaps everyone in the
company is striving for the best but equipment is old and worn
and thus not suitable for producing the quality necessary.

It is gener-ally acknowledged, by those who have made it
their concern to study quality, that if a company is to produce
quality items it must have leadership from the top. Once good
quality is the prime objective of top management how then can
good quality be obtained?

When I was a boy (n years ago, where n < < k) a ., Made in.
Japan' label was almost a guaranty of poor quality - the ex
pression, 'Japanese Junk' was widely used. Today, however,
people seek out items made in Japan as a means of obtaining good
quality. This is of course a generalization but many sectors of
Japanese industry are renowned for producing top quality, re
liable products. Just how has this turn-about been achieved?
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The answer to this question is urgently being studied by western
governments, industrialists and business men at all levels as
they see their traditional overseas markets be~ng lost to the
Japanese.

The Japanese attribute their success to the implemen~ation

of a number' of factors: quali ty must become the number one con
cern of the managing director, every worker within an organisa
tion must feel responsible for quality and finally, the factor I

-wish to emphasise, the introduction of statistical quality con
trol into industry in a big way.

The adoption of these principles has meant a massive edu
cational program, with many workers being given at least a
rudimentary knowledge of statistical techniques. Statistical
methods used in quality control are not, by and large, new,
exceptionally profound, nor Japanese in origin! Why then has
the western world been 'upstaged' by the Japanese? This is
arguable but whatever the philosophical issues one thing is
very clear, industry is going to have to become much more con
cerned with quality if it is to survive the Japanese 'onslaught'.
To survive, 'Made in Australia' must become synonymous with good
quality and to achieve this, these steps, so vital to the
Japanese success, must be taken by us in Australia - this in
cludes, a widespread use of statistical methods applied to busi
ness; industry and specifically to the area of quality control.

At the recent World Quality Congress in Brighton, England,
attended by over 1000 delegates from 45 countries, many of the
points I have raised here were discussed in greater d.etail.

The British Government has recently launched a nationwide
quality awareness campaign. The Bradford University Management
Centre has been given a government grant to study the use of
statistical methods in quality control throughout the British
manufacturing indu~try. Preliminary studies show a shockingly
low use of statistical methods in quality control despite the
Japanese experience and the fact that Britain has been the
home of many outstanding statisticians. Generally, it has been
found that where statistical methods are being wisely used, to
gether with the other factors mentioned, quality is improved and
when quality is improved a company becomes more competi tive 0, A
need has been established for a widespread expansion in broad
based statistical education and for trained statisticians to
apply their skills in industry.

So where does all this leave you? Emphasis on the' intelli
gent use of statistical methods is going to Lncrease in society
in general but particularly in business and industry. So don't
be in .ahurry to regard your school statistics as so much aca
demic game playing - the 'old' normal distribution forms the
basis of many of the current applications of statistical quality
control. Means, variances, range, histograms, cumulative plots
are all useful tools and are again fundamental to many applica
tions of statistics to quality control.

For example, production processes are often monitored by
use of so-called mean and range control charts ° Suppose that a

. machine should be producing parts of a prescribed diameter;
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fluctuations about this target value can be plotted and under
standard operating conditions observed to have a normal dis
tribution. Actual diameters of the parts produced will also
have a normal distribution. .When values are distributed
normally then the means of random samples can also be shown to
have a normal distribution. Remarkably, in most cases,· ·pro
vided that the sample sizes are not too small, sample means are
very nearly normally distributed, even when the values them
selves do not have a normal distribution. This being the case,
the performance of a machine mass producing parts to a target
diameter can be monitored by sampling regularly parts produced,
calculating the mean and standard deviation (or range) of
sample values and plotting these on a chart. Because of the
normality property alluded to above, extreme, average and/or
range values can be shown to correspond to high probabilities
of the machine starting to deviate from its standard operating
mode. Corrective action can then be taken. The monitoring of
both mean and standard deviation (or range) is necessary since
a change in either will affect the probabilities of having parts
produced with a diameter beyond prescribed limits. More will be
said of such techniques in a future article. To understand how
the technique operates reqUires only a knowledge of the normal
distribution, what a sample mean, standard deviation and range
are and an understanding of· the implications of changes of
these on the probability of producing defective parts (parts
with a diameter unacceptably far from the target value).

So build on these fundamental tools and you just might
have a part in helping to ensure that 'Made in Australia'
means made well.

ANOTHER MATHEMATICAL ADVANCE (CONT,)

The Bell Labs mathematician, Dr Narendra Karmarkar, has
devised a radical procedure that may speed the routine handling
of such problems by businesses and government agencies and also
make it possible to tackle problems that are now far out of reach.

Because problems in linear programming can have billions or
more possible answers even high-speed comput·ers cannot check
everyone. So computers must use a special procedure, an algo
rithm, to examine as few answers as possible before finding the
best one - typically the one that minimises cost or maximises
efficiency.

A procedure devised in 1947, the simplex method, is now used
for such problems, usually in the form of highly refined computer
codes, sold by the International Business Machines Corporation, .
among them.

The Karmarkar approach exists so far only in rougher compu
ter code. Its full value will be impossible to judge until is
has been tested experimentally on a wide range of problems. But
those who have tested the early versions at Bell Labs say that
it already appears many times faster than the simplex method, and
the advantage grows rapidly with more complicated problems.

New York Times 19.11.84



PROBLEM SECTION
Function has two separate sections dealing with problems

and problem solving. There'is the Problem Section in which
various problems of very different levels of difficulty appear.
Readers are encouraged to submit problems and solutions to this
section. Many readers find that this is the most rewarding way
to interact with Function.

Perdix is the name of a famous problem solver in classical
myth, whose uncle Daedalus envied his prowess and tried to have
him killed. He was, however, rescued by the goddess Minerva,
and lived to write for us~ Perdix concerns himself mainly with
questions from the International Mathematical Olympiads and with
the techniques of problem solving. Readers are also encouraged
to write to Perdix, cj- The Editor.

We begin by giving the solution of some outstanding problems,
beginning with

SOLUTION TO P~OBLEM 8.4.2.
This problem, due to Lewis Carroll, and submitted by

S.J. Newton, read:

A room has a light switch at each corner. It is not possible
by examining the switch to tell if it is on or off. The light
will, however, be- off unless all switches are in the tl on tI

position. A person comes into the room and finds the light off,
then presses each switch in turn with no result. He then
presses again in order the first, second and third switches,
still with no result. How should he proceBd if he is to turn
the light on?

Label the switches A~ B~ C, D. Switch A may be in state a
or state a, one of which is off and one on but we do not know
which is which. Similarly for the other switches.

Suppose we have initially abed. The first circuit of the
room produces in order:

The next gives:

abed~ abed3 abed.

At this point no success has been reached and eight out of
a possible 16 configurations have been tested. The person is
now at C, and going on to D will merely re-establish the initial
set up_

Nonetheless, this is not a bad way to proceed. Our noctur
nal explorer, could go to D and so re-establish abed, the initial
state. One way to proceed now is to go to B, and establish abed~
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then back to D and so reach abcd.

After this, he may proceed ~round the room as before going
to A,B,C,D,A,B and setting up the six outstanding cases: abed~
aba7I~ abaa~ abed~ abed., awd. '

This solution involves only ODe repetition of a state.
There seem'to be no solutions that involve no state's being
repeated at all.

SOLUTION TO PROBLEM 3,4.4.
This was a four-part problem on Pythagorean triples.

a,b,o are integers satisfying a 2 + b 2 = 0
2 . Prove:

1. Of these integers, one is divisible by 3, another (possibly
the same one) by 4, and one (again possibly the same one) by 5;

2. The product abc is divisible by 60;

a. ab/2 (the area of a corresponding right-angled triangle) is
never a perfect square;

4. The radius of the in-circle of the right-angled triangle is
always integral.

In order to solve ~hese, it is necessary to know LhaL a,~,c

are expressible in the form

a = 2kuv~ b = k(u2 - v 2 ), a ~ k(u 2 + v 2 )

where u,v,k are integers. (See Function., VoZ.6, Part 3.)

1. Clearly a is divisible by 2. If u, or v is divisible by 3,
so is a. If not, U = 3m ± 1, v = 3n ± 1 (for some integers
m,n) and a quick calculation shows b to be divisible by 3.
If u or v is even, then a is divisible by 4. If not,
u = 2n + 1, v = 2m + 1 (again, for some integers m,n) and
another quick calculation shows b is divisible by 4.

Finally, if U or v is divisible by 5, so is a. If ·not there
are integers m,n such that u = 5n -± 1 or 5n ± 2 and
v = 5m ± 1 or 5m ± 2. There are four possible combinations,
two of which make 5 divide b and the other two of which make

5 divide c. (E.g. (5n ± 1)2, + (5m ± 2)2

= 25(n2 + m2 ) ± 10n ± 20m + 5.)

2. As 3,4,5 are mutually prime (have no divisors in common),
this follows from Part 1.

3. 'ab/2 = k 2uv(u2 - v 2 ). We show that uv(u 2 - v 2 ) cannot be
a perfect square. If u,V have divisors in common, call the
largest such divisor h. Then u = hU, v = hV (say), where

U~V are integerp with no common divisors.· Then uv{u 2 - v 2 )

= h 4 UV(U2 - V2 ) and U,V have no divisors in common and

neither have U, u2 - v2 , for if a divisor divided U and also
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u2 _ V2 , it would· have to divide v2 and so contain a divisor

conunon to u, V. Thus each divis·or of UV( u2 - V2 ) occurs
only once and this expression cannot be a perfect square.
We w'ill complete the:·proof in the next issue. .

4. We first need a formula for the radius of the inscribed

circle. From the figure, the area ab of the triangle"2
ABC is the sum of the areas. of the triangles IEC, ICA, IAE,

i. e. ra + rb + ro Thus ab = rea + b + 0). So2 2 2

r = ab
(a + b + a)

ab(a + b - 0)
(a + b + e)(a + b - e)

ab (a + b - c)
2~'

(a + b) . - c

ab(a + b - c)
2ab

tc a + b - c).

Now a + b - c is even (as c is even if both a, bare, and e
is odd if a or b is odd). Hence the result.

B

a

c
b

A
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Those were quite difficult problems. Still outstanding
are three-rather easier ones, repeated here for new readers.

PROBLEM 8.5.1.
Let r, x, y and z be real or complex variables. Show that:

(i) Y ~ x if y changes by a factor of r whenever x
changes by a factor r. [Assume y is known to be a function of x.]

(ii) z ~ xy if z ~ x for each fixed y and z ~ y for
each fixed x. [Assume z is known to be a function of both x
and y, i.e., to each suitable x and y, there corresponds just
one z.]

PROBLEM 8.5.2.
Let A = 15 + /22 + 2~ and

B = /11 + 2129 + /16 - 2129 + 2/55 - 10129. Prove that A B.

PROBLEM 8.5.3.
A particle is projected vertically into the air; it

ascends to a certain height and then descends to the point of
projection, all in the same straight line. Taking air-resis
tance into account, show that the initial (projection) speed
is greater than the final (impact) speed and that the ascent
time (the time to reach maximum height) is less than the
descent time.

And now some new problems.

PROBLEM 9.1.1 (from Mathematical Spectrum).

A boy took a calculator with him when he went to the
store. 'He bought four items and calculated correctly that
their total cost was $7.11. The only trouble was that he had
used the mUlt~ply key to reach this answer.

What -did the items 'cost?

PROBLEM 9.1.2 (from Mathematical Digest) .

Which is larger:

1 (1 + 1 +! + + 19~4)1984 "2 3 ...

1 (1 + 1 +1. + + 19~5) ?or 1985 "2 3 ...

PROBLEM 9.1.3.
The decimal repre§entations of n/13, n = 1,2, ... ,12 each

have a period of 6 and belong to one of two families (each of
which has 6 members). If _ i/13 belongs to one family,. then
(13 - i)/13 also belongs to that family. Why is this so?
(Cf. pp.9 ;... 13.)
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PERDIX

Welcome to new readers of Function! Perdix will continue
in 1985 to write about mathematics competitions, both Australian
and ~nternational, and present you with competition problems and
discuss their solutions.

Preparations for selection of the 1985 Australian Olympiad
team are well underway. The Australian Mathematical Olympiad
CAMO) Competition takes place in mid-March. The best ten, or
so, in this competition will then start. training, and will go to
the IBM financed mathematics camp in May. From these will be
selected the final team of six, to represent Australia in
Finland in July, in the 27th International Mathematical Olympiad
(IMO) .

The AMO is competed in by those who do well enough in the
AMO Interstate Finals .. These take place in October. In 1984,
nine participants in the Interstate Finals were awarded certi
ficates of excellence, four from New South Wales, two from
Victoria,two from South Australia, one from Western Australia.
Another 13 participants were awarded certificates of achievement.
Well done, ~11 of yobJ

How can you enter the Interstate Finals, the first step on
the way to selection 'for the Australian Olympiad team? You must
join one of the various training groups in your State. In
Victoria, in 1984, there were training programs at Monash Uni
versity, at Melbourne University: at Melbourne Grammar School,
and by a correspondence scheme very well run by David Easdown
at La Trobe University.

If you wish to be involved in the next round ask your school
teachers to tell you how to join one of the training groups. A
strong reco~nendation from your school teacher to the State
organizer will probably get you ·an invitation to join a group.
Others will receive invitations to join because they have per
formed well in some competition such as the Australian Westpac
Mathematics Competition.

ProbZems

This year I shall begin with geometry problems. Geometry
has always played a large part in Olympiad problems. In many
years up to half the problems set in the IMO have been entirely
or principally geometry problems. I shall begin with some
simple problems and gradually build up to those of Olympiad
standard.

REMEMBER always to try to do a problem before reading its
solution. Also try to find different solutions, if you can,
from those I give.
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PROBLEM I. Show ~hat the sum of ,the measures of the angles
marked in the diagram is 540°.

SoZution. Take a point 0 in the interior and connect it to
each vertex. We then have
5 triangles. The interior
angles of each triangle
have total measure 180°.
Subtract the 360° measure
of the angles at 0 to get
the required sum of
(5 x 180 ~ 360)° ~ 540°.

REMARK 1.

The only basic result used in this solution is 'the important
fact that the sum of the measures of the interior angles of a
triangle is 180°. The method we have used would also apply for
a polygon with any number n of sides, instead of 5. We then get

- that the sum of the interior angles is (n x 180 360)°.

REl\..1ARK 2.

Another solution is obtained by
dividing the pentagon up into tri
angles thus:

The sum, of the measures of the
interior angles of the triangles
is 3 x 180°, and this is the
required SuID, for this time
there are no extra angles involved
in the sum.

PROBLEM 2. Find the sum of the
measures of the angles marked in
the diagram. Generalize your
answer to a polygon with n sides.
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Solution. You probably noticed immediately that you can deduce
the answer from the result of Problem 1. For the sum of the
measures of a 1 and b l is 180°, as also is that for a 2 and b 2 ,

and so on. Thus, subtracting the sum of the measures of
a 1 ,a2 , ... ,a5 , i.e. 540°, from 5 x 180 0 we get the sum of

the measures of b
1

,b
2

, ... ,b
S

' Thus the required answer is 360°.

For an n-sided polygon it is also just 360°.

Alternative Solution. Start with the side connecting the
angles b1 and b2 . Move this side so as to be parallel to the

side connecting the angles b 2 and b 3 by rotating it anticlock

wise through an angle equal to b
2

. Similarly rotate it through

~n angle equal to b 3 to make it parallel to the side connecting

b 3 and b 4 ; and so on. The side returns to its original position

(or parallel to it) when it has been rotated through 360°; "but
this is just a rotation, as we have seen, through an angle of
measure e.qual to the sum of the measures 9£ hi' b 2' ... " and b 5·

PROBLEM 3. Use the result of Problem 2' to deduce the result in
Problem 1.

DEFINITION 1.

A regular pentagon is a pentagon with all its sides equal
and all its interior angles equal. A regular n-sided polygon
is defined similarly: thus a regular triangle is equilateral,
a regular quadrilateral is a square.

c

B

LDEA = 180°
are both
marked x

E

PROBLEM 5. Show that in the
regular pentagon in the diagram
the length of the segment AP
equals the length of each side
of the polygon.

PROBLEM 4. Show that each angle of a regular pentagon has
measure 108°. Generalize: show that each angle of a regular

n-sided polygon has measure equal to (180 - 3~O)O. [Check for

n = 3, 4 and 5, that this formula gives the right answer.]
D

S~lution. Since the lengths
of DE and EA are the same,
6DEA (read this as "triangle
DEAn) is isosceles. Its angle
DEA is an interior angle of th~ regular pentagon, so
(Problem 4). So the -other two angles of the triangle
a~o (36 + 36 + 108 = 180). Similarly the other angle

·on the diagram is of measure 36°. Hence

and

I PEA iDEA

(108

LDEP
36) 0



LAPE [PEA - LEAP

29

Thus, {PEA = lAPE; so ~PAE is isosceles. Thus AP has 'length
equal to that of the side EA of the pentagon.'

REMARK 3.

We have used another geometrical fact in ,this solution:
if two angles of a triangle are' equal,then the sides opposite
those angles are equal.

Here are some more facts about triangles.

DEFINITION 2. Two triangles are said to be congruent when one
can be obtained from the other by moving it: without distortion
or stretching, into the position of the other. '

Remember the following results: they give tests for con
gruency of triangles.

RESULT 1. Two triangles are congruent if the lengths of the
three sides of one are the same as the lengths of the three
sides of the other. [3 sides ,]

RESULT 2. Two triangles are congruent if two sides of one tri
angle' are of the sa~e lengths as two sides of the other and
also the angle between these sid~s is of the same measure i~

each triangle. [2 sides and an include~ angle J

RESULT 3. Two triangles are congruent if the angles of one
are the same (i.e. have the same measures) as the angles of the
other and in addition two equal angles, one in each triangle,
have sides of equal length opposite them. [3 angles and a
corresponding side ]

To use the test for congruency in Result 3 you only_have
to check that 2 angles in one triangle have the same measure
as 2 angles in the other. For then the remaining third
angles are necessarily equal. [2 angles and a corresponding
side]

RESULT 4~ T"wo right angled triangles (i.e. triangles in which
one of the angles is a right angle) are congruent if their
hypotenuses are the same length and there is another side of
each of the same length. [right angle, hypotenuse and side]

The comments inside [ ] at the end of each of these results
give~ the way that I shall refer to these results in future.

Each of these results will be used again and again in later
issues, to establish other results, and to solve problems.
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ROBERVAL'S BALANCE

The diagram opposite depicts Roberval's balance, whose
theory once formed part of school mathematics courses. Our
account here is based on that in Volume 1 of E.J. Routh's
A Treatise on Analytical Statics ,(Cambridge University Press,
second editiori, 1896).

In this balance the four rods AA', AtB', B'E, BA are
hinged at their extremities and form a parallelogram. .The sides
AB, A'B' are also hinged at the points C, C' to a fixed vertical
rod ace'. The line CC' must be parallel to AA' and BE', but
need not necessarily be equidistant from them. Two more rods
MM', NN' are rigidly attached· to AA', BE' so as to be at right
angles to them. These support the weights P and Q suspended in
scale-pans from any two points Hand K. As the combination
turns smoothly round the supports C, C', the rods AA', BE' re
main always vertical, and MM', NN' are always horizontal.

The peculiarity of the·machine is that, if the weights P,
Q balance in ~ny one position, the equilibrium is not disturbed
by moving either of the weights along the supporting rods MM',
NN'. It may also be remarked that, if the machine is turned
round its two supports C, C' so that one of the rods MM', NN'
descends and the other ascends, the two weights continue to
balance each other.

If the balance is so constructed that the weights P, Q are
equal, when in equilibrium, we can detect whether any difference
in weight exists between two given bodies by simply attaching
them to any points of the supporting rods. The advantage of the
balance is that no special care is necessary to place them at
equal distances from the fulcrum.·

This should be compared with the simple beam balance, which,
like a see-saw, depends critically on the placement of the _
weights on either side. We have never heard of a see-saw con
structed on the principles of the Roberval balance, but such a
thing could be qui te intere_sting and make a useful .additioD to
your friendly neighbourhood adventure playground!
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ANOTHER LONGSTANDING CONJECTURE P~OVED (CONT.)

The Bieberbach conjecture was a refinement of an earlier
result due to the nineteenth century mathematician Riemann and
it has applications to problems of optimization.

Earlier resul ts by Bieberbach himself (1916), Loewner'
(19~3), Littlewood (1923) and6thers since produ6ed only partial
results, so de Branges has made a major advance.

1985 APPLIED MATHEMATICS CONFERENCE

Every year in Australia, as' also in other countries, Mathe
matices conferences are held. Here delegates relate, listen to
and discuss advances in Mathematics. Such conferences contribute
greatly to the quality of research in the areas of mathematics
under discussion~

In February, the 21st Applied Mathematics Conference (of the
Australian Mathematical Society's Division of Applied Mathematics)
was held in Launceston, Tasmania (on the campus of the Australian
Maritime College).

The strong prevailing theme was the use of mathematics in
the biological sciences. Among the questions posed .in this area
and to which mathematics has been found·to be useful are those
concerned with biochemica~ reactions, ecological questions,
nervous conduction, electrophysiology and cellular differentiation.

Other papers to attract attention because of their potential
utility con~erned the effect of cyclone.wire fefices on halting the
advance of bushfires and th~ effect of soil cracking on water
runoff. The potential economic significance qf' such' studies in
an arid country such as Australia should not need to be stressed.

Computing played a large part at the conference, as might
be expected. One paper concerned the design of silicon chips,
while others dealt with aspects of software or numerical analysis.

A disappointment was the low level o.f support from industry.
Of the more than 100 delegates present, only five came from in
dustry. Australia, it seems, employs nearly all its mathematic
iansin Universities, CAEs and the CSIRO. A panel discussion on
the need for closer cooperation between mathematicians and in
dustry did more to show. the need for such cooperation than to
suggest ways to bring this about.

BACK ISSUES

Readers are advised that back numbers of all but the very
earliest issues of Function are available from the Business
Manager. For prices, ring 541.2591 or consult the order form
mailed with last issue.
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