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If we were to give a theme to this issue of Funation~

perhaps it would be the interaction of mathematics with the
everyday world. Over 4000 years ago a practical problem was
committed to. papyrus and its answer found. In later days,
the matter of the volume of wine casks became important. Now 1

a new pump. Enjoy also Dr Bowers' article on ... - well read
it for yourself.

THE FRONT COVE·R

Dr Carl Moppert, in his third appearance in Funation~

describ"es another of his inventions, a pump. bur cover shows
three such pumps in series, one above the other, so that each
pumps fluid into the one above it. This allows, in principle,
water to be pumped to great heights. Dr Moppert suggests that
some such mechanism may draw the sap up to the tops of trees.
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THE M-PUMP

Carl Moppert, Monash University

The M-pump (why M?) is of course one of the greatest inven
tions of this century. It solves all the problems of irrigation.
It is an inexhaustible source of energy and absolutely non
polluting. In fact, it disposes of otherwise polluting empty
beer cans.

Apart from its practical application, the principle of the
M-pump solves a probtem which eluded scientists for hundreds of
years: how does the sap get up a tree?

This being t"he first published account of the M-pump, the
present issue of Function will have a high value for collectors
in the future.

constant
level

reservoir

"FishtaUIl

valves

Figure 1: The principle of the M-pump

A tin is partly filled with water. Two pipes are glued in
the top of the tin, both reaching down to the water inside. One
of the pipes (the left one in the figure) reaches into a reser
voir of water. The other pipe bends over: out of this end the
water flows. In each pipe is a valve~ The valve in the left
pipe opens up for water .running down, that in the right pipe for
water running up. Either valve closes if the water wants to run
in the opposite direction.

The working agent of the pump is the air above the water in
the tin. If the temperature increasesj this air wants to expand
and·the pressure in the "tin increases. Some of the water in the
tin is driven out through the right-hand pipe (like coffee in a
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percolator). The water cannot escape through the left-hand pipe
because of the valve. 'If now ,the temperature decreases 1 the air
in the tin wants to contract. The pressure decreases and water
is sucked in through the left-hand pipe. rtcannot be sucked in
through the right-hand pipe because of the valve there.

Whenever the temperature increases 1 water will come out of
'the right-hand pipe and whenever the temperature decreases"water
will be ,sucked in through the left-hand pipe~

In our discussion, we 'shall assume that the barometric
pressure remains constant and that the temperature fluctuates.
It is true of course that our pump also acts if the temperature
remains constant and the barometric pressure fluctuates, but we
will not go into this.

The pump is "driven" by changes of ' temperature. The one I
have built is kept on the veranda of my house; the changes from
day temperature to night temperature are sufficient to drive it.
The best pumping action is observed on a-summer day with some
clouds in the sky: the changes of temp~rature have a very
marked effect.

The 'Theory

All we need to know is the so-called' gas taU):' for any
quantity of gas (air, oxygen, hydrogen or whatever) the ex
pression pV!T is constant, where p is the pressure, V the
volume and T the absolute temperature (degrees Celsius + 273°).
Pressure and volume can be measured in any old units. as long as
we stick to them. '

For present purposes, I shall measure p in cm~ of water,
V in cmS . Atmospheric pressure is then about ~OOO em (~O metres
of water' correspond to 750 rom of mercury).

As the air in the tin never changes - only water is coming
in or going out - for this air the expression pV!T always has
some value k say:

pV!T = k • (1)

We look at the situation when the absolute temperature of
the air in the tin t~kes its maximum value Tmax . Let then

Pmax and Vmax denote the corresponding values of p and V.
Furthermore, let B denote the outside barometr'ic pressure (in cm,
of water).

At Tmax ' the water just stops coming out of the right-hand
pipe. At the end of this pipe, the pressure is then B. As this
pipe is full of water, we have this same pressure in the pipe
~ithin the,tin at the point which is on the level of the end of
the pipe (see Figure 2). '

In Figure 2, the bottom of the tin is at the level of the
(essentially infinite) outside reservoir of water and the open
ing of, the 'right-hand pipe is at the same level as the top of
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Figure' 2. Pressure distribution at the openi~g of the RtH,valve
the tin. The water in the tin is x em. below the top of the tin,The air in the tin then occupies the volume

Vmax = xQ , (2)

where Q is the cross-section of the tin (less the cross-sections
of the pipes) in cm2 • The pressure Pmax in the tin is

P =B+x+1Jmax. (3)

incm of water, where v is the pressure (in the same units) reqUired to open either vaive.

Equatio.ns (1), (2) and (3) then give

xQ(B -:t- x + v) = k Tmax ' (4)

At this stage, we need not worry about the left-hand pipeas the valve in it is closed, while water comes out of the right-
hand valve.

At the minimum temperature Tmin , we make the corresponding
calculations. The air in the tin has then contracted and therefore the water level inside the tin is higher. The valve in theright-hand pipe is closed and that in the left-hand pipe is open.

From Figure 3, we see that the a·ir now occupies the volume
Vmin' namely

Vmin
and that its pressure is

yQ , (5)

Pmin = B - h + y ~ v • (6)
(The term -v indicates that the valve in the left-hand pipe has
to be kept open.)
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Figure 3. Pressure distribution at the opening of the L,H,valve t

From (1), (5) and (6), we find then

yQ(B - h + Y - v) = k Troin ' (7)

The constant k in (4) and (7) is the same as the air in the tin
has not changed.

From (4) and (7) we eliminate both Q and k at one stroke:

x(B + x + v)
Tmax

y(B -h + y - v)
Troin

(8)

In Equation (8), the barometric pressure B and the pressure'
v needed for opening the valves are given. We also take the
temperatures Tmin and Tmax as given. Equation (8)'is then the

equation of a hyperbola in x and y; its axes are parallel to the
coordinate axes.

In order to have a positive pumping action we must have

y < :c •

In fact the volume of ,water pumped is (x - y)Q.
we have to consider (8) and (9) together~

(9)

Accordingly,

As always with such questions, we look for the "solutions
with y = x in Equat"ion (8). There are two solutions, namely

x = y = 0

and

y
Tmax

+ h T - T .
max m1D

The second solution is negative asE is large compared
with hand v. For positive values of x and y we thus have
either y < x always or y > x always. The first case applies
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if

Y f (0) < 1 ,

where y is considered as a function of x in Equation (8).

From (8) we find by differentiating with respect to x

(10)

B+2x+v
Tmax

B + 2y - h - v y'
Tmin

(11)

and this gives for x = y = 0

T . B + v'
Y '(O) =~

Tmax · B - h - v

Taking (10) and (12) together then gives the condition

(12)

Tmaxh Tmax - Tmin
< B • (13)

If (13) is riot satisfied, the pump does not·work at all. It
follows that h and v must be kept small. For Tmin = 283°abs

1QoC, Tmax 308° abs = 35°C, B = 1000 cm, Condition (13) gives

12·3h + 23 0 6v < 1000.

We are lucky if we find yalves with v = 10 em, and even then we
must have h < 62·1 em. Of course, h must be kept considerably
lower to allow an appreciable pumping action.

For x.= h = 20 and Tmin , Tmax and B as before, we find

from (8) that y = 19·16 em. Accordingly Oo84Q em3 of water
are then lifted by h(= 20)cm. This agrees well with my experi-
ments. For h = x = 10, we h~ve y = 9·48 em·, i.e. Oo52Q em3 of
water are lifted by 10 em.

If z = h, the greatest volume of water will be lifted as
. then the greatest volume of air is expanding. In order to pump
water to any given height we stack many pumps, each of height h,

·on top of eaeh other. We have then n = 100/h pumps per metre

and if each of these "cells" transports Q(h - y) cm3 of water,

the stack of n cells pumps 100Q(h - y)/h em3 of water to the
height of one metre. The eff~ciency of the stack of cells is
thus measured by the quantity

E = Efficiency

where y is determined by (8), i.e.

y(B ... h + y -'v)
T .

ID1n h (B + h + v)
Tmax

(14)

(15)
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In our example, we have:

h
h

10 cm
20 em

E = 0·052
E 0·042

It is not difficult to show that E always decreases with in
creasing h and becomes zero when h reaches the maximum value,
given by (13). The maximum value Emax is then

Emax lim !L.::.....1i.
h+O h

(16)

and this can be found to be

Tmin B
Emax = 1 - -T--- · S-:--V

max
(17)

Tmax
Emax

In our example with

305 0 abs, we find

0·072.

B = 1000 em, v = 10 em, Tmin = 238°abs ,

Emax = 0·063. For v = 0, we would have

I started thinking about this pump by trying t9 find an ex
planation of how the sap gets up a tall tree. As far as I know,
the biologists- don't have a satisfactory answer. My pump would
give a possible mechanism, although I am told there are no valves
to be found in the cells of a tree. Perhaps, however, if' one
looks for valves, one can find them. A point in favour of my
theory is the fact that, given h and v, Equation (13) gives a
minimum value of B. Accordingly, given h and v, the pump works
only for sufficiently high barometric pressure. This would then
explain why trees grow only up to a certain height above sea
level.

Engineers have told me that my pump is not new. It is true
that in 1698 Thomas Savery patented a similar pump. There are
however essential differences: 'Savery used the expansion of
steam and his valves were not automatic.

I have built ,several models of my pump and they keep working
without any attention. As valves I use those from blood-trans
fusion apparatus. My pumps do not move mountains: a pump with a

tin of volume 1 litre lifts about 100 cm3 of water by 20 em over
24 hours.

MATHEMATICS AND DEDUCTIVE REASONING

In the great inquiries of the moral and social sciences
mathematics,(I always mean applied mathematics) affords the only
sufficient type of deductive art. Up to this time, I may venture
to say that no one ever knew what deduction is, as a means of in
vestigating the laws of nature, who had not learned it from mathe
matics, nor can anyone hope to understand it thoroughly who has
not, at some time in his life, known enough of mathematics to be
familiar with the instrument at work.

J.8. Mill
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WINE CASKS AND CALCULUSt
. Malcolm J. Cameron,

Burwood, Victoria

The Grape Harvest of 1612 "

The year 1612 was long remembered for its excellent fruity
wine. Yet the grape harvest of that year produced more than
wine. In ·fact the mathematics developed to cope with the prob
lems of supplying sufficient wine casks to hold the fruits of
the vine is the greatest mathematical achievement.

The year 1612 was indeed an outstanding vintage. Here's
how it came about.

Good Fortune· and its ProbZems

Last year's casks will normally suffice for this year's wine.
If the harvest is poor there are casks to spare. But if the
people are blessed with a really bumper harvest they must busy
themselves constructing new wine casks.

And indeed they were busy in 1612.

So much so that the
management decided to call
in a consultant, a mathe
matical consultant. The
obvious choice was Johannes
Kepler, previously 'Imperial
Mathematician' to Emperor
Rudolph II of Bohemia. A
bit of a mystic, yes, but
evidently suitable for
casting horoscopes, this
being the reason for his
previous employment. And
who cared that Johannes
spent his spare time.
reading old Greek texts
propounding a new mystical
cosmology and stargazing
at the local observatory?

~~ophJms~Mcf,
l(J(UJ1JemE~

1608.

X. IX.

1. VIle

II.

Figure 1. A horoscope cast by
Johannes Kepler,

tReprinted with permission from the Wine and Spirit Buying
Guide, Jan. 1983. See also the author's Heritage Mathematics
(Melbourne: Hargreen, 1983), Chapter lOt
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The Problem

As the harvest continued to ripen it was becoming painfully
obvio~s that there was to be a severe shortage of wine casks. A
tragedy.

More so because ··no-one knew with any accuracy how much wine
the existing barrels would hold or which was the most cost
efficient barrel to construct. And there were many types to
choose from and many being. frantically constructed.

So Kepler was given two proble~s for his meditation:

- to improve upon the crude methods then used for estimating
the volume of the casks.

- to determine the best method of barrel construction,

Of course a modern consultant would jump straight into the
problem using calculus. This mathematics is just made for finding
areas, voiumes and maximums or minimums.

But calculus nad not been invented then. So Kepler invented
it. Or at least was one of a series of-brilliant men responsible
for its invention in a flowering of creative science unequalled
since the great days of Greece,

The Old Method - Gauging

The obvious starting point·was the booklet by Johann Frey
printed in Nuremberg in 1531. This gave the standard method
for calculating the capacity of a cask - called gauging,t But
Kepler was unimpressed, as were the wine merchants~

Kepler next tried an old Greek text by Archimedes which had
reached Western Europe in about 1450 via some Arab mathematicians.
This he found to be a rigorous but sterile method. Once a formula
is known it gives an elegant way of proving it, but it is of no
use in discovering the initial result. (While Kepler was fortu
nate to have this Greek manuscript at all, it is unfortunate that
he did not have ahother one. For it turned out tbat Archimedes
had a second method - the closest the Greeks got to calculus.
But this was not to be rediscovered until 1906 as a tenth century
copy overwritten in the thirteenth century by a religious text 
a sensational discovery- at the ti.me but another story,)

The New Method ~ qaZaulu8

In searching for an alternative method, Kepler was one of
the first·to develop the idea of infinitesimal quantities. With
these small quantities a point generates a line by motion, the
line generates a surface as threads produce cloth, and a surface
generates a solid. like pages of a book.

T"Gauging" refers to the measuremeht of the vOlume of wine in a
cask by measuring the wetted length on a standard dip-stick. Any
individual cask can be calibrated to make the method very accurate,
but the conversion of length to volume will be different for each
cask unless the casks all have the same shape and size.
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Fig:ure 2. Calculation of the capacity of a wine cask;
title page qf a booklet by Johann Frey,
Nuremberg" 1531.

This was primitive calculus, complete with several self
contradictions which did not trouble him. He relied on divine
inspiration writing that "nature teaches geometry by instinct
alone ... " Moreover his formulas for the volumes for wine casks
are correct. They are recorded in his ~cademic treatise
'Stereometria doliorum' or 'Volume Measurement of Barrels' (1615).

The Austrian Wine Cask

Figure 3. 'When" he listed the
volume of wine for various
barrel dimensions he noticed
an interesting fact ... '

Not content with accu
rately determining the volume
of wine in a particular barrel,
Kepler lo6ked at the be~t pro
portions for barrel construc
tion using the same quantity
of wood. This is the"-problem
of optimum shape. When he
listed the volume of wine for
various barrel dimensions he
noticed an interesting fact 
as the maximum volume was
approached the change in
volume for a given change in
the dimensions became smaller.
(Figure 3.)

I-,
I

I
I
I
I
I
I
I
I
I
I
I
I
I
I. ,



11

when V, the volum~, is maximum or minimum",o

This was the basis,a~ least, for the later method of
calculating maxima and minima of functions, Namely
dv
dx

However it had to wait until pescartes' co-ordinate geometry
"of 1637 and the full development of calculus later,

All in all, did the wine merchants get value for their con
sulting fees? Yes, they got both accurate volumes for their
barrels, and Kepler showed them that the Austrian-type of wine
barrel approximated the optimum closely. Just as the Emperor
Rudolph had got g09d horoscopes before his political problems
had necessitated economy cuts in the royal household,

The ConsuZtant

Kepler's 'Stereometria doliorum t will find applause among
those who say that all science should be for practical application,
Nevertheless it was far from his greatest triumph, Then again it
easily surpassed his first dismal attempt at greatness,

His first attempt at gre~tness was related to the newly found
I Elemen·ts of Euclid' which had come from Ancient Greece via the
Arabs, as with Archimedes' work. Now ,the la~tproposition of the
last book of the 'Elements' showed that there can only be.5 regular
solids (Figure 4) ," Thes"e are the tetrahedron (4 faces), the cube

Figure 4. The five regular geometrical solids from
tlnstrumentorum Mechanicorum' by Levinus
Halsius t 1604,

(6 faces), the octahedron (8 faces), The dodecahedron (12 faces),
and the icosahedron (20 faces),

Surely the last proposition of the venerable 'Elements of
Euclid' must have mystical significance! So much S01 that Kepler
built up a cosmology about ,these 5 regular solids and the 5 inter....
vals between the 6 known planets believing they must have been
the creator's key to the structure of· the heavens, (Figure 5,)

Needless "to say Kepler's model was not successful then or
after the discoveries of Neptune, Uranus and Pluto. Not that
Kepler would admit it as he remained determined to prove the
model to the end of his life,·
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Figure 5(a). Kepler's model of the universe; the outermost
spheres are Jupiter and Saturn. Illustration
in Kepler's 'Mysterium Cosmographicum' 1596.

(b) Detail showing the spheres
of Mars, Earth, Venus and
Mercury with the Sun at the
centre.

Music of the CeZestial SpheYJes

Much of the ancient Greek texts concerned the philosophy of
the Pythagoreans. They believed that ~All is number' as seen in
the harmonious musical tones 'emitted by stretched strings whose
lengths ,are in the ratio of whole numbers.

With bold imagination the pythagoreans extrapolated that. the
planets emitted harmonious. tones in their orbi ts, just as 'a weight
whirled on the end of a string makes a sound. For the planets
this is 'the harmony of the celestial spheres', a phenomenon said
to be heard by veteran wine drinkers.

Now 'Imperial Mathematician' Kepler had come into possession
of a set of meticulous observations of Mars upon the death of his
predecessor Tycho Brahe. Believing mystically that there was
order and beauty in the universe his persistance triumphantly
lead to his three laws:

(a) The planets travel around the s~n in elliptical orbits, one
'focus of the ellipse being occupied by the sun.

(b) The speed of the planet in its orbit is such that a line
drawn from the planet ~o the sun sweeps out equal areas in equal
times.
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(c) The square of the time which a planet takes to go around
the sun is proportional to the cube at the dist~nce from the
sun.

All very well of_course, It altered· the intellectual life
of Europe, allowed Newton to formulate his law of gravitation.,
and allowed Halley to predict the return of his comet - duet .
incidentally, to visit us again in February ~986 .

. Yet by 1611 Kepler was unemployed. Mon~y was tight and he
struggled for existence. He suffered religious persecution and
ill health while trying to publish his books, collect unpaid
salary, and search for positions. Thus he died in 1630, leaving
a verse for friends to place on his tombstone:

Once I measured the skies,
Now I measure the earth's shadow;
Of heavenly birth was the measuring mind,
In the shadows remains only the body.

For Kepler, was it worth it? No! He had discovered the
music of the p~anets, in fact a concert. Yet science has ig
nored this, choosing qnly to retain the purely mathematical laws.

In his memory, this is the music of celestial spheres trom
Kepler's book 'The Harmony of the World' ,1619, where the tone
depended on the variable speed of the planet in its orbit.

8va_~.......- _

Sa.turn Jupiter Mars

8va__......- ....-..-... __

Earth Venus MereuI")'

Figure 6. The music of the celestial spheres.

A PYTHAGOREAN SNIPPET

Is there a Pythagorean triangle with a square hypotenuse
and legs that sum to a square?

Yes, however the smallest answer is 4,565,486,027 t 761 t

1,061,652,293,520 and 4,687 t 298 t 610,289. ~his was solved
by Fermat in 1643.

Submitted by Garnet J. Greenbury.
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WHY ARE MATHEMATICIANS

·ECCENTRIC.? t

John F. Bowers, University of Leeds

The eccentricities of the greatest mathematicians are
notorious. For example, when Archimedesrs bath overflowed
he did not behave like any ordinary citizen by cussing and then
asking his slave to mop up the mess. Inste~d~ he leapt -out of
the bath and ran shouting down the street~ Further~ it is well
known that Newton saw an apple fall in his orchard. However, he
did not indulge in trivial reflections as to whether he had re
membered to spray the tree or whether the apple was fit to eat.
Instead he had thoughts of·great gravity. Gauss was, perhaps,
the greatest of all mathematicians and~ warned by tales about
his predecessors, he carefully avoided all occasions of
eccentricity such as public baths and old orchards, but his·
care only led him to become excessively normal. Could it be
that these eccentricities were caused by greatness and not by
mathe~atics? As can be deduced from the graph in Figure 1,

>Q!::.
2.
~
I
Z
W
o
o
w

GREATNESS

Figure 1.

tReprinted, with s~ight abridgements, courtesy of Dr Bowers and
New Scientist. The original appeared 22 December, 1983.
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the relationship between greatness and eccentricity is not simple,
but to some extent eccentricity declines with increasing great
nes~ (just as the virulence of complaints decreases with increas
ing inconvenience, in accordance with the Inverse Swear Law).
Clearly, we must investigate just how serious is the threat to
mental health which ,is induced by mathematics.

In order to determine .the effect that mathematics has on
mathematicians we will need to conduct a sociological investi
gation. Also, before we answer our main question, we must
first decide what w~ mean by t'mathematician",' This 'term is
frequently us~d in very restrictive senses, but we need to use
it in a way that is consistent with the usage of previous cen
turies . Accordingly" let us agree that a mathematician is
somebody whose work consists wholly of creating, using or
teachingmathematics b together with the administrative work
that such activities entail. Therefore, among the mathematicians,
we include all theoretical physicists, some philosophers and some
engineers. Also, much of our study will apply p,artially to many
other scientists and engineers in proportion to the time they
devote to mathematics. Our definition is not exact, so the
reader can be cer~ain that this discussion will be entirely free
of the pedantic humour that mathematicians commonly manufacture
out of the misuse of precise definitions. Of course, rigorous
definition is the basis of the quintessential mathematical form
of humour: the application of an idea to itself. We clearly
cannot employ this form of humour here because no mathematician
can pr6perly define a mathematician.

We can investigate a set of people by means of their arche
type, the mental picture that others have of them. For the man
in the stree,t, the word Ifma'themat.ician" immediately conjures up
a picture of 'a. short, bald, bearded and bespectacled man who is
absent"':'IIliIlded· and far from rich. However, this is in direct
opposition to the following dictum, which may 'be verified at any
large mathematical ,meeting:

Mathematicians are strictly irregular.

In order to test the validity of the archetype, a certain
set of 56 mathematicians was analysed and it was found that:

2 were unusually tall,
2 were unusually short,
5 were bald,
4 had beards,
32 wore spectacles other than reading glasses,
52 were men.

This suggests that ther'e is some truth in the statement that
mathematicians are often men who wear glasses, However, the idea
that mathematicians are absent-minded is absolutely wrong. There
is a conclusive proof that shows that they are not, but unfortu
nately it cannot be given here because it seems to have been mis~

laid. On the other hand, if mathematicians are not necessarily
poor, the study of mathematics is ,not a qUick route to great
wealth, although Newton certainly made a lot of money when he was
Master of the Royal Mint.
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The puzzling fact is the small proportion o~ mathematicians
who are women, even though women have s-hown a talent tor the
subject for so long and there is no obvious physical or soc~al

barrier against them. Lists of mathematicians at one college
were studied and it was found that women formed 2/7 of the
honours undergraduates but 1/13 of the postgraduates and the
staff. (There is no significant ditference between those two
classes.) If these figures are at all typical l it would seem
that factors outside mathematics cause many talented women to
forego postgraduate work. However, the percentage (30 per
cent) of women undergraduates is well under the percentage of
girls in the schools (about 45 per cent), so there may be some
loss of girl mathematical scholars before higher education is
reached. Perhaps the senior girls in a sexually segregated
school do not feel the demands of economic life in the way that
causes boys of the same age to accelerate their working
sharply. On the other hand, a universal change to mixed
schooling would.deprive "the upper years of many boys who,
earlier, abandon all studies due to demoralising comparisons
with the girls of the same age, who are physically and men
tally more advanced. Fortunately, there is an ideal solution:
all girls should go to mixed schools and all boys should go to
segregated schools.

The reason for the general failure of this achetype is that
it is archetypical in being a conscious creation, a deliberate
physical representation 'of one who is a "desiccated calculating
machine". But this last phrase was actually invented to des
cribe Hugh Gaitskell, who was an economist. Unlike him, mathe
maticians rarely rise to positions of power, though one of them,
Eamon de Valera, became President of Republic of Ireland. To
discover an archetype that is less deliberately fabricated it
is necessary to find the image of a mathematician in the public's
subconscious mind. In order to find the veritas which is most
likely in vino, the author has dutifully attended many social
gatherings and has~found the following encounter to be typical.

"Tell me," the managing.director asks complacently on the
other side of a large whisky, "what you do for a living."

"I am a mathematician. f1

The director's smug expression is instantly replaced by a
horrified look and he makes a barely successful attempt to stop
himself from stepping backwards as he replies,

"Oh ... I was never any. good at that ... It •

This reaction reveals a view of mathematicians as people of
such superior intelligence that they are dangerous to know, and
probably mad and bad as well. In order to avoid the social
leprosy that is engendered by this attitude, mathematicians have
developed a number of defensive techniques. The most inspired
is John Williamson's reply:

"! am an analyst."

This is reported to produce reactions which we would not ex
pect, even in our wildest dreams. A more widely available reply
is for the mathematician to admit to being a teacher of tautology_
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This normally produces a neut~al xeaction suttused with intellec
tual confusion', which the mathematician can then exploi t deviously,
(An occasional'alternative reaction in the discoyered presence of
a mathematician is the reply: "fll was always good at arithmetic at
school", which depicts mathematicians as puerile purveyors of
numerological 'trivia~)

Another method for discovering the common features of a set
of people is to study their literary depiction. That is, we
find out what the great writers think about them, because pre
sumably, these writers have sources of knowledge that are not
available to lesser men, For mathematicians this method gives
poor results. Chaucer saw no mathematicians among the Canter
bury pilgrims an~, in' The Divine Comedy, Dante listed none
among the residents of Hell or Purgatory, consequently they must
all be in Heaven. Shakespeare has no mathematicians in his plays
and the plays of Chekov and Ibsen contain doctors, philosophers,
engineers and literary scholars, but no mathematicians. No
mathematicians intruded in the gentle life as portraye4 by Jane
Austen, Henry 'James or George Eliot. The novels of Graham
Greene contain salesmen and journalists and those of Charles
Dickens contain thieves and murderers, but no mathematicians.
Worse, when Faust, in Goethe's poem sought ways to expand his
knowledge, he ignored mathematics altogether. However, it is
not true that mathematicians have been entirely neglected be
cause the astronomer Johannes Kepler is the hero of Paul
Hindemith's largely factual opera Die Harmonie dep Welt which
is better known by the masterly symphony based on it. Also,
the heroine of George Bernard Shaw's play Mrs Warren's Profession
is a mathematician and so gains independence from her mother's
immoral wealth by her mathematical work. However, the play con~

tains no general comments about mathematici~ns.

Our failur~ to learn anything from literary depiction leads
us to deploy the sociologist's most powerful method, the. social
survey. This is the process whereby the random comments of a
selection of people are transmuted by statistical sle~ght of
hand into the hard facts of sociological 'science. Any survey of
mathematicians must take into account that they are necessarily
intelligent, so they must be compared with a suitably intelli
gent control gro~p. A survey has been made which compares the
academics of different subject groups. Although the details of
this survey are not to hand, it is understood that one conclusion
that it indicated asserted that the mathematicians were the most
successful in marriage whereas the social scientists had the
least success. We may ascribe this observation to the fact that
many people study sociology because they are unsure of· their
social relation~hips, while mathematics Qemands qualities which
are also beneficial in marriage. However, this poll suggests a
problem. What would happen if a mathematician marri"ed a
sociologist? In the only case that has been reported, the mathe
matician persuaded the sociologist to change to the humanities,
a group of academics with a better marital record.

In the absence of further relevant surveys, we now proceed
to use direct observation; that is, we deduce general principles
from carefully sel~cted anecdotes.

First we note that a remarkably high proportion of mathe
maticians are appreciators of some form of music~ and a large
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minori ty are performers as well,. some ot them being mUS1C1ans
of professional standard, From his use of mathematics in his
book Les Fondements de Za Musique dans ~a Conscience Humaine it
is clear that the celebrated conductor Ernest Ansermet was a
mathematician, but the book is an efflorescence of existential
philosophy which eschews autobiographi,cal. detail. It is widely
believed that the affinity of mathematicians for music is due
to parallels of form, but the variety of the styles of music
involved militates against this view. A more attractive alter
native theory is that mathematics and music balance in the mind,
contrasting meaning without intrinsic emotion with emotion with
out intrinsic meaning.

If reputation is believed, mathematicians commonly take
part in active sports, probably because concentration on mathe
matics is unusually tiring. For example, G,H, Hardy worked for
only four hours per day, then played real tennis. Certainly
mathematicians need to choose between short, concentrated
bursts of work and longer, more inef~icient·, sessions ,- yet
some major mathemati.cians seem capable of long, concentrated
bursts of work. Considering how many mathematicians are
sporty, very few. have entered ~op-class sport, though some

. (~uch as Virginia Wade) have reached the highest levels.

It'is easier to find examples of mathematicians who are
adept at intellectual games. For example~ John von Neumann
even converted his experiences at the poker table into a new
branch of mathematics, games theory, Nevertheless, the prize
fora mathematician and games player must surely be awarded to
Emanuel Lasker, who was World Chess Champion from 1894 to 1921.

As we have nowexha.usted the resul ts of snooping in the
corridors of mathematics, we will try the theoretical approach,
that is, we will deduce the character of mathematicians from
the nature of mathe~atical work.

Compared with work in other subjects, research work in
mathematics is difficult, yet it is judged by very high stan~

dards of originality. Furthe~, the certainty of mathematical
theorems is offset b~ the fact that they ~re based on unproven
,axioms, so they are absolutely empty. However. the clear ob
jectives make mathematics an easy subject to teach for anyone
who has mastered it, provided that the following is always ob
served.

The golden pule

The teacher should inspire sometimes,
Enlighten often
And encourage always.

In order to obey this rule the teacher needs to bear in
mind that a proposition that is to be taught must be true, even
if it is not entirely clear, but that a clearer, restricted re
sult is better than a more obscure, general result.

Naturally, the constant handling of the small change of
logic affects the way mathematicians think, and therefore what
they are. For example, the criticism of logic in manuscripts
thev are markin2 leads mathematic~ans to search for non-seauituPA
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in what they read, for otherwise the pri~ciples of logic would
be used for incorrect purposes. Amo~g th.e correct methods of
argument there is mathematical induction, which was discovered
by some unknown mathematician and since then every mathematician
has taught it to his pupils, so that now every mathematician
uses mathematical induction. Also, mathematicians frequently
disprove resu! ts by means of count'er-examples, although the
habit is not confined to mathematicians because it was used by
Aristotle. .

The friends of mathematicians cannot always understand
them. To prove this, let· us assume that the statement is false,
hence that mathematicians are always understood by their friends.
This implies that all the people in a certain random sample of
the population understand the principles of logic which are
commonly used by mathematicians 1 such as peduatio ad absupdum.
But mathematics students, who are selected for their potential
ability to use these principles, stil·l find them difficult, so
a random sample of people could not understand them. This con
tradiction proves that mathematicians are greatly misunderstood.

The practice of ma.thematics over a long period has some
deeper effects, including the development of some virtues.
Patience is developed by the need to invent an indirect strate
gy to reach an objective, to carry it out and. then to accept
the disappointment when the.strategy fails, though the jubila
tion is correspondingly great if it succeeds. Modesty is
developed by assessing the value of the results that can be ob
tained, because these are necessarily limited by the weakness
of mathematical techniques. Newton expressed this idea in .
these words:

"1 do not know what I may appear to the world,. but to
myself I seem to have been only a boy playing on the
seashore, and diverting myself in now and then finding
a smoother p~bble or a prettier shell than ordinary,
whilst the great ocean of truth lay all undiscovered
before me. ft

A related feeling even causes some people to give up mathe
matics: that most mathematical problems are too unimportant to
occupy a large part of life, and all the others are much too
difficult.

Warning: Mathematics'can damage your health.

Think about the health risks before doing mathematics.

First, the 'isolation of mathematics from other subjects
makes it difficult to employ non-mathematical talents, with
resulting frustration and unhappiness, or the diversion of much
energy into pursuits outside mathematical work.

Secondly, mathematicians, like most intel1ectuals~ are
susceptible to the tTfallacy of categories". Perhaps this is
because mathematics does not employ value judgments, so it is
not an art. Furthermore, it does not employ. the empirical
method, so mathematics is not a science. Consequently, mathe
matics does not exist. Or, perhaps, we have failed to prove
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that the arts and the sciences include all intellectual disci
plines. The logical sciences 1 in which the method is deduc
tion from axioms, seem to ·be an obstruction in the way of such
a proof.

Thirdly, the increasing maturity of a mathematician's
thought causes him.to lose sight of the difficulties of those
without his own experience. For example, the mathematician
may see that a problem about numbers becomes easy if it is re
garded as a problem about functions OJ numbers instead of num
bers themselves, although he may f·ail to realise that the
solution is incomprehensible to anyone who is not already
familiar with functions.

Fourthly, the pursuit of mathematics leads to an ·overuse of
logical analysis. For example, John von Neumann feared that
global war was inevitable. By Murphy's law, sooner or later,
there would be a dispute between a Warsaw Pact country and a
NATO country, and this would lead to war between them. The
treaties would bring the full power of both alliances into the
war, then one side would use nuclear weapons to equal the other's
strength, an exchange of the most powerful weapons would follow
and the world would end. This analysis seems sound t but the
global war has not started in 30 years, Presumably~ we have
missed some other factors, such as diplomacy and the effect of
strategic analysis. Edward .de Bono has introduced the concept
of lateral thinking as a means of combating the excessive use
of analysis ..

Fifthly, mathematics induces the intellectual vice of
"hardmindedness", the view that if an argument is complete then
the proposition shOuld be accepted.

The mathematician should always be aware that one of the
following may be t~ue:

(i) There may be other evidence

(ii) The opponent may regard the proposition as an axiom
(or its denial) and all argument about it as
irrelevant

(iii) The opponent may have used a proposition in his
argument which he did not believe~ so he is not
concerned that it has been disproved

(iv) The opponent may need time to..adjust to the con
clusion

But, perhaps, despite all these efforts~ Augustus de Morgan's
words will remain true:

"It is easier to square the. circle than to get round a
mathematician. 1f

Our investigations have shown that mathematicians do work
that is hard, probably unsuccessful, performed in isolation, of
negligible social prestige, unlikely to attract the QPposite
sex, poorly paid and not applicable to the central concerns of
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society. Surely" anyone who takes up such work must be eccentric?
Indeed, as mathematical work is not central in society, mat~ema

ticians are eccentric for the best of all reasons: by definition.

To compensate for the indifference of society to them,
mathematicians can at least ameliorate life fqr each other by
swearing the following oath.

The Arahimedean oath

The mathematician shall:

1. ~ev~r teach anything that does not have a precise
proof.

2. Never publish any 'statement of which there is no
written, detailed proof.

3. Never overfill the bath.

Also, mathematicians can console themselves by reflecting
that they hold the key to a large part of human knowledge" al
though this often leads them to think that they actually possess
all that knowledge. This can be true to such an extent that
they even think that they understand mathematicians.

MORE PYTHAGOREAN SNIPPETS

Are there Pythagorean triangles whose hypotenuse is a per
feet. square and with legs such that their difference is also a
square? Yes. The smallest such triangle is 119, 120, 169.

Is there a Pythagorean triangle with legs of the same digits
but in r~verse order? Yes. 88,209, ~b)288, 126,2~5.

No isosceles right triangle can be Pyt~agorean (its hypote
nuse is incommensurable with a leg) but one can get as close to
~sosceles as one pleases. e.g. 21,669,693,148,613,788,330,547,
979,729,286,307,164,015,202, .. ,768,699,465,346,,081,691,992,338,
845,992,696. The other leg is that number plus 1.

Are there Pythagorean triangles that haye the same area?
Yes. So far three. 1,380, 19,019, 19,069; 3,059, 8,580, 9,109;
4,485, 5,852, 7,373. Their common area is 13,123,110.

Submitted by Garnet J. Greenbury.

THE COMPUTERIZED ARMY:
MARK III

From Ian Stewart
and John Jaworski:
Seven Years of
Mani.fold.
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A PROBLEM FROM

THE MOSCOWPAPYRUS

G.C..Smith, Monash University

The· Moscow mathematical papyrus was discovered in the 1890s
in the Necropol~s of Dra Abutl Negga in Egypt .. It was purchased
by W. Golenischev and after his death his ,collection, including
this mathematical papyrus, was acquired by the Moscow Museum of
Fine Arts. The papyrus was written in the later part of the
Middle Kingdom (2160 Be - 1670 BC). It is more than 5 m long
but only 8 cm in height. The manuscript was probably written
about 1800 BC, but the ideas it contains are certainly much
older - most of the surviving Middle Kingdom papyri containing
mathematics are considered to be copies of (or to be based on)
earlier ones which originated in the Old Kingdom period - perhaps
as early as 2700 BC.

Here is a literal translation of one of the problems and its
solution together with the figure which accompanies it:

"If you are told: a truncated pyramid of 6 for the vertical
height by 4 on the base by 2 on the top; you are to square this 4;
result 16. Your are to double 4; result 8. You are to square
this 2, result 4. You are to add the 16 and the 8 and the four;
result 28. You are to take 113 of 6; result 2. You are to take
28 twice; result 56. See, it is of 56. You will find it· right."

This is no further explanation ..

ProbZem.

Find what it is that the Egyptian
scribe who wrote this papyrus was
working out.

Answer on p.29.

2
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LETTERS TO THE EDITOR

Further to the article on Yan-a...Btunfit (see Function, Vol.S,
Parts 1, 2) this passage from Amy Stewart Fraser's volume of
Edwardian recollections, Roses in December, may be of interest,

"Elizabeth Dodd recently described the Falkirk Tryst in her
grandfather's day: how he travelled from Penrichin Cumbria to
Falkirk to buy sheep, and how he, with the help of hired drovers,
brought them south by easy stages 00, • Every morning the sheep
were counted, to every man his drove, then on their way again. "
The counting was done by the old Celtic method -

Yan tan tethera methera pimp;
Sethera lethera hovera dovera dick;
Yanadick tanadick tetheradick metheradick bumfit;
Yanabumfit tanabumfit tetherabumfit

metherambumfit giggot.

Grandfather counted alound, and a man stood by his side with a
stick in which he made a notch every time Grandfather"said
Giggot:"

This passage occurs in reference to nine droves each of
two-hundred sheep.

Neil Cameron
Monash University.

SOME CLAIMS TO CHECK

"1 have been looki~g for numbers whose squares end in
987654321.

I found these numbers:

111
888
880

111
888
642

111
889
361

There are many more such numbers. Is there a general
formula?

D.R. Kaprekar
311 Devlali Camp, India.

[We haven't cheeked these resu~ts~ nop do we know of a
generaZ formuZa~but if the cZaims are true one can cZearZy
generate infiniteZy more exampZes by adding numbers ending in
a suitabZy Zapge number of zeros to the exampZes given. Eds.)
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PROBLEM SECTION

We have·had a few responses to our earlier problems, but
think that perhaps more time is needed and so do not print
solutions at this stage. Here, however, are some new problems.

PROBLEM 8.4.1. (Submitted by Isaac Nativ.)·

Show that:

-i

where i 2 = -1.

1
2i + ~

":lI:2-=i~+--:':Ii----------

2i + 1
'=2-::"i-+----=1----

PROBLEM 8.4.2. (Due to Lewis Carroll, submitted by S.J. Newton.)

A room has a light switch at each corner. It is not
possible by examining the switch to tell if it is on or off.
The light will, however, be off unless all switches are in the
"on" position. A person comes into the room and finds the
light off, then presses each switch in turn with no result. He
then presses again in order the first, second and third switches,
still with no result. How should he proceed if he is to turn
the light on?

PROBLEM 8.4,3. (Submitted by D.R. Kaprekar.)

If all the diagonals of a regular octagon are drawn, how
many points of intersection are there?

PROBLEM 8.4.4. (Submitted by Garnet J. Greenbury.)

a,b,~ are integers satisying a 2 + b 2 a2 Prove:

1. Of these integers, one is divisible by 3, another (possibly
the same one) by 4, and.- one by 5;

2. The product aba is divisible by 60;

3. ab/2 (the area of a corresponding right-angled triangle)
is never a perfect square;

4. The radius of the in-circle of the right-angled triangle is
always integral.
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PER.DIX

The 1984 International Olympiad was held in Prague from
July 2 to July ~O. The·Australian team performed very well
when it is considered that· this country is still new to such
competitio~s. We won one silver and two bronze medals~ and
were perhaps' a little unlucky th~t this was not two silver
and two bronze. The results were:

Michael Peake 33/4.2 Silver
Alan Blair 25/42 Bronze

(missed by 1 mark on a Silver)
Matthew Hardman 21/42 Bronze
Jonathan Ennes 16/42

(missed by 1 mark on a Bronze)
Andrew Jenkins 6/42
John Kramer 2/42

Total --ro3

Australia was placed 15th overall, four places better than
last year, our previous best. This is also the first time our
total has exceeded 100 points.

* * * * * *
SoZvingproblems

Seeing how to solve a problem in a compe·ti tioD is perhaps
the greater part of the battle, but it is not the whole battle.
You have to explain your solution; and in the Olympiad compe
titions this means a written explanation, presented preferably
with impeccable logic and with clarity of argument and expression.

Learning how to write clear and convincing arguments giving
solutions to problems is an important part of preparing for
Olympiad and other competitions. Do not neglect it. A beauti
fully clear exposition indicates a total understanding of a
problem. The effort to organise your written solution so that
your argument has simple clarity helps to ensure that you have
completely understood the problem and provides perhaps the best

-safeguard against having made any mistakes. Practice your ex
position.' If you are not completely happy with your written
version of a solution, then try to polish it, write it again.
Then try again if you think this is necessary. This will not
be wasted time. It will help you to think your way more
clearly through future problems.

In this issue I propose to look first at problem 2
that I left you with in the last issue of Funation (Volume 8,
part 3, inside back cover).
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PROBLEM~. (Sixth International Olympiad, 1964, problem 1)

(a) Find aZZ positive integers n. for which 2n
~ 1 £s

divisible by 7.

(b) Prove that there is no positive integer
2n + 1 is divisible by 7.

n for 1JJhioh

SoZutio.n.

(a) The number 2n - 1 is divisible by 7 if 2
n

~ .7k + ~

. for some integer k, i.e. if the remainder on dividing 2
n

by 7
is 1. Let us experiment with a few values of n:

n

I
2
3
4
5
6
7
8
9

2
4
8

16
'32
64

128
256
512

remainder on division by 7

2
4
~

2
4
1
2
4
1

It seems clear that the answer to the problem is "all positive
integers 3m· ff

• This is our guess based on experiment. In fact
this answer is correct. How do we show this?

The hint that was given in the last issue will help. You
were there told that, if, for integers m, k and r,

m = 7k + r ,

then, for any integer s, ms and rs give the same remainder on
division by 7. This is surely clear, because

ms = 7ks· + rs :

the 7ks makes no difference to the remainder we get on division
by 7.

So, to find the remainder on division of 2n by 7, ~e
merely need to work with the successive remainders:

23 gives remainder 1

so 24 gives the same remainder as 1 x 2., viz. 2

25 2 x 2) viz. 4

26 4 x 2, viz. 1;

and since we are now back to our starting point with remainder 1,
the cycle repeats itself: we get re~ainder 1 if and only if n is
a multiple of 3.

(b) Simil~r arguments work for this part of the pr~blem.

The number 2n + 1 is divisible by7 when 2n + 1 = 7k, for some
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2n ;:: 7 (k - 1) + 6.

Thus 2n + 1 is divisible by n if 2n gives remainder 6 on
division by 7. But we saw in part (a) -that the only remainders

possible on division ~f a power 2n by 7 are ~, 2 and 4. Hence

for no positive integers n is 2n + 1 divisible by 7.

This comp-Ietes the solution to problem -2.

Some general remarks

The kind of arguments used in solving problems 1 and 2 are
those of what is called modular arithmetic. Modular arithmetic
is concerned with the properties of the remainders you get when
you divide one number by another. To be- more precise, let us
define the residue of the number n when it is divided by m (all
numbers in modular arithmetic are integers) to be the number p

for which there is an integer k such-that

n=km+r,

and 0 ~ r < m - 1 .

For example, the residue of 64 when divided by 7 is 1; the
residue of 24 when divided by 11 is 2.

In general if two numbers n 1 and n 2 , say, give the same

residue when divided by m, we say that n 1 is congruent to n 2
moduZo m. In symbols, and as a shorthand, we write this as

(*)

Thus, in particular, if the residue of n when divided by m
is .r we have

n== r (mod m) ,

i.e. any integer n is congruent
general (*) holds if and only if

to its residue modulo m. In
n 1 - n 2 is divisible by m.

The relation of congruence modulo m respects addition and
multiplication (as stated in the next two results). -

RESULT 1. Let n1 == n 2 (mod m) and n g == n 4 (mod m). Then

n 1 + n 3- - n 2 + n4 (mod m) .

Proof· n1 == n 2 (mod m) means that n 1 - n 2 is divisible by m,

n 1 - n 2 kim, say, for some integer m1 Similarly there

exists an integer k 2 such that n 3 - n 4 _k 2m. Hence, adding,

(n1 + n g ) - (n 2 + n4 ) = (k 1 + k
2

)m ,

so that n1 + n 3 == ~2 + n4 (mod m).
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RESULT 2. Let n 1 - n 2 (mod m) and n 3
n

1
n

3
:: n

2
n"4 (mod m) ,

Proof. Let k1 ·and k 2 be such that

n
S

- n4 = k 2m. Then

- n 4 (mod m) • Then

and

n1n 3 - n2n3 k 1mn 3
(1)

and n2n3 - n2n4 k2mn2
(2)

multiplying by n 3 and n2 ' respectively. Now add (1) and (2)
to get

so that n1n 3 - n2n4 (mod m) ".

You will recognise that this so-called moduZar arithmetic~

adding and multiplying modulom, was what was involved in the
solutions of problems 1 and 2.

We shall use results 1 and 2 again in the future.

MORE ON PICK/·S. THEOREM

Funation 3 Volume 8, Part 1, p.4 carried an article on Pick's
Theorem, a result which enables us to compute the area of a poly~

gon drawn such that its vertices lie on the points of a square"
lattice. In a recent issue (March, ~984) of The AustraZian Ma~he
matics Teacher" which 'your mathematics teacher is "very likely to
subscribe to, a somewhat different proof is given, together with
a number of references.

The author is Kevin Gre~n"t of Sydney "CAE. He references
Pick's original article which appeared in what seems to have
been a rather obscure journal in Prague, 1899, Other accounts,

"which are more accessible, occur. in":

B.S.M. Coxeter: Introduation to Geometry, (Wiley, 1969),
S.K. Stein: Mathematias., The Man-Made Universe ~ (Free"man,

1969), .

both of which should be in your school or municipal library.

Some years ago it was fashionable in schools to use the
teaching aids known "as geoboards. These are merely square
pieces of chipboard with nails hanunered part way in a.t the
vertices of a square lattice drawn on the board, Polygons may
then be constructed by placing rubber bands over the nails! This
saves a lot of drawing and allows for exploration of Pi.ck' s
Theorem (and, of course, other matters).
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solution, (See p.22.)

He is finding the volUme of a truncated pyramid of square
base; we would e~press this as

v = (a 2 + ab + b2 )h/3

where a,b are the sides of the squares and h is the vertical
height of the truncated pyramid. In the Moscow papyrus a = 4,
b = 2 and h = 6.
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PAPERFOLDING

When metric standards were introduced into Australia,
various other things changed as well. Most notably, quarto
sheets of paper were replaced by a new size and shape known
as A4. An A4 page is 297 mm long by 210 rom wide. Function
is printed on 'A4 paper which is then folded and trimmed. But
why are these dimensions chosen?

Often the answers to such questions rest on relatively
arbitrary historical circumstance, but in this instance the
reason is mathematical.

If we take the product of the two numbers quoted, we find
an area close to 1/16. of a square metre.. ~6, the denominator,

is 24 and this is the origin of the name A4. The A4 sheet is
the result of folding a large sheet, of area almost exactly' one
square metre, in half four times. This produces, if the paper
is now cut along the folds, 16 sheets of A4.

But this does not yet give us enough information. For area
depends on both length and width. What we need is further in~

formation .on, not merely the s:l.ze of the sheet of paper,. but also
its shape.

a/2---......

b

.....:...1----------_a ----------lJID.~
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Look at the diagram. If we fold a sheet of paper of length
a and width b about the middle of its length (we assume a > b )
we get a folded sheet of length b and width a/2 (SUbject to
suitable restrictions - what are they?).

Suppose that we now impose the condition that the new shape
be the same as the old. We then have that the ratio of a/2 to
b must be the same as that of b to a. That is to say

a ~
2b a

or

fa )2
\b 2

or

a = bl2 .

This is exactly what has happened with the A4 paper. 21012
is very slightly less than 297, but 297, 210 are the best in
teger approximations that will

(a) give a ratio close to 12
(b) give a product close to 106 /16 .

The paper size produced by folding A4 in half is termed.A5,
and A4 is produced by folding A3, itself produced by folding A2,
etc. At each stage a slight complication is produced by the need
to specify the dimensions in an exact number of millimetres, but
a very exact correspondence is now set up.

Another, less well-known series of paper sizes results from
folding and cutting a larger sheet: 1 m by 1 0 414 m. This yields
the B series, so that B5 paper measures 250 rom x 176 rom.

00 00 00 00 00 00 00

THE eMU PROJECT

Several-US colleges and universities have developed long
term schemes 'for comput~r learning. The Society for Industrial
and Applied Mathematics (SIAM) report on the most ambitious of
these, a cooperative venture between IBM and Carnegie-Mellon
University (Pittsburgh). The following excerpts from SIAM News
(July 1984) give an idea ..of the scope of the project.

On October 20, 1982, Carn~gie-Mel1onUniversity (eMU) and
International Business Machines (IBM) signed a three-year agree
ment to develop a prototype personal computing network. The
plan calls for several thousand personal computer workstations,
each between 20 and 100 times more powerful than current home
computers, to be in place by 1986 and for seyen thousand to be
in place by 1990. The IBM agreement is part of a larger ~o

ordinated effort at eMU to integrate computing fully into the un
dergraduate and graduate curricula.
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Personal computing at eMU will develop in two st,ages.
Phase I, a two-year transition currently in progress, introduces
personal computer workstations. Phase, II will introduce the
advanced personal computing environment now under development.

During Phase I, CMU will install approximately one,thousand
personal computers. Some are to be placed in clusters around the
campus, while others sold to students and staff will be in dormi
tory rooms, and offices.

The CMU distributed computing system will have several
features lacking in current timesharing systems. As with any
personal computers, access to and performance of the workstations
on the network will not be affected by other users on the system.
Unlike ordinary personal computers, 'however, shared central
storage facilities will provide users access to their files from
anywhere on the network. The computing power of the individual
workstations will allow for customization by each user, making
it easy for the user to perform desired tasks without comprehen
sive knowledge of the entire system.

The workstations will be able to maintain several contexts
simultaneously, allowing users to move among tasks with no evi
dence of interruption and making it possible to reenter a task at
a different workstation. The network will enable communication
among all workstations on the network, providing capabilities for
electronic mail, data and program sharing, and document transfers
similar to current timesharing systems. Through connections to
national networks users will also have access to facilities at
other locations and institutions.

The system will eventually receive~ generate and store
video information in addition to traditional text files. The
system configuration will allow smooth growth from a system with
tens of workstations to a system with thousands of them. The
network will be extremely reliable; when on~ personal computer
malfunctions the network will continue to run so that the user
can move to another workstation.

The system's cost is another advantage. Relative to
capacity the price of personal computers is declining more
rapidly than the price of larger scale systems. The network
approach ,will thus provide superior computing facilities to the
greatest number of users at the lowest cost.

The planned network will consist of four elements: indivi
dual personal computer workstations; clusters of workstations
and various specialized facilities; a communications network; ,
and a central computer facility,

The Vast Integrated Communication Environment (VICE)
will resemble a giant time-sharing file system and is planned
to be expandable, and adaptable to changes in technology and
needs.



Each personal computer workstation will consist of a 32
bit processor oapable.of one million instructions per second
execution speed, one million bytes of random access memory, a
virtual memory' operating system, high-resolution bitmap graphics
(with ·colourasan option) 1 graphical input,. audio output,
vide()&i:::;pl~y,andkeyboard. Local disk storage. will be avail
able as an option ..

91uste:rso:f·2~ to 50 workstatio.ns~ joined to file servers
by ahi~h $peeCl·locala.rea~etwo:rkl,will be inst'alled -at various
locations to provide access to laser printers, input scanners,
magnetic t~ped,r:Lves,fl0ppydisk drives, and plotters.

The loGal.area,n~tworks.will be linked'together and to the
untversity 's . mainframe comput'ers' through a very large capacity
backbonenetw?:rk .. · '" 'JJb.e.m:alnf~am~ ,faei11.ties will include large
scale on-line and a'Tcbival stora:ge, large scale, computation
facilities'and other specialized equipment too costly for
general ·use. ,.

An integrat.ed.:~etof,cQDlPuterprograms will enable use of
these, ,fagi..l,~ties~. '", ''J)JJ.:Ls.~Qf.t\V~:r;e, kp.QwliasVirtue Is Reached
Through UNIXtmandE'MACS(VI~TtJE)Willprovidesystem-wide

ac~esf3 ~o fi :tesaf;. w.~11assh.~re,dac.cessto n.etwork resources.
System~widea,cc~f:is,toftles;\Vil1 remove current machine
specific .' cop.stra~~:ps' ..()11,S'U~h,·ac~ce;s.s'.>V:.I·RTUE'willi-nclude a mail'
system, bulletinb.oard.s:,and·.teleconferencingfacil:Lties for
network-wide cOffilllunication, as well as an integrated text/ ,
graphics editor and ,a window/icon screen manager.

A large networkofpe~sonal computer workstations will
generate, manyne'\Vi4ea$fQ:r,,~s.i..*gth~'n~tworksystemt The Center
for the Desig·rt .of;Efi\l¢".ti~I).qpJPp.~t.~,~~;,(QPEC) . will, facilitate the
dev~lopment oftJa()~~iQ~a,:$>;·jl:)¥p·~():v~Cl~P.gthe facnl tywit-htechnical
sllPport,.forp:r:-o~j:ec."t·LS~"rpa)i~I};:t:·~~n~n:g·alQQsecQor'clinatiollamong the
va~ious proJects.,a.ndserVip..~:asa:J.iai-e;Oilwith the. ITC so that
softw:are develQpment,·'.V:illr~lIla~ine·olDpatiblewith the evolving
operat.iilgsyst~m. " CDE(J·h~saniniti.albudget, in .excess of $1
million suPPl'i:'EHiby gran"t'sfrQIll theC.arnegi~ Corporation and the
Sloan Foulldation,tofund.:'fac'1.l1,tyrelease t~me to 'work on pro
jects; e<i;itor-ial qs~rvices.,f():rprograms; and support for, documen
tation in the C9Iimlunicati01l.])esign ,Center.

, CMU is part of a con's;ortitun .of 16 universities working with
IBM tO$timul~tet1l.e,q~vel.oPIDent, of educational' computing applica
t,ions. . The,pla.:n.ned ,network also permits 'workstations from other
manufacturers. 'Currently C:I\1.Uhas, either in place or planned,
workstations from Apple (Lisa and'Macintosh), .Victor (90000),
Hewlett Packard,' and DEC (Professional 350).

SOUNDS EASY!

. Mathematics is the science in which one uses eas.y words for
hard ideas.

E. Kasner
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