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We welcome new and old readers alike with this new issue of
Funation and hope that it contains much of interest ~nd enjoy­
ment. We are grateful to those readers who send us articles~

letters and solutions to problemS 'and indeed wish there were
more of these "active readers", This issue also has two of
Colin Davies' cartoons. (W'e published another on the back
cover of Vol.7, Part 5.)

It is a pleasure to acknowledge a grant of $400 from the
School Mathematics Research Foundation (see p.32).

THE FRONT COVER
The diagram shown on the front cover is a famous one,

being that used in the flwindmill proof" of Pythagoras' Theorem.
The "windmill proof" -takes its name from the appearance of the
diagram·and is·a relatively poor proof. (Much better is that
given in Function, Vol.7, Part 3, p~27.) It is, however, the
proof given by Euclid and for this reason was widely taught.
(Our diagram is based on that in Hall and Stevens' A School
Geometpy.)

- Some 60 years ago, when it was thought that there might be
intelligent life on Mars, it was proposed to conununicate with
the Martians in the language of Pure Mathematics, lighting
chains of fires in the S'ahara Desertt'o form this .pattern . That
the-Martians might well have taken to their hearts one of the
hundreds of other proofs of Pythagoras' Theorem seems not to have
been considered.
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00 ==, 572957795.

Colin Fox,

Swinburne Institute of Technology

Playing with my calculator+ one day, I noticed something
curious about tan 89°, tan 89·9°, tan 89·99°, .t ••

Before reading on, complete the table below. (Be sure to
have your calculator in degrees mode.)

e
89
89-9
89·99
89·999
89-9999
89-99999
89-999999
89-9999999
89-99999999

tan eO

Notice the tan eO values! Do they form a geometric
sequence?

. tan 89·9°S1nce tan 890 ~ 10-001 and
(using calcUlator) they do not.

tan 89'099°. ~ ~O-OOOOl
tan 89·go

But what about the last few tan eO values? Is'it true
tan 89-999'9'9'9° ·t'an: "8'9.• '9'989.999°

for example that tan 89 .. 999990 = tan 89-9999990? [The
answer is NO! but the calculator will notp~vide justification
this time. J.

Is there some limiting sense in which these tan eO values
form a geometric sequence? An affirmative answer to this
question is provided by the following little theorem."

t The calculator in question is the APF Mark 8601. Not all
calculators "behave in the same way, as they. are programmed
differently. -How does your 'calculator perform?
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THEOREM 1. If en .89 0 99 .. ,9 (n nines) then
tan. a~+~

lim :::; 10 .
n-+oo tan a~

I leave the proof of this to the reader.

To return to the title of this article,' whose most impor­
tant·result reveals to the·world the true nature of that most
elusive of all numbers:

THEOREM 2. is an integer with an infinite number <?f digits.
In fact, ~ =572957795 ....

Using a
n

as defined in Theorem 1, we have

lim a = .90
n+oo n

tan 90 0 (since tan is a continuous
function) .

Now tan 90 0 = 00 (a well known fact).
completed shows,

Aiso l as the table you

lim tan an
n+oo

572957795. 'I.

572957795 ....

"1ILL SOMEONE PLEASE TELL THE EDUCATIONISTS?

... the exact sciences [are not] based on an accumulation
of statistics. In order to t~ach the young that thre~ plus ­
four make seven, you do not add four cakes plus three cakes
nor four bishops plus three bishops nor four cooperatives plus
three cooperatives nor four patent leather buttons with three
wool socks. Once the principle h~s been intuited J the youthful
mathematician grasps that three plus four invariably make seven
and he does not have to prove it over and over again with choco­
lates, man-eating tigers, oysters, ~or telescopes.

Jorge Luis Borges and Adolfo Bioy-Casares,
Chpon~a~es of Bustos Domeaq, 1967.

A NUMERICAL COINCIDENCE

~010 = 1.23456790~234568

to 15 d~cimal places. What is

1-2345678901234567890 ... ?
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A REMARKABLE FORMULAt

Figure 1 shows a four-pointed star. I want you to find
its area. The method for you to use i$ to divide the star
into geometric shapes for which you know the area formula
(Figure 1) .. In this way, you will find the area.

In this article, you will discover a remarkable method
which enables you to calculate the area of this star and
other simple polygons.

To begin with take a sheet of squared paper and. redraw
the star so that each vertex is situated at a grid-point
(Figure 2).

Figure 1

Jl
II
III,

.....~~"'"" -......~
I""'IIII-....:~ ..-~-

l
i\ I
\J

l

Figure 2

. The formula to be used is the followi~g

. A{P) = i + ~ - 1 (*)

where P is a simple polygon whose vertices 'are grid-points?
A(P) is the area-mea~ure of P 1

i is the number of grid-points inside the polygon,
b is the number of grid-points on the. boundary of the

polygon.

(The unit we use is clearly the area of one square of the grid.)

t This article'is a translation from the French. It first appear­
ed in Function's Belgian counterpart Math-Jeunes, Nr.21 (1983),
pp.9-lS. The translation is printed'here under an exchange
agreement between Function and Math-Jeunes. The formula in
question is known as Pick's Formula.
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Let Us now calculate·the area of our star. Count first
the number of interior points (marked. x in "Figure 2) to find
i 17.. Next count the boundary points (marked • ). to find

b = 8. Then apply the fo~mula: A(F) = 17 + ~ - 1 = 20 .

Verify this result and then apply the formula to the
shapes shown in Figure 3. . If this doesn't work, try to
explain why.

~ ~Iill..., "- .,
~ ~ J

I, f

~ /
~ /
/ /

j ~'-
~ "

Figure 3

We will now prove the formula (*) by worki~g through
several successive stages.

1. Take a rectangle ABeD whose sides are grid-lines
(Figure 4) and look for its area. Suppose it is
p units long and q units wide. Then there are
p - 1 points between A and B (these points them­
selves being e~cluded); similarly the width con­
tains q - 1 points apart from the ends. We find:

b = 2(p - 1) + 2(q - 1) + 4 = 2(p + q)
i = (p - 1) (q - 1) .

1 (p - ~)(q - 1) + ~ x 2(p + q) - 1
pq ,

which is indeed the area of the given rectangle ..

Hence we find

. + b
1, '2

A B..
I

"~I-!.-'q
.1

I
t
o .... p c

I

A B
l~,"

I "-I "-q
I

i'- .
'-

I ~

t 'N
0 p ... c

I

Fip:ure 4 Figure 5
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2. We now move on to the case of the triangle, But
before we 60nsider general triangles (with vertices
~t grid-points), b~gin w~th ttie case of a right­
angled triangle, two of whose sides are grid-lines.
Consider, for example the ·triangle AdD, half of the
rectangle ABeD dealt with'above (Figure 5) .. Let d
be the number of grid-points on the hypotenuse AC,
again excluding the end-points A,C~ We find

b' (p 1)' + (q 1) + d + 3

P + q + d + 1

and

i ~!{(p - ~)(q- 1) - d} ,

which gives, when the formula is applied,
1 '12{(p-1)(q-l)-d} + 2(P+q+d+l) ... 1

1
2: pq ,

which is the area of the triangle ACD.

3. To verify the formula for general t~iangles, we
need an intermediate result. This relates to .
what happens if a polygon P is cut into, two
polygons Pl and P2 (Figure 6). This' cut re-

quires one important remark in the form of a
hypothesis H, namely:

The boundary between the two polygons must
must be a polygonal line whose v~rtices

are grid-points.

Under this condition, we find

b· = h 1 + h 2 - 2(d + 1) and i i 1 + i 2 + d ,

where b 1 and b 2 'are the numbers o~ grid-points

on the boundaries of Pl,P2 respectively, i 1 and i 2
are the numbers of grid-points in the' interiors of
Pl,P2 respective~y, and d is the number of grid-
points on the dividing line, excluding, as always,
its end-points. Let 81 and 8 2 be_the areas of P1'

P2 respectively, and taking Hypothesis H into

acco~nt, as well as that S = 81 + 82 , the
following implication~ are immediate (8 being t~e

area of P): -

. b 1 . b 2 b
(81 1-- 1 +2- 1 and 8 2 1-- 2 + 2 -1) => s = i+ 2 -1

(8
~ '. b
v + "2
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-4. We can now verify the formula for a general triangle.Form such a triangle (Figure 7) and .call it T., Con­sider the smallest rectangle containing T·. Draw T1as shown. Then T and Tu T1 are two tria~gles of
which two sides li~ on the grid; the formula has al­ready.been proved for .such triangles. Let i 1 ,b11 S 1be the elements of T1 and i 1 b,S those of T. Then

. b 1A(T1 ) = 8 1 = ~l + la - 1

and

1A(TUT1 ) (i+i 1 +d) +'2{b+b l -2(d+l)}-1

b
i + i 1 + d + ~ +21

- d - 2

b hi
= i + i 1 + '2 + "2 - 2 ·

But T and Tl satisfy Hypothesis H, so we can deduce
the area of triangle T:

S=i+~-l.

So the formula is true for general triangles. t

5. We now generalise the. resul t to aonvex po'l.ygons.A po~ygon is said to be convex if3 when we takeany two points from its interioP3 the 'line se-gmentJoining them Zies entireZy within that interior.(See Figure 8.)

t The proof is still not quite comp~ete. T has one of its sidesalong a grid-line. The proof for the case in which no sidelies al~ng a grid-line is similar and is left to ·the reader.Eds.
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Figure 8 Figure 9

Con$ider, for example, the convex polygon OABCD (Figure 9).
Divide it into triangles as shown. The triangles OAB and
aBC satisfy the requirements both of the formula and
Hypothesis H. This enables us to assert the truth of the
formula for the polygon OABC. Similarly~considering the
polygons OABC and OeD, we prove that the result holds for
the convex polygon OABCD.

6. These preliminaries allow us finally to proceed to the
genepaZ ease: simple polygons al:L of whose vertices lie
on grid-points. Suppose our polygon P can be decomposed
into a finite number of conv~x polygons P1 ,P2 , ... JPn in
such a way that the two conditions below hold.

{A)
1.

2.

P = P1 uP2 U ••• UPn ·

For all k between 1 and n-l inclusive, the
polygOns P1U P2 u ... U Pk and Pk +1 satisfy
Hypothesis H.

If these conditions hold, by an argument similar to that
used above we can assert that the formula applies to all
simple poly.gons of this type. (Figure 10 shows some
simple polygons; try to f~nd for each a decomposition
into convex polygons that satisfies the two conditions
(A). Then apply the formula to find their areas.) .

_.... ....~...-
L

*\. ." /
~ J, I

~ \ I -~~--li" \ II ~
..... ~1IIlool r ,

Figure 10
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Having.proved the formula allowing evaluation of the areas
of all simple polygons, let us generalise it to non-simple
polygons whose.ve~tice~ still always lie on grid-pOints,

Here is the genepaz, !opmuZa:

A (P.) = i +! + Y(P) ,

where y(P) is a term depending only on the shape of P. We
have just seen that for a simple polygon yep) = ....1 .

What is the value of this coefficient in the case of a
ring-shaped polygon? Consider the polygon of Figure 11. This
is made up of two ~imple polygons P1 and P2 and

A(P) = A(P1 ) - A(P2 ) .

The two simple polygons obey the formula and so we may write

A(P1 ) i 1
.hi

1+2

A(P2 ) i 2

b 2 1+2

But let i,b be the ele~ents of P so that

. + b
1-- 2'

Thus for a ring-shaped polygon, yep) = o. In the same way,
you may calculate" yep) for the polygons shown in Figure 12.

J
/1\(
,,~~,

\ 1/
'l/
/~~

"\l.....llI"""
Jf',
~

Figure 11 Figure 12
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In the case where the edges are all on, grid-lines , we can
advance another argument to prove
our' formula, using a technique
that might be labelled
tteco1ogical ft

•

Suppose we imagine our
(simple) polygon to be 'an orchard,
each grid~p01nt at which 'holds a
new type of apple-tree so bred
that its branches develop to
cover.a'perfect square. (Se~ A
for example.)

In autumn, as the apples B
fall, we have four possible Figure 13
situations. Type A trees (entirely interior to the~orchard)

drop all their. apples inside the·perimeter, type B trees
drop half their apples inside, type· C a quarter and type D
three quarters. .

It is not difficult·to'see that the number of· corners 'of
type C must exceed the number of corners of typeD by four.
Indeed suppose you were walking round the orchard in the
clockwise direction; you would th~n make four quarter-turns
to the 'right in returning to your starting point. Each
quarter-turn to the left would be compensated for by an
additional guarter-turn to the right. '

So we may note t~at the boundary trees of types C,D
average out at half a tree, except for these £our, for which
the half is replaced by a quarter, so that there is a
deficit of 4 x i of a'tree. We have

Fall of apples = no. ofint-eri.or trees
+ i x no. of Qoundary trees
- 4 x t ,

which is our formula.

MAKE IT NON-TRIViAL!.

Mathematical systems and the axioms which define them must
have a certain naturainess about them. They must come from the
experience of looking at many examples, they should pe rich in
meaningful results. One does not just sit down, list a few
axioms and then proceed to study the system so described. This
admittedly is done by some, but most mathematicians would dis­
miss this·as poor mathematics. The systems chosen for study are
chosen because particular ,cases .of these structures have
appeared time and again, because one· finally notes that these
special cases were indeed special instances of ~eneral phenomena,
because one notices analogies between two highly disparate
mathematical objects and is.led to search for the root of these
analogies. .
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THE s FORMULA FOR A TRIANGLE
J.A. Deakin,

Shepparton College of TAFE

In a note to Problem 7.~.2, Mr John Barton (Volume 7 1Part 4) points out that the area of a triangle ABC with s1des tof l'engths a,b,c can be calculated by means of Herots formula

where
A~ea Is(s" - a)(s - b)(s - 0)

8 = !(a + b + c) •

cos A

b2 + 0 2 _ a2
2bc

(b - c)2

1

1

so that cos A

NOW 2 sin2 A
'2

This formula does not seem to be ,well known to the currentgeneration of students; older readers will recall the existenceof other's' formulae, and younger students may be interestedin seeing these results, which follow· directly from the cosinerule for triangle ABC.

In triangle ABC, a 2
b 2 + c 2

2bc cos A ,

b 2 + .0 2 _ a2

2bc

Hence

2bc

(a - b + c) (a + b - c)
2bd

(a - b + c)( a + b - c)
4bc

"( 2's' -'2b) (28 - "20)
4bc

t Hero , or Heron, of Alexandria lived ~n the 1st Century A.D. ~he
for~ula named after him appears as ~roposition I.8 of his bookMetrica, but was first derived by Archimede~. For more on thispoint, see T.L. Heath: A History of Greek Mat~ematias~ VoZume II.
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where s =' lea + b + c) 1 so that

sin ~ =/([i- bb~B-e) (i)

Awhere we take the posit,ivesquare root, since "2 is acute.

Again

Hence

so that

Also,

2' A
2 cos "2

cos2 A
"2

cos A
"2

tan A
"2

1 + cos A

1 + b,2, +' 'c,2, _' a2

2bc

{b' +' 'c}2, '_' 'a 2

2bc

'(b' '+ 'c' +' 'd)'(b' '+' 'c '-' 'q)
2hc

(28 ) ('2's' '-' 2'a)
4bc

=IB(\~a)

." A
Sl.n 2" =/(8 - bleB -e)
cos' 4. 8 <. 8 - a)

2

(ii)

(iii)

Hero's formula for the area of a'triangle follows from the
fact that in any triangle,

sin A = ~ -Is(s - a)(s b)(s - c).bc

Since 1 - cos 2
A = 1

(1
b2 + c 2

+ 2bc

[
<b + c)2 - a

2
][a

2
- (b - c)2]

2bc 2bc

(b + c + a)(b + c - a)(a .- b + c)(a + b - a)

4b 2c 2

(2s)(2s - 2a)(2s - 2b)(2s - 2c)

4b 2 c 2

we have sin A b
2
c ';s(s a)(s - b)(s -,e) , (iv)

where again the positive'· square root is taken since in any tri­
angle ABC, sin A is positive.

Finally', the area of triangle ABC is given by

Area !bc sin A

v's (s - a) (s: - b) (s - c) (v)



The's' formulae (i) - (v), seem to have disappeared
quietly from secondary mathematics syllabuses during the.
1960s and 1970s. Prior to the advent of the now universal
electronic calculator, they were almost invariably. used for
solving problems in numerical trigonometry in preference to
the cosine rule, since they·were eminently suited for use with
tables of logarithms .. Hero's formula, however, should perhaps
be· more widely known by modern students.

The derivation given above is not the only one available.
For a different version, see Z.A. Melzak's Invitation to
Geometry (Wiley, 1983).

SUbmitted.by Colin Davies.

13
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A TWO-DIMENSIONAL BUILDING?

P.E. Kloeden, Murdoch University

During a recent visit to Boston, I was struck by the
appearance of the New Hancock Building. As you can see from
Figure 1, it seems to have no thickness. Figure 2 gives the
explanation. The ninth and higher floors have a side wall
that meets the front of the building at 70 0 rather than 90 Q

,

so that from many angles of view it cannot be seen.

The building won an award for its designer, 1.M. Pai, but
has been the sUbject of many lawsuits as the windows are for­
ever blowing out. One theory is that the building's unusual
shape leads to high wind-stress.

Figure 1 Figure 2
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THE INEQUALITYOF THE
ARITHMETIC

AND GEOMETRICMEANS t

Ivan Niven, University of Oregon

THEOREM. Let A and G denote the arithmetic and, geometricmeans of the nonnegative numbeps a1 ", a 2" • · • ." an defined by
a 1 + a2 + ... + a

linA n
G = ( 1)n (a1a 2 ···an )

Then A > G" with equaZity if and onZy if a 1 = a 2 = ... = an-

In case it is clear from (1) that
A = G. Hencefo:rth we assume that the at s are not all equal,and prove that A > G • Actually we prove the equivalent
version dn

< An: that is~

(2)
This inequ~lity is established by replacing the product on the
left by successively larger products, reaching An in fewerthan n steps. Each step in the process is described by thefollowing aZgorithm, or procedure.

ALGORITHM. In any product of n numbers, replace the smallestnumber, say x, and the largest number, say y, ,by two new fac­tors A and x + y - A, where A denotes the arithmetic mean of~ the n numbers.

ExampZe 1. The inequality 2.3.4.6.20 < 75 , a special case of(2) above, can be obtain~d by repeated application of thealgorithm:

tAn extract from Professor Niven's recent book Maxima and Minimawithout CaZcuZus, published by the Mathematical 'Associa·tion ofAmerica. w~ thank Professor Niven and the Association for theirpermission to reproduce thi~ material in 7unction.
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2.3.4.6.20 < 3.4.6.7.15
< 4,6.7'.7.11
<6.7.7,7. 8
< 7.7.7.7 .. 7.

The arithmetic mean of the five numbers in each 'product is 7.
In the first step the smallest and largest numebrs, 2 and 20,
are replaced by 7 and 15, because x + y -.A = 2 +'20 - 7 = 15.
In the second step the smallest and largest numbers, 3 and 15,
are replace<:i by 7 '.and 11, because now we have x + y - A =
3 + 15 - 7 = 11. The su~sequent steps again followSthe al­
gorithm. (Of course, the inequality 2.3.4.6.20 < 7 can be
verified by a direct calculation. The general ~nequality

(2) cannot be ·verifiedin such a simple way, but it can be ob­
tained by use of the algorithm, as we shall see~)

ExampZe 2. The inequality 1.6~7.10.11.19 < 96 , another special
case of 'the inequali ty (2) above, can be obtained by re~eated
application of the algorithm: .

1.6.7.10.11.19 < 6.7.9.10.11.11
< 7. '8 • 9. 9 '. 10 . 11
< 8.9.9. 9. 9.10'
< 9.9.9. 9. 9. 9 .

We note that the algorithm replaces the numbers x and y,
the smallest and the largest in any p~oduct~ by two numbers A
and x + y - A having the same sum. Hence the algori thm,
when applied to al.a2 ..•an' replaces a p'roduct of n factors
having arithmetic mean· A by ,another product of n factors also
havlng arithmetic mean A. Why is the new product larger? To
answer this question, we prove that

xy < A(x + Y - A) . (3)

Removing the parentheses, and moving the term xy to the right
side of the inequality, we see that (3) is equivalent to

2o < Ax + Ay - A - xy

i.e. o < (A x)(y - A) •. (4)

This final inequality is easily verified because A - x and
y - A are both positive. The reason for this is that the
arithmetic average of n numbers lies between the smallest and
the largest of the numbers, that is, x < A < y. This
verifies (4).

Finally we see that. repeated application of'the algorithm
to the product a 1a

2
... a

n
leads to the product An, because

each step 'brings in one or two more occurrences of the factor
A, as illustrated in the examples above. This proves the in­
equality (2), and so also the theorem.

n n
COROLLARY. If a 1 " a 2" · • ,." an, are nonnegat-ivej then a1 + a 2
+ ... + a~ ~ na1a 2 •.• an " with equaZity if and onZy if the a's

are aZl equal..

1
I
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This follows by applyi~g the theorem to the numbers
n n n . th G • h··a1 ,a2 ,·· .,an ,. W1. =,a1<x 2 ... tan ~n t .16 case.

THE COIN TEST,

Many readers will find some of the conclusions in this
chapter hard to accept. Believing that the odds change with
every card played, they will see' no advantage in going back,
as it were, to study the a priori expectations. To dispel
that illusion it may help to make a simple experiment in a
medium other than cards.

Suppose that there are five coins, four heads and one
tail. They~re divided into two piles, three on the left,
two on the right. Now you would say that "it was 3:2 against
the tail being included in the smaller pile. Now take two
coins away f~bm the l~rKer pile, with the proviso that neither
of them be the tail-.· (That is what happens in bridge, where
the discarding is selective and a player who has. the critical
honour, a King' or- Queen, does not play it wantonly.) At this
stage there is only one coLn on the leftand,as before, two on
the right; but it remains 3:2 against the tail being on the
right.

Terence Reese, The Expert Game, p.40.

co co co co co co co co

MATHEMATICS IN APPLICATION

In criticizing ·a-nargtiment b·ased'upon the applications of
mathematics to particular matters of-facts, there are always
three processes to be kept perfectly distinct in our minds. We
must first scan the purely mathematical reasonin~ to make sure
that there are no mere slips in it, no casual illogicalities due
to mental failure. The next process is to make qUite certain
of all the abstract ,conditions which-havebeenpresupposed to
hold. The chief danger here is that of oversight, namely tacit­
ly to introduce some conditipns, which it is natural for us to
suppose, but wh.ich in fact need not always be holding.. There is
another oppo~ite oversight that does not lead to error) but only
to lack of simplification. It is very easy to think·that more
postulated conditions are reqUired than is in fact the case. In
other words, we may think that some abstract postulate is
necessary which is in fact capable of being proved -from the
other postulates that we have already in 'hand. The only effects
of this excess of abstract postulates are to diminish our
aesthetic pleasure in the mathematical reasoning, and to give
us more trouble when we come to the third process of criticism
which is that of verifying that our abstract postulates hold
,for the particular case ~in question.

A.N. Whitehead.
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YAN-A-BUMFIT AND ALL THAT t

Michael1\.~."..D~akin,
Monash University

A brief item in Funation's Soutn African counterpart,
Mathematiaal Digest drew my attention to the 'following passage
in Melvyn Bragg's AY-Plaae in England (Seeker and'Warburg, 1970).

[Mr Lenty] handed over fa] piece of paper.
On it were the numbers 1 to 201 written out
as numerals' several times, and beside each
numeral, there was the word of the number
recorded, as Joseph thought, in several
different dialects. 'The sheep-score,'
said Mr Lenty. 'Brought to me by fu~ friend
MrKirkby the schoolmaster after I had men­
tioned to him yo~r reciting the way the
shepherds count here in Cumberland. I was
in~igorated by that performance and also by
the reminder of that particular lump of in-
formation,' he went on, 'Say them
again. '

So Joseph rhymed off the count from
one to twenty, in his own, the West Cumbrian
dialect, -singicng -it almost , as the-words
demanded:

'Yan, tyan, tethera, methera, pimp,
sethera, lethera, hovera, dovera, dick.
Yan-a-dic~, tyan-a-dick~ tethera-dick,
methera-dick, bumfit.'

'Bumfit!' Mr Lenty i~terrupted ecstati­
cally. 'Oh, thou Bumfit! My Bumfit! Now
why can't we still say Bumfit. Fifteen
doesn't hold a candle to it. Bumfit! Oh­
go on, Joseph. r

'Yan-a-bumfit, tyan-a-bumfit, tithera­
bumfit, methera-bumfit, giggot.'

+
'! thank Professor J.N. Crossley, Ms' E c Deakin, Dr R. Slonek,

Professors c. Probyn and E. Barry and their colleacues in the
departmen-t of Eng'11sh, !~o'nash Universi ty, for thei; help wi th
aspects of this artiCle. M.D~ .
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'Giggot!' said Mr Lenty. 'TwentYt And­
the~days-of-thy-years-are-tethera~giggots­
and~dick. Now isn't that better than three
score and ten? Tethera giggots and dick.
It sounds like a lifetime~ doesn't it? I
could hear you repeat that all evening - .
but pass the paper back and listen to my count.'

He took the paper, ... coughed, smiled
most mysteriously at Joseph and b~gan:

'NowMr Kirkby wrote this out for-me.
Remember that. Mr Kirkby. I'll' take this
one. Yes. !tEen, teen, tother, fither,
pimp, een-pimp, teen-pimp, tdther-pimp,
fi ther-pimp, gleeget (yes, Joseph:' I too
prefer "dick": but forward): een-gleeget,
teen~gleeget, tother-gleeget, fither­
gleeget, bumfra- ("fra" for Hfi t'I, you III
observe, but same base - bum): een-bumfra,
teen-bumfra, tother-bumfra, fither-bumfra,
fith-en-ly.tf (Twenty. Rather slippery
along the tongue.) Well then. So what? ­
you might ask?'

Here, Mr Lenty really did tremble with
excitement, even to wiping his brow,­
calming the nervousness, unable to bear
the strain of it all.

'Joseph,' he said, solemnly~ 'Some of
those other lists you saw on that piece of
paper were sheep-scores taken from different
parts of England and one. from Wales. You
will ac1mit thattheyw~remost remarkably
similar to the one you say, ours, in
Cumberland. But the one I read to you,
Joseph, and one other on that list, Joseph,
... yes, the one I read, Joseph - that one
is used -by the Indians in North ~merica.'

He pauseg to let this revelation have its
full effect. 'Indians of the Wawenoc
Tribe,' he said, 'and it was recorded
th~re-in the year 1717. In a land 3000
miles from our own. Joseph, across that­
mighty ocean,there, over there;' he
pointed, tare Indians and Cumbri'ans counting
sheep in the same way - give or take 'dick
and giggot. It says something about man,
Joseph': but what? That was my immediate
question to Mr Kirkby --and he traced it
back to the Garden of Eden.

A quite remarkable passage - but what are we to make of it?
Bragg is_ an English author who writes novels (like this one) of­
the North Country and its customs. ~e may thus accept the
account of the West Cumbrian system, if not that of the
"Wawenoc", of which more later.
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Now the word "Cumbria" comes from the same Celtic root as
Cymru; to this day the-Welsh name for Wales, so it is 'plausible
to believe that the Cumbrian and the· Welsh counting systems
might reflect a common origin.. This thought' drove me to a
Welsh dictionary, from which '1 ·constructed the following table.
(The alternatives in Column 2 are masculine and feminine
forms.)

No.

1
2
3
4
5
6
7
8
9

"10
11
12
13
14
15
16
17
18
19
20

W"elsh

un
dau/dwy
tri/tair
pedwarjpedair
pump
chwech
saith
wyth
nau
deg
un ar ddeg
deuddeg
trijtair ar ddeg
pedwarjpedair ar ddeg
pymtheg
un ar bymtheg
daujdwy ar bymtheg
deunau
pedwar!pedair ar bymtheg
ugain

w. Climbrian

yan
tyan
tethera
methera
pimp
sethera
lethera
hovera
dovera
dick
yan-a-dick
t·yan-a-dick
tethera-dick
methera-dick
bumfit
yan.... a ...bumfit
tyah-a-bumfit
tithera~bumfit

methera-bumfit
giggot

'fable 1: The numbers one to twenty in Welsh and
West Cumbrian.

The correspondence, though not exact, is impressive, and
aspects 'of pronunciation make it more so. Both the u and the
y of Welsh are pronounced as the French u or the German u, so
that "pump" is pronounced more like "pimp" than like the last
syllable of "waterpump". The'p-m transition on the numeral 4
is one we shall see again later.

We, speaking English, generally turn cardinal numbers into
ordinals by adding. the suffix -th (e.g. for a "clear"· case,
ftseven" becomes Ifseventh"). The corresponding suffix in
Welsh is -fed and this may relate to the -thepa and -vera so
prominent in the West Cumbrian. But matters ~re not simple.
We would expect the West Cumbrian sethera to correspond to the.
Welsh word seithfed (which means Tlseventh"), but it doesn't.
It means, as the table indicates, six. It may be that some
corruption took place between the Welsh and the West Cumbrian.
We shall see other examples of this later.

We may ask about the numerical structure of the sequences
displayed in the table. Our own system is based on the number
ten, although words like eleven and. twelve depart from the
expected pattern. West Cumbrian starts out quite promisingly
along the same lines until we reach bumfit. A closer study of
the Welsh shows what has happened. Bumfit corresponds to
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pymth~g and this is made up of pym (i~e. pum) and th~g (from
ddeg - thedd in Welsh is pronounced as the hard th in our
words "these" and "those"). So pymth~g or bymth~g'is "five­
ten H or, as we would say, five-teen, or fifteen.

The Welsh word for "eighteen" -f.ails to fit the pattern;
d'eunau is clearly based on' the w'ords for "two" and "nine", so
they say the equivalent o'f: ·one and five-teen, two and five­
.teen, twice-nine,. four -and five-teen,' twenty ~ A brief and
tantalising glimpse of a base nine system that.will appear
again later. .

We~sh is one of only .four Celtic lariguages ·that survive
today. (The others are Irish,. ·-Scots Gaelic, and. Breton. ) Two
.others are kept.half-alive through the effort.s of societies
dedicated to their preservation, so we' have Cornish and Manx'
as two not quite dead Celtic languages, The other well­
docume·nted Celtic language is Gaulish (cf ~ Asterix and Obelix),
which is quite dead, though -some scholars claim to have recon­
structed p~rts of ·it. (Welsh, Cornish and Breton are direct
descendents of Gaulish.)t

W~lsh, Cornish and Breton form the so-called Brythonia sub­
group of Celtic. The word "Brythonic" derives from "Brython",
which has 'become ItBriton" or "Breton" in our time. Irish, Scots
Gaelic and Manx from the other sUb-group,. the Goidelia (cf. the
word "Gaelic"). Brythonic languages"are classed by linguists
as P-languages, Goidelic ones are Q-languages. This distinction
is seen in words like pump, whose Ir~sh equivalent is attig, which
begins with the sound of the letter Q.

tceitic tribes were once widespread throughout Europe and many
Celti~ languages must have existed. Of t~ese two are worth
mentioning.

(a) A group known as the Galatai - (Galats) .moved into the
Balkans and then into Asia Minor' in the third century B.C. They
appear in the New Testa~ent as the Ga1at~ansand retained their
language (describ~d by St Jerome as akin to that of the Treveri ­
-t:-he last Gaulish-speaking remnant) till about 500 A. D.

(b) The Greek historian, Herodotus, mentiOns a group called
the Keitoi whose home was the Iberian peninsula {~odern day Spain
and Portugal). The Romans knew this group' as the Celtiberi.
Their language (which is preserved in a considerable number of
inscriptions - most, however, in a so-far undeciphered· script)
died out early in the first century A.D.

Both Galatian and Celtiberian place-names survive on the
map of Europe today: the last living te~timony to the existence
of these long-dead languages.



22

[Greek is a P-language, and we see this in the English'
words pentagon" pentane and pentameter, Latin, by contrast,
is a Q~language and has left us quintuplet" quinquennial and
quintessenae.l

West Cumbrian is seen to be a P-language and thus we may
hope to see more of its relatives if we look at the numerals
in the Breton and Cornish langu~ges. Here. they are.

No. Br.eton Cornish

1 un idn
2 dou/diu deu
3 try/teir try/"j;eir
4 peuar/peder pajer
5 pemp p~mp

6 huech wheh
7 seiz seyth
8 eiz eyth
9 nan now

10 dec deg
11 unnec idnak
12 douzec dawdhak
13 trizec tordhak
14 peuarzec peswordhak
15 pempzec pempthak
16 huezec whedhak
17 seizdec seydhak
18 eizdec eydhak
19 nauntec nownjak
20 uguent igans

Table 2: The 'numbers one to twenty in Breton
and Cornish.

Again a masculine, feminine dichotomy appears. What I have'
omitted,however, are a wealth of alternative' forms, particularly
in the Breton.. 'There, "eighteen" is given above as "eizdec tl,

which translates quite literally as "eight-teen". Old Breton
has "eithnec ft

, which means the same thing, but also "dou nau",
which corresponds directly with the Welsh .. An alternative
"triwec'h '1 exists in modern Breton - a glance att,he table
gives the meaning "three sixes"", and so here we have another
fleeting glimpse of a strange base - in this case, six.

All these investigations had left me as eager an enthusias­
tic for the SUbject as Mr Lenty himself. I discussed the matter
with my wife, who found a new reference. As an English teacher,
she uses an anthology of. poetry called Junior Voioes (Ed.
G. Summerfield and published by Penguin, 1970), whose first
twenty pages are numbered:

eina~ mina" para" peppera" pinn~

ohester~ nester" nera, nin~ dickera~

eina dickera" mina diakera~ para dickera~ peppera
dickera~ pumpi~

eina pumpi~ mina pumpi~ para pumpi~ peppera pumpi~

ticket.
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This clearly is another. version ,of the same system'. (It
preserves the fe'ature of Welsh 'and"West Gumbrian, absent
from'the Cornish and Breton, of accordirig a privileged place
to the number'fifteen.) But 'look at the start of the
sequence -,·isn"t it just that little bit reminiscent 'of the
old playground rhyme eeny m.eeny miney mo? This, .and othe·r such
rhymes are used itl' "counting out" to determine who shall go
"he'!, in a game of chas.ies or. the like. The ,'origin of such
rhymes is discussed by rona and' Pete~ Opie in The Oxford
Dietionapy of Nursery Rhymes (Clarend~n Press, ~951).

These authors mention the 'various sheep-scores in
different North England dialects. These counts" which go to
twenty (although the Opies take their examples 'only to ten)
collectively form the "Anglo-Cymric Score ft and they. are still
used by shepherds counting sheep, fisherman tallying their
catch; and old women keeping track of their stitches as they
knit. Here, from their book, are six such counts,(up to ten).
The fifth is the West Cumbrian under another name (check it
on an atl'as). '

West Nor- West- North
High Riding, Yar- thum- mor-. Riding,

Furness Yorks. mouth berland land Yorks.

aina eina ina een yan yan
peina peina mina tean t.yan tean
para , paira tethera ·tether 'tethera tithera
peddera puttera methera mether methera mithera
pimp pith pin pimp pimp mimph
ithy ith sithera citer sethera hitter
mithy awith lithera' liter l,ethera litter
owera air-a cothra ova hevera over
lowera dickala hothra dova devera dover
dig dick die dic dick dick

Table 3: The nunil;iers one to ten in six English
dialects.

Note the p-m shift in (e.g.) the words for four and, in
the North Riding dialect, five. Opie and Opie also give the
numbers one to five in Welsh, Cornish and Breton, although
their spelling of the latter two differs from that given here.
(Neither language has q.eveloped a fixed orthography.)

Some children's counting-out rhymes come very close to the
Anglo-Cymric score. The best approximant, again from the
Opies, goes:

Ya ta tethera pethera pip
Slata lata covera dovera dick'.

tOthers are more garbl~d :

tone very garbled vers ion of hevera" devera,,' dick turns up as
hickory, dickory"dock!
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Inty tinty tethera methery
Bank for over dover dick ..

One, at least, crossed the Atlantic and turned up in
America:

Ben teen tether fether fip
Sather lather gather dather dix.

This was recognised as counting and attributed to "the Indians"
and so takes us back to the story of the Wawenoc.

Such a tribe does exist. The preferred spelling is
Wewenoo, and Hodgers,Handbook "of American Indians CRowman and
Littlefield, 1979) states that they once lived on the coast of
Maine. 'Surprisingly, as they must on that account, early and
hard have borne the full brunt of ~uropean settlement, a rem­
nant st~ll exists, to be found, after ft 1747 migration~ 'in
Canada.

However, it is most unlikely that tQey or anyone else in
America prior to ,European settlement counted in Celtic numerals.
[There ape crackpots who believe the American Indians to be
Celts, -but then there are others who believe them to be the
lost tribes of Israel, etc.] The Indian's did not have sheep
and if they ever did count as suggested, the likelihood is
that they learned to do so f.rom the settlers (as Joseph in a
later passage from Bragg's novel, realises,although he
doesn't tell Mr Lenty). '

Note also that the "Wawenoc" system, unlike all, the others,
is a perfect base five system (apart possibly from the words for
ten, fifteen and twenty). This begins to look like a deliberate
invention 1 and one of my informants, Professor John Crossley,'
author of The Emergence 0 f Numbe:r (V Publ. Co., ~980), rega-rds

it as a hoax. t Bragg may have been himself taken in by the
hoax, or, more probably, allows his characters,Mr Kirkby and
Mr Lenty, to be so deceived for the dramatic purposes of his
"novel.

We may thus dismiss the argument,that ~akes the system
back to the Garden of Eden. Nonetheless, it is very old. Opie
and Opie report a tradition to the effect that counting-out
rhymes were used by the Druids for choosing human sacrifices.
Well; the Anglo-Cymric score was, in its' ancestral form,
certainly used by the Druids. The Druids were the Celtic
ruling and priestly ca.~te, akin to the Brahmins of India in
social importance and 'in function and, indeed, quite possibly
deriving from the same earlier Indo-European tradition. It was
certainly the Druids among the Celts of Julius Caesar's day who
would have been able "to count and their counting system would
obviously have been 'Celtic. (We see it best preserved, however;
in Welsh and Breton, rather than in the more variable" and idio-
syncratic sheep-scores.) . ,

tThere are American Indian counting systems that may be thought
of as quinary, but none is remotely like this.
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The Druids also? so Caesar tells uS t resorted to human
sacrifice, but whether.they chose their victims by ritual
counting is a matter that can probably "never be known.

And what of Australia? Well, we have eeny meeny .miney mo,
and my mother remembers in:dy tindy at.Zigo- Mary (could Mary
really be methera?).and there are other such "relics. Pe"rhaps
the most convincing is: .

Enden deena ·.tucka lucka teena
Sucka luck~ ticky .tacky enden' boom.

This was reported from Melbourne in' 1967 and appears in the late
Ian Turner's CindereZ,Za Dressed in Ye.Zz,a (Heinemann? 1969). It
has some af.fini ty with the Anglo....Cymric score although it shows
considerable degeneration.

Nonetheless it is' interesting to reflect that in the non­
sense words of this playground"rhyme, we hear the faint echo of
a counting system in use 1 if not in the Garden of Eden, at
least well before the time of Christ.

LE1'TER .TO THE EDITOR

PASCAL'S PYRAMID.

The~inomial Theorem, Bamford Gordon, Function, Vol.7,
Part 5, October 1983, prompts me to examine Pascal's Triangle
in more than two dimensions.

Consider "Pascal's Pyramidtt
, for instance.

Each face is constructed as explained in the original
article. The internal n~mbers in any triangle are foun9 by
adding numbers in the triangleinnnediately above that ttsurround"
the said number.

e.g. 6
12

2 + 2 + 2
3 + 3"+ 3 + 3

This then leads to the diagram overleaf, where the
n~bers give the coefficients on the different terms in the

. . 2
expansion of (a + b + c), .

Garnet J. qreenbury,
Brisbane.
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PROBLEM SECTION

Each issue of Funation yontains a number.of problems 1 either
'sent in by readers or posed by the editors. Many of our readers
find that they can contribtite to Funation by, sending solutions
to the problems posed. We begin by printing solutions to those
problems still outstanding from 1983,

SOLUTI'ON TO PROBLEM 7'.'5'.'1.
The problem read:

The recurrence relation

arose in connection with Problem 7.3.1. Derive the solution
_ (0 1 '1 ,.1, . (_1)n)

fen) - en!) 1 - 11 + 2!- 3T+ ... + --nr-
We received.solutions from John Percival (Year 12, Elderslie

High School, ·No.S. W.), John Barton (1008 Drummond Street, North
Carlton) and David Shaw (Geelong West Technical School). Here
is John Percival's solution.

Assuming f(-1) = 0, f(O) ='1 (from Problem 7.3.1), we see
that the formula holds true if n =,0. Now assume it true ~or

n = k - 1 ~ where n is .a natural number. Then

(
1 1 1 (_1)k-1 )

f( k _. 1) = (k - 1)! 1 - IT + 2T - 3! + ... + (k -1)! ·

Consider n =' k.

By definition, f(k) - kf(k - 1)
:. f( k)

.. By assumption,

(_l)k

kf(k - 1) + (_l)k .

f(k) k[<k - 1)!(1
1

-IT

k!(l
1 1

-TI -+ 2!

1 (_l)k-l )] ". k
+ 2T ~ + (k - 1)!' +, (-1)

(-'1) k-1 0 ( -1) k C-1) k \' ( -1) k
+ (k- 1)! +~ - k! } +

{ l' 1 (_l).k-1 (_l)k) k.1 •. C-
k
1.l + (_1)k

k!\1- 1 !+2T (k-l)!+~-

(
1 ' 1 0 1 ' '("-°1') k ) k k

k! 1 - IT + 2T 3f + ••• +~. - (-1) + (-1,)
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1 1
~! + 2T

1
3T+

which is of the form fen)
where n = k.

Since shown true for n = 0 I and proved true for n = k
using the assumption of validity for n = k - 1) then by the
Principle of Mathematical Induction,

(
. . 1 . 1 .. 1 .' .('-'1) n )

fen) = n! 1 - "IT + 2T - 3T + ... + nr-
for all natural numbers n.

John Barton used a somewh~t different approach.

Since 1(2) 21(1) + 1 ) we have

f(2) 2!(I(1) + 1 1
+ 2\)

and then
-IT

f(3) 3f(2) - 1

3!(f(1) .+ 1
1 1)-IT + 2T - 1

1 1 1)3! f(l) + 1 -IT + 2!.- 3f

In general

fen) = n!(f(l) + 1- I! + 2\ - 3\ + ... + (:\)n ) .
. The given solution has f(l)'= 0 .

He comments:

One ~ouldformalize this derivation by presenting it in the
standard inductive dress, and it would be a nice question of
mathematical aesthetics as to how pe9ple would feel about such

. a demonstration. Would it be·' more) or lesEi, satisfying than the
simple "leaping to the generalisation", as in (1) above? Dare
you ask "What do readers think?" ?

David Shaw 'sent two solutions, the first essentially that
supplied by John Barton, but proceeding in the opposite direction.
His second solution referred to the origin of the problem: f(n)
is the number of complete derangements of the sequence of symbols
1,2,3, ... ,n . The solu:tion proceeds as follows.

Firstly, ascertain the number of permutations in which one
or more of the symbols are undisturbed (fixed)., If we consider
one of the symbols to be fixed, then there will be (n - 1)!

permutations of the others. There are (~) ways of fixing one

symbol. The product (~)(n - i)! includes the number of permu­

tations in whiGh two or more of the symbols are fixed and, in
fact, includes more than once those permutations in which any
two of .the symbols are fixed. So we have to subtract the product
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i.e. (~)<n - 1)J - (;)<n - 2)J

But now we have excluded. permutati9ns~nwhich three of.

the symbols are fixed. So the product (;)<n- 3) I mustbe

adde.d. This inclusion-exclusion argument is continued so that
the number of permutations which °are not dera~gements.is given
by

2)! + (;)<n - 3)! - ... + <_1)n}{(i)<n - 1)1n!

(~)in - ~)! - (;)<n -2)! + (~)(n - 3)! - ... + <-1)n(:)OI
is obtained by subtraction.

( \.
~J(n

fen)

fen)

. , on!' . t
(_l)nn! - ~ + ~ + +1! 2T 31 ...

( 1· ·1 1 <_l)n}
n!t1 - IT + 2! - 3T + .... + n!

Mr Shaw comments that fen) can be interpreted as the number
of ways in which n rooks may be placed on an n x n chessboard
with none on the main diagonal and such th~t no rook can take
any other.,

John Barton also sent a second solution,. which, with regret,
we judged too difficult for ~un;tion.

S0l:-UTION TO PROBLEM 7','5.2',
We asked for (in essence) factors of 1,000,343. John

Percival writes:

1,000,343' 1,000,000.+ 343

(100)3 + 73

(100 + 7)(1002 - 7 x 100 + 72 )

(107)(100000- 700 + 49)

107 x 9349 .

Hence 1,000,343 is composite, with prime factors 107, 9349.

John Barton and David Shaw solved this problem by the same
method.

SOLUTION TO PROBLEM 7.5.3,
This problem, from the 1982 South African Mathematical

Olympiad, asked for the smallest positive integer n such that
if the digit 7 is written after it and the digit 2 in front of
it the result is 9~ times n.

The same three solvers sent us solutions to this problem
also. John Percival's answer begins by seeking a single digit
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or

200 + ~On + 7 91n

23
n =.-9 which is not an integer.

Thus -there are-no single digit solutions and a two-digit
solution n = lOt + k is thus so~ght. We then-require

1000 + 190Z + 10k + 7 = 91(10~ + k) ,

which reduces to
. ·2·23

n = lOt -+ k = -g-

which again is not an integer.

A search for a three-digit solution n = 100Z + 10k ~ P
along the same lines iS t however, successful, yielding
n = 247, which is thus the solution.

John Barton used a different approach. He writes as follows.

Let the number be

apl0P + ap _1l0P- 1 + ... + a 1 ,10 + aO ·

Then

2.iOP+2 + a
p

.l0P+1 + .,. + al.l02 + aO.l0 + 7

P p-l·91(a .10 + a 1. 10 + ... + a l ·l0 + aO) .p p-

2.10P+2 + 7 - 8l.10P .a 81.l0P- l .a 1 ~ ... - 81.l0.al 8laO ·
p - p-

If there be a solution for a O ' we must have aD = 7 .

Subtracting 7 from both sides and then dividing by 10,

P+l p-l- p-22.10 - 81.10 .ap - 81.10_ .ap_1 - - Slal = 56 .

If there be a solution, we must have a 1 = 4 .

10: .
Substituting, transposing the term 8lal , and dividing by

2 -3 -
2.10P - 81.10P-.a - 81.10P- .a 1 - - 8la2 = 38 .

P P-
If tn-ere be a solution, we must have a 2 2, and this

equation can be satisfied by putting P = 2. That is, we can
take a

p
=·0 , for all p greater- than 2.

This gives the solution 2.102 + 4.10 + 7'= 247.

David Shaw's approach was different again. He used con­
gruences and writes as follows.
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Suppose n is composed of d d~gits;

then 2 x lOd+l + iOn' + 7 91n

2 x 10d+1 = ,Sin 7 ,

i.e. 2 x lOd+i - -7 (mod 81)

2 x 10d+1 - 74 (mod 81)

1.0d+1
- 37 (mod 81).

Now 102
- 19 (mod 81)

103
- 190 - 28 (mod 8:1.)

104
- ~92 - 361 - 37 (mod 81)

So d 3 and

2 x 104 + lOn + 7 91n
20007 8ln

,247 n.

247 is the req:uired number.

SOLUTION TO PROBLEM 7'.'5.4.
A leaf is torn from a.paperback novel. The sum of the

remaining page numbers is ~5000. Which pages were torn out?

Here is John Percival's.solution.

Let the book have n pages, with the kth and (k - 1)th pages
removed with the leaf torn out. Then

15000 1 +.2 + + n - (k + k - 1) (k < n)

Since 1 + ~ + + n is the sum of an arithmetic series,

15000 = ~(1 + n) - 2k + 1 .

Since k < n, ~(l + n). > 15000 ..

By trial, n ~ 173, since when n = 172, ~(1 + n) <.15000.

W~en n = 173, ~(1 + n)

So
i.e.

51
k

173 x 174
·2

~5051.

2k - 1 ,
26 •

~(1 + n)n = 174,

If the novel has 173 pages, the pages 25 and 26 were removed.

174 'x' 175
2

15225 ..

If

So 225 2k - 1, i.e. k 113 .
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If the novel has 174 pages, the 112th and 113th pages could have
been removed. However, if the odd-numbered page occurs on the
right hand leaf of the opened book (as they usually are), then
the removal of these two pages with the tearing out of one leaf
is not possible. I.e~ we require the odd-numbered page to be the
smaller of the two removed. Hence this is not a valid solution.

( )
175 x 176

When n = ~75, ~ 1 + n 2

15400 .

So 400 = 2k - 1, giving k > 175 which is not possible.

Hence the only valid solution is the removal of page numbers
25 and 26 from a 173-page book.

Johu Barton and David Shaw solved the problem using similar
arguments.

This disposes of all the outstanding problems.
some new ones. Please send in your solutions.

Here are

PROBLEM 8.1.1. ,(Submitted by David Shaw J Geelong West T.S.)

How many permutations are there of the digits 1,2,3, ... ,8
in which none of the patterns 12,34,56,78 appear?

PROBLEM 8,1.2.
Ten people form the queue at a bank. The first has a bank

balance of one cent J while the tenth has a little over
$5 million. The accounts of the others are each computed by
adding ten elevenths of the account of the person ahead to one
eleventh of the account of the person behind. Can the sixth
person afford to buy a new car?

PROBLEM 8,1.3. (From MathematicaZ Spectrum, Vol.16, No.1.)

Evaluate

{ )~/3 ( )1/3
.\9 + 415 '+ 9 - 415 ..

111 players enter a tennis tourname·nt. Allowing for byes,
first round matches, second round matches, etc., how m~ny matches
must be played altogether?

THANK you!
We are pleased to acknowledge with grateful thanks the

receipt of a grant of $400 from the School Mathematics Research
Foundation. This will help to defray the cost of publishing
Function and has meant that we-do not need to increase our price
in 1984.
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