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A surprising statistical phenomenon, a recent theorem of
great generality and application, polygon constructions, the
theory and practice of boomerang construction and throwing, a
blind man's remarkable geometrical vision, and a debate in
arithmetic. These form our offerings for this issue. Then
there are also solutions to more of our problems, more letters
to the editor and another match. trick. We mollify an outraged
typist and an -enraged editor. Mathematics wasn't meant to be
dull!
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THE FRONT COVER

M.A.B. Deakin, Monash University

Some years ago, Problem 1.2.1 (based on a 1975 H.S.C.
question) involved exploring the way in which a quartic
function altered its "shape" as the coefficients were
changed. This type of question has come very much to the
forefront of mathematics over the last ten years as a result
of the rise of a discipline known as Catastrophe Theory.
(See Function, Vol.1, Part 2.)

Our cover is one of the standard diagrams drawn .in Catas
trophe Theory; it relates to a slightly more complicated
situation. We consider the quintic equation

y = Ax5 + Bx4 + Cx 3 + Dx2 + Ex + F (1)

and the shapes it may adopt. Equation (1) involves 6 parameters
(constants whose vaiues need to be known before we can plot the
curve), but this number may be reduced by taking into account
the fact that the shape of the curve does not depend on where
the origin lies, nor on the scale we employ. This insight
allows us to reduce Equation (1) to its standard, or canonical,
form:

(2)

involving only 3 parameters.

Equation (2) can give rise to three basically different
shapes (jf quintic curve, wi th a number of 11 unbasic ll inter
mediates. The basic types are:

(1) a graph with two maxima and two minima (Figure 1),

(2) a graph with one maximum and one minimum (Figure 2),

(3) a graph with no maxima or minima (Figure 3).

Fig. 1 Fig. 2 Fig. 3
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Which of these shapes arises depends upon the values Of
a, b, c in Equation (2). It is possible to set up a three
dimensional coordinate system involving these parameters and to
demarcate the three-dimensional .space so spanned into three
regions corresponding to the basic types of quintic. The cover
diagram shows the result. The surface there drawn divides space
into three regions:

(1) the tapering underbelly to the left)

(2) the region under the surface as a whole,

(3) the region above the surface as a whole.

The coordinates are placed on the diagram as follows. The
first region comes to an end in the middle of the picture and
this end-point we take as our origin. The a-axis runs tangen
tially to the right along the surface from this point; the b
axis is also tangential at the origin and is at right angles
to the a-axis and points "inward"; the c-axis is perpendicular
to both of these and points up the page.

Values of a, b, c corresponding to points in the first
region give quintics of the first type (as in Figure 1). In
the same way, regions 2, 3 correspond respectively with types
2, 3. Values corresponding to points on the surface give the
additional types which we leave to the reader to discover.

The formula for the surface is complicated and has several
forms. Here is one:

The properties of the surface were first discovered by the
French geometer Bernard Morin, who named it the swallowtail from
the shape of the cross-section at the left. Morin is remarkable
for his ability to visualize the properties of complicated geo
metrical objects. This ability is rare in any case, but quite
unexpected in Morin's, as he has been blind since childhood.
This front cover is thus a fitting one in this, the year of the
disabled.

UPDATE No.1
A typist objected to the quote from Borel (Function, Vol.5,

Part 3) which spoke of the "miracle of the typing monkeys" and
then went on to discuss the situation in terms of an incarcera
ted French typist. Were we, she demanded, calling typists
monkeys?

Sorry about that! Some background is in order. It was
Sir Arthur Eddington in his book The Nature of the Physical
World (1932) who introduced the typing monkeys. "If an army
of monkeys were strumming on typewriters they might write all
the books in the British Museum."

Borel presumably introduced the typist to overcome the
obvious objection that the monkeys would probably jump up and
down allover the typewriters and wreck them!
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THE APPROXIMATE CONSTRUCTION

OF REGULAR POLYGONS

J. W. Hille, SCV Frankston

The task of constructing a regular polygon of n sides in
side a given circle using compasses and straight edge only
(the "Euclidean" tools of classical geometry) has received con
siderable attention over a long period. For certain values of
n (e.g. 3, 4, 5 and 6) the required solutions have been known
since ancient times. At the age of seventeen, Gauss discovered
that a regular polygon of p sides (p prime) is constructible
using such tools if and only if p is of the form

2
n

p = 2 + 1 (Fermat numbers), i.e. p = 3, 5, 17, 257, Con-
versely, the result indicated that for p 7, 11, 13, 19, 23, ...
the construction was not possible.

In view of such a result it is not surprlslng that
"approximate" methods of constructing the regular polygons
were sought and this article concerns an analysis of a
commonly employed procedure for obtaining approximately
correct n-gons using Euclidean tools.

:~

l.,

Figure 1
D
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In this method (see Figure 1), the diameter AB is divided
into n equal parts using parallels through corresponding equal
intercepts on an arbitrary line Be drawn through one end of
the diameter (a standard construction with Euclidean tools).
Using AB as radius, circular arcs are described using A and B
as centres respectively, the arcs intersecting at D. From D,
line DE passing through the second intercept (Q) on the
diameter meets the circle at E. EB is claimed to be the re
quired side (approximately) of the polygon of n sides.

The accuracy of the method was put into question by an
artist friend who "found that "stepping-off" distance EB around

the circle n times often led to rather large errors by the nth
side, no matter how carefully t.he ~onstruction steps were
followed. He wondered if a theoretical analysis of the con
struction procedure would indicate the accuracy to be expected
assuming perfect precision was possible. This led to an
exercise in problem-so~ving which was of some interest to me
since I had known of the method previously but had no direct
knowledge of why or how well the construction worked.

Initial attempts using simple geometrical properties
yielded little information so a trigonometrical approach was
tried. The rather large algebraic expressions obtained were
a bit "off-putting" so a third approach using the methods of
coordinate geometry was tried. The approach centred on a, the
angle subtended by side EB at the centre of the circle and I
hoped to derive a formula of the form a = 2n/n ± B where the
"error" S could be stated (probably as some function of n).
Surprisingly, the result eventually found was somewhat more com
plex and several computations were required to just check that
a ~ 2n/n in each case. In what follows, d is the diameter, AB.

Figure 2 shows how the diagram of Figure 1 was l~cated on

the Cartesian plane. With the centre 0 at (O,d~), the in

tersection of the arcs drawn from A and B becomes the origin,
EB subtends ang~e a at 0 and the second of the equal inter-

cepts on the diameter, Q, has coordinates (~_ ~d, d~).
y

A I------oofi'--~,.......-+---I B

x.

Figure 2
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(i) Slope(DE)= dIS
/ de! - ~) I3n so the equation of

~ 2 n n-4

DE is y = I3n ~ n-4 (1)n-4 x or
y I3n

(ii) The circle has equation:

x 2 + (y _ d;S)2

and using (1) this gives

y2 en - 24 )2 + y2 _ dl3y + 3~2
3n

for the y-coordinate of E,

i.e. (4n 2 - 8n + 16)y2 - 3dl1n2 y + 3n 2d 2 /2 = O.

This quadratic in y has, ,in general, two solutions given
by

y =
2(4n 2 - 8n + 16)

8n + 16)

(2)

tan a

313n 2d + I3nd ~2 + 16n - 32

2(4n
2 - 8n + 16)

(y ~d)/x

M. _ I3d
x 2x·

y =

Now(iii)

but, for the point E, the diagram indicates that the larger
solution involving the + sign is required and this value is
given by

7J I3n
From (1), ~ = n-4 and, substituting (2) in (1) to

evaluate x, we obtain

tan a = I3n _ 13(4n
2

- 8n + 16)
n-4 I

(n-4) (3n + vn
2

+16n-32)

or a = tan-1 {~ [n- 4n
2

- an + 16 ]}

3n + In
2

+ 16n - 32

(3)

At first glance any resemblance to a = 2n/n . seems
remote but Table 1 indicates the results ~btained

using (3) for n = 3 to 30 together with the
accumulated "error" for n sides.
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It appears that the construction is theoretically quite
accurate for small values of n with the cases n = 3, 4, and 6
precisely so. This is not obvious (except for n = 4 where
tan a = 00) from an inspection of (3). The rather small
errors involved up to about n = 10 probably justify the
practical use of the method since few would use the method
for larger n. It would, for example, appear more useful to
bisect the side for a regular n-gon to obtain the 2n-gon side
where this was possible. The steadily increasing accumulated
error reaches an interesting point at about n = 24 where both
aO and (360 - na)O are some 15° in magnitude - using the
construction would lead to a situation where only 23 sides
could be stepped off! The form of (3) sensibly indicates that,

13 4n 2
for large n, tan a is approximately equal to rz(n - 3n+n)'
which equals 0 as required.

TABLE 1
n aO naO (360 - na) °

3 120 360 0
4 90 360 0
5 71.9535 359.7673 0.2327
6 60 360 0
7 51.5182 360.6276 -0.6276
8 45.1874 361.4990 -1.4990
9 40.2778 362.5003 -2.5003

10 36.3558 363.5581 -3.5581
11 33.1479 364.6273 -4.6273
12 30.4734 365.6811 -5.6811
13 28.2080 366.7041 -6.7041
14 26.2634 367.6879 -7.6879
15 24.5752 368.6283 -8.6283
16 23.0953 369.5241 -9.5241
17 21.7868 370.3754 -10.3754
18 20.6213 371.1835 . -11.1835
19 19.5763 371.9501 -11.9501
20 1.8.6339 372.6773 -12.6773
21 17.7794 373.3673 -13.3673
22 17.0010 374.0222 -14.0222
23 16.2889 374.6443 -14.6443
24 15.6348 375.2355 -15.2355
25 15.0319 375.7979 -15.7979
26 14.4744 376.3333 -16.3333
27 13.9572 376.8434 -16.8434
28 ·13.4761 377.3299 -17.3299
29 13.0274 377.7942 -17.7942
30 12.6079 378.2377 -18.2377

In conclusion, it would be interesting to hear from any
readers who may have found a purely geometrical (or any other)
interpretation of the construction procedure or who have some
knowledge of the origins of the method.

Further reading:

Int~resting discussions concerning the mathematical in
terpretation of constructions possible with "Euclidean" tools
are contained in:
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1. Eves, H. An introduotion to the history of ~athematics

(3rd edition), Holt, Rinehart and Winston, New York,
1969.

2. Courant, R. and Robbins, H. What is Mathematics, Oxford
University Press, London, 1969.

A useful summary of general geometrical construction
techniques is contained in:

3. Morris, I.H. Geometrical Drawing for Art Students,
Longmans, London, 1958.

[In the case of large values of n the relative error re
mains quite large. The relative error may be measured as

tan(a _2'IT)
n

'2 'IT
tan n

It may be proved~ using the author's Equation {3}~ that this
tends to the limit

2/3 _ 1 0,,1
'IT

as n -+ 00. J.M. ]

00 00 00 00 00 00 00 00 00 00 00 00 00 00

UPDATE No.2
Our last issue twice criticised the mathematics writer,

E.T. Bell. One editor (G.B.P.) wrote that "[he] has written
attractively and at a level that can arouse interest and en
thusiasm for sixth formers. We should direct readers to him 
make him attractive .... He has been one of the greatest
stimulators of the study of the history of mathematics."

Here to redress the balance is Bell at his be£t. The
source is Mathematios - Queen and Servant of Soience (1951).

"[A] certain statistical investigation, full of high
powered mathematics, yielded the unexpected conclusion that
vaccination against smallpox is a waste of time and money.
This, of course, is the sort of applied mathematics that always
delights one large section of the community, no matter how much
it may annoy the medical profession. For my own part I have
swallowed mathematics enough in my life to be immune to just one
dose, and I shall continue to get smallpox vaccinations when
ever I contemplate a vacation in any of the filthier parts of
the North American continent.

It may be a prejudice on my part, but I believe that many
of the more loudmouthed leaders in education and a majority'of
stupidly led teachers should take out similar insurance against
the less desirable consequences of indiscriminate intelligence
testing. They might be less enthusiastic were they to swallow

cont. p.14
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WINNING STRATEGIES

John Stillwell, Monash University

Rod Topor's article on Gomputer chess (Function·Vol.5,
Part 2) touched implicitly on a surprising result which is worth
stating explicitly:

Theorem. In any finite two-person game with perfect in
formation, one of the players has a winning strategy. (The
theorem is a recent one, having been first stated explicitly
in 1943 by von Neumann and Morgenster~ in their book The Theory
of Games and Economic Behaviour.)

To cover games such as chess, draughts, and noughts and
crosses, where draws are possible, we define a winning strategy
to be one which protects a player from being beaten 9 (In this
sense, both players in noughts and crosses have a winning
strategy.) A two person game is one in which players I and II
move alternately, and "perfect information" means that I and
II both know the complete state of play at any stage.

I shall give two proofs of the theorem. The first is more
concise but only gives existence of a winning strategy; the
second describes how to find it.

Proof by induction. Any finite game has a ·Zength, which
is the maximum number of moves which can occur before play
ends. (To get a finite length for chess or draughts one has to
agree to stop when any position has been repeated a certain
fixed number of times.) We now show by induction on n that, in
any game of length n, dne of the players has a winning strategy.

This is certainly true when n = 1, because then only
player I has a move. If any move leads to a win for I or a
draw, Its winning strategy is to play it. Otherwise, any move
leads to a win for II, so II has a winning strategy (namely,
sit and watch I lose!).

To complete the induction we have to show that if all
games of length at most k have winning strategies, then so
have all games of length k + 1. Let G be any game of length
k + 1, and let P1 ,P2 , ... be the positions possible after Irs

first move. The continuations of G from these positions can be
thought of as new games G1 ,G2 , ... of length at most k. Thus

we can assume by induction that, in each of G1 ,G2 , ... , either
I or II has a winning strategy.

But now a winning strategy for G follows in much the same
way as for n = 1. If I has a winning strategy for any Gi , then
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he also has one for G - namely, make his first move into Gi ,

then play his .strategy for Gi . Otherwise, II has a winning

strategy for each Gi , and hence for G, since he can play his

strategy for whichever G. is entered by Its first move. The
proof is now complete. ~

If you think the induction proof is a bit sneaky, since
it doesn't actually reveal the strategy, the following proof
will show what is really going on.

Proof by construction of the game tree. Let P be the
initial position of G, let P1 ,P2 , ... be the positions

possible immediately after P, let Pi1 ,Pi2' ... the positions

possible immediately after Pi' ·and so on. These positions are

displayed in the game tree:

whose branches represent possible sequences of moves ("playstl).
The endpoints of the branches are terminal positions, which
can be inspected to find the winner of each play.

Put a label I on each endpoint which is a win for I, and
II on each endpoint which is a win for II (so draws are
labelled with both I and II). Now continue labelling upward
by the following rules, which ensure that label I on position
Q means that I has a winning strategy from Q, and label II on
Q means that II has a winning strategy from Q. Q gets a
label as soon as all the positions below it have been labelled,
and the label is: .

I if (i) it is I's move at Q and some position immediately
after Q has label I

or (ii) it is II's move at Q and a'll positions immediate-
ly after Q have label I;

II if (iii) it is II's move at Q and some position immediately
after Q has label II

or (iv) it is I's move at Q and all positions immediately
after Q have label I I.

Again, it is possible for Q to be labelled with both I and II.
The important point is that at least one of the conditions (i) 
(iv) must hold, so every position eventually gets a label.
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It is also clear that whichever player has his label on Q
has a winning strategy from Q by following his labels down
the tree, i.e. moving to a position with his own laber each
time it is his turn. He cannot be "derailed" from a winning
path, since his labels are on every available position when
ever it is his opponent's turn. In particular, the player
whose label is on the top position P has a winning strategy
for the whole game. This completes the proof.

The strategy described in this proof is simple enough in
concept, but completely out of computational reach for any in
teresting game. Games share this feature of computational
difficulty with other natural problems discussed in my previous
Funotion articles "Why mathematics is difficult" and "The two
faces of coding theory". This is one of the reasons mathe
maticians and computer scientists are interested in them. In
particular, it has been shown that computing ~ winning strategy
for the Japanese game of Go (generalized to an n x n board)
is at least as hard as solving any NP-compJ.ete problem. t

As mentioned in the above articles it is not yet proved
that any o~ these problems is computationally infeasible, but
if any proof is forthcoming, it will probably vindicate our
feeling that games require insight more than computational
power.

MATCH TRICK No.IS .

MATCH TRICK No. 15
To the right is one of th~

more difficult of the Match Tricks
from the backs of the Bryant and May
redhead series (supplied to us
through the courtesy of the Wilkin
son Match Company). Note that each
of the six matches is to touch every
one of the other five. Have a go at
solving it - a thorough go - before
looking up the solution, which is on
p.32.

Arrange 6 matches
so that each match
touches all the others.

tThese remarks should he read in conjunction with the author's
articles in Funotion, Vol.4, Parts 3, 5. See also the article
by Hellman in Soientific American, August 1979.
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WHICH SCHOOL?

G. A. Watterson, Monash University

WARNING: The data in this article are entirely fictitious
and any similarity to persons 3 living or dead 3 is purely
eoincidental.

During my schooldays, I attended both State and Indepen
dent schools. Which type of school is better? The answer to
such a question depends on what you expect a school to offer
you. Would you emphasize academic instruction, or personal
development, or sport, or social contacts, or ... ? Even if
you have a clear idea as to what a school should offer, it may
not be easy to collect data which are rel~vant to the question,
and even if you can, it may not be easy to interpret those
data .. This article is meant to point out one of the possible
pitfalls in interpreting statistical data, not just in this
educational context but more generally.

Suppose we decide to' judge the performances of schools on
the pass rates of their candidates in H.S.C. English; the
higher the pass rate, the better. (Here, "pass" will be deno
ted by "P", and will mean a mark of 50% or more; a "fail"
will be denoted by "F".) An English candidate will be denoted
by "Sit if he/she attended a State High School, and by "ItT if
he/she attended an Independent School. Suppose 80 candidates
were studied, 40 from Sand 40 from I, and their results were
as given in Table i.

Table 1

Pass rate depending on school type

P F Total Pass rate

S 24 16 40 60%

I 20 20 40 50%

44 36 80

On the basis of Table 1, you would conclude that it is
better to go to S than to I, because the former" has the higher
pass rate.

But now suppose someone says that they think girls have a
higher pass rate than boys, and maybe the sexes of the 80
candidates might be relevant. It turns out that exactly half
were boys and half girls, and their results are as in Table 2.
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Table 2

Pass rate depending on school
type and sex

P F Total Pass rate

S 3 7 10 30%

I 12 18 30 40%

15 25 40

S 21 9 30 70%

I 8 2 10 80%

29 11 40

We see from Table 2 that indeed, girls do have the higher
pass rate. But wait! What about the original question as to
which type of school "is better? Table 2 shows that, for both
boys and girls, the pass rates at I schools .are better than
those at S schools. This is exactly the opposite conclusion to
the one we drew from Table 1, in spite of the fact that we are
basing our judgements on the results of the very same candi-
dates! .

What has happened here, .of course, is that the inherently
good English students (the girls) mostly went to State schools
while the bad students (the boys) mostly went to Independent
schools. One can't judge the performances of the schools
fairly on the basis of Table 1, because they had, in consider
able measure, different. types of students to deal with.

On the basis of these (fictitious!) data, one might con
clude that I schools were better than S schools for English.
But wait again! Might there not be some other relevant factor,
e.g. whether the schools were city or country schools? That
could change our opinion again! For ins~ance, Table 3 is quite
consistent with Tables 1 and 2, and yet now, for each of the
four categories of students, S results are better than I results,
the opposite conclusion to Table 2, but back to the same con
clusion as in Table 1!

Table 3

p F Total Pass rate

S 2 2 4 50%
Country males

I '11 12 23 48%

13 14 27
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Table 3

p F Total Pass rate

S 1 5 6 17%
City males

I 1 6 7 14%

2 11· 13

S 18 2 20 90%
Country females

I 8 1 9 89%

26 3 29

S 3 7 10 30%
City females

I 0 1 1 0%

3 8 11

What is the message of this article? It really has
nothing to do with its title, but rather, to point out that if
data are collected in an uncontrolled way, their interpretation
may not be easy. The problem arises in·many contexts, e.g. does
smoking tend to cause lung-cancer, does drinking tend to cause
road fatalities, do high wages tend to cause unemployment, etc.
Without being able to do properly controlled· experiments (as
a scientist with good statistical training should do), a re
searcher can easily be misled as to what is important, and what
is not, as a cause of some effect. The changing (indeed rever
sing) of percentages due to classifying data into more and more
classes is known as "Simpson's paradox".

E.H. Simpson warned statisticians of this possibility in
1951 in an article he wrote in the Journal of the Royal Statis
ticaZ Society. - Of course in practice it would be more usual
for data, such as in our Tables 1, 2 and 3, to lead to the same
conclusion whichever table was studied, rather than to the
apparently contradicto.ry conclusions we have reached here.

UPDATE No.2 (CONT. FROM P18)

a liberal dose of the higher mathematics, including the theory
of probability, on which the useful art of intelligence testing
is based. The same holds for most applications of mathematics
to the actual world. Only a decently critical familiarity with
aZZ the assumptions underlying a particular mathematical formu
la can teach us what not to take too s8riously when the formula
presents us with an impressive-looking number. Mathematicians
are not, as a rule, credulous; their clients almost invariably
are."
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MANY HAPPY RETURNS
t

The boomerang is thought by most people to be an exclusive
ly Australian artefact, as unique to the Antipodes as the kanga
roo, the wombat and the duck-billed platypus.

However, this is not quite true. Although the Australian
Aborigines have been throwing boomerangs for probably tens of
thousands of years, they have been used in north-central Europe,
India, Ancient Egypt and Central America. It was, however, in
Australia that the boomerang reached the highest stage of. deve
lopment and provides the oldest example of applied aerodynamics
in the hands of man. Today the boomerang has been defined as a
curved, two-bladed throwing stick which when thrown returns to
the thrower. In fact this type of boomerang, popularly regarded
as a hunting weapon, has never been a killer. It was its close
relative, the kyZie or curved throwing stick that was used by
the Aboriginal hunters. Thi~ longer, heavier example of the
curved aerofoil was the real hunting weapon. It was not meant
to come back in flight but to fly along close to the ground,
spinning on an unerring course for up to 200 metres and cutting
a swath a metre across. The boomerang per se was a sporting im
plement, a trainer of skills by means of which young men could
practise their hunting weapon throwing technique.

Boomerangs come in a variety of sizes, ranging in wingspan
from about 10cm to 1m, although these extremes can be consider
ed more as curiosities than practical boomerangs. A 30 to 6Dem
wingspan is more usual. The materials from which they are manu
factured are equally diverse, wood being the more common material
for the traditional Australian weapons, although one example in
the collection of the Museum of Western Australia in ·Perth is
made of iron! (Well, steel ships float!). Modern· sporting
boomerangs are made from just about anything available including
plywood, duralumin and acrylics: fibreglass laminates are be
coming popular.

But why does a boomerang fly, and why does it perform in
the way it does? The explanation lies in the cross-sectional
shape of the arms and in the fact that the boomerang spins. On
close examination a boomerang is seen to,be something other
than a bent stick of flat section: the arms are flat only on
their lower surfaces. The upper surfaces are curved, forming a
blunt leading edge tapering to a thin, sharp trailing edge.

J..

I This article is repri~ted, with permission, from TAAgs in-
flight magazine Transair (March 1981). For more on boomera~gs,

see the book All about Boomerangs by Lorin and Mary Haws
(publ. Hamlyn~ 1975), and Felix Hess i article in Scientific
American November, 1968.
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This shape is that of a classical aerofoil, although the curved
contours are'not symmetrical as in a pair of aeroplane wings.
Rather it resembles a three-bladed propeller. Lift is thus
generated by this asymmetric wing section in a similar way to
that in which lift is produced by an aeroplane wing. The same
laws of'aerodynamics apply as far as lift is concerned. The
fact that the boomerang is launched on a spinning flight gives
it stability but it is also due to the rotational mechanics of
the spinning that the boomerang returns to the thrower.

The boomerang' is thrown by gripping the end of one of the
arms and flicking it forward in an almost vertical position.
Its initial flight is therefore straight out in front of the
thrower and in an upright position. When thrown by a right
handed thrower it leaves the hand spinning very fast in a
counter-clockwise (seen from the curved side) direction, the flat
side of the boomerang should be to the thrower ',s right, the
plane of the boomerang is almost vertical, being inclined at an
angle of almost 60 degrees from the horizontal. The direction
of throw is straight ahead, and is neither upward nor downward.

When a wing is at the top of a rotational cycle its speed
through the air equals the speed imparted by the spinning
added to the forward speed of the boomerang as a whole; converse
ly, when the same wing is at the bottom of a rotational cycle
its speed through the air'is less because the speed of rotation
now opposes the forward speed of the boomerang as a whole.

Thus, although both wings of a boomerang are contoured to
obtain lift from moving air, a wing at the top of its rotation
al cycle generates more aerodynamic lift (because of its greater
speed through the air) than it does at the bottom of the cycle.

Because the boomerang begins its flight in an almost verti
cal plane, the stronger aerodynamic force at the top of the ro
tational cycle tries to lift the top of the boomerang into a
position even closer to the vertical, thrusting anti-clockwise
against the flat under-surface. How~ver, this does not happen,
or even begin to happen, because of a characteristic of spinning
bodies known as gyroscopic precession. This counteracts the
tendency to push the boomerang into a vertical plane by twisting
the axis of rotation instead, and the boomerang veers off to the
left rather than going straight aheadu (This is the same effect
which causes a child's spinning top to wobble as the pull of
gravity tries to overcome the gyroscopic effect of the spinning.)

As the boomerang turns to the left it begins to experience
another force, an upthrust on its under-surface, because it is
inclined at an angle ~o the direction of the airstream. The
effect of this is fairly direct: the boomerang begin to rise.
As it does so, its forward speed decreases slightly, as does
the speed of rotation of the wings, for the energy to raise the
boomerang has to come from somewhere. While all this is going
on the original forces which caused the boomerang to veer to the
left are still acting, so that the boomerang arcs its way to the
left in a sweeping and slightly rising curve. At the top of
this curve the blades are spinning noticeably more slowly and
the direction of travel has changed remarkably from what it was
originally, being about at right angles to the original
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directio~. In effect, the boomerang is now 'on its way back to
the thrower. The boomerang, having lost forward air-speed in
climbing, no longer experiences up-thrust from the air pushing
against its under-surface; so begins to lose altitude. This
in turn makes the rotation speed increase, though not sufficient
ly to create a thrust towards the vertical as was the case when
the flight began. Instead, the aerodynamic force generated ·by
the rotation is expressed in an extra lift to the wings, so that
near the end of the flight the boomerang is rotating in a nearly
horizontal plane - floating at a fairly constant height until
its forward speed has diminished to zero and its plane of ro
tation is indeed horizontal. At this point the boomerang
hovers down slowly into the waiting hands of the thrower. To
sum up, therefore, a good boomerang travels horizontally (for
most of the time) in a circle and, on returning will hover be
fore dropping to the ground at the end of its flight.

Now that it has been explained that the boomerang is
launched in spinning flight,why should it be bent as it is?
The elbow angle of most boomerangs is within 20° of the appa
rently theoretically ideal of 109°. It doesn't fly or glide
like an aeroplane, so the swept wing effect is not due to the
same considerations involved in aircraft wing design. The
answer lies in a phenomenon known as the rotational inertia
which is the inherent ability of an object ·to keep spinning
for a long time. Rotational inertia is measured by a quantity
known as the "moment of inertia". Different geometric shapes
have different moments of inertia. The best shape is a thin
circular rim, like a bicycle tyre; one of the worst is a
straight configuration like a wing spinning about its midpoint.
Thus the shape of a boomerang is a compromise between these two
forms, one with a high moment of inertia but no aerodynamic
lift, and the other with good aerodynamic lift but poor
spinning ability.

The lengths of the arms, their thickness, and the wing n

contours can all be varied so as to produce the sort of flight
desired. Long wings rotate relatively slowly and short ones
spin fast. Thick wings can produce more aerodynamic lift, but
they also generate more drag in the air and may slow down the
spin disastrously (the result is a boomerang which is very
lively at first but which runs out of steam after a few seconds).
Conversely, thin wings do not lend themselves to fast turnabouts
but retain their spin more efficiently. Thus, performance de
pends upon arm design.

The elbow angle of the boomerang also has an important
bearing upon the moment of inertia. Within reasonable limits,
the more acute the elbow angle the higher will be the moment
of inertia; conversely, the more obtuse the angle the lower
the moment of inertia for wings that are otherwise the same.

An interesting feature of boomerangs is that they can be
either left or right-handed depending upon whether the thrower
is a left-handed or right-handed person. Structurally, left
handed boomerangs are mirror images of right-handed ones and,
as is to be expected, they fly in almost exactly opposite di
rections to their right-handed counterparts. They ·spin in a
clockwise direction leaning 30° to the left of vertical and
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land on the thrower's right. Throwing a left-handed boomerang
in the normal right-handed way gives spectacular although
short-lived results. Since the aerofoil surfaces of a boomerang
operate effectively only when the boomerang is spinning ~n the
correct direction, and since this sort of throw makes them spin
in the opposite direction, the boomerang goes out straight, then
apparently goes haywire, fluttering wildly to the ground like a
one-winged bird.

Like frisbee, kite-flying and si~ilar activities, ~oom

erang construction and throwing has become a popular sport.
Competitions and record attempts are organized on a world-wide
basis, although the epicentre of such activity tends to be here
in Australia. Boomerang throwing competitions can be quite ex
citing events and the possibilities for a unique throw to be
recorded for posterity are very real. The following World Re
cords give some idea of the honours to be won:

Greatest distance thrown: 146.3 metres (Frank Donnellan,
Centennial Park, Sydney).

Most/consecutive single-handed catches: 36 (Denis Maxwell,
Dinley, Australia).

Accuracy: 11 straight catches without moving either foot
(Robert Boys, Merrian, Kansas, U.S.A.).

shortest range: 1.85 metres (Bevan Rayner, Sydney, using
a 40 centimetre boomerang).

Most consecutive catches-: 129 (John McMa:hon, South Padre
Island, Texas, U.S:A.).

Best feat with feet: Joe Timbrey of La Perouse, Australia,
has on many occasions, one of which was in the presence of
Queen Elizabeth II, thrown a boomerang and caught it with his
bare feet on the return.

To get fun from boomerangs one can simply buy one and
gain expertise in throwing it, but much more satisfaction can
be gained by making one's own boomerang. Tuning and trimming
its flight also leads to a much fuller understanding of its
aerodynamic properties.

As previously state~ a variety of materials can be used to
make boomerangs; however to begin with a relatively simple one
can be made by using marine grade plywoodo Marine grade ply is
preferable as it is resistant to damp an4 therefore less suscep
tible to warping, for warping will alter the shape of the aera
foil and thereby the flight characteristics of the finished
article. Marine grade plywood is also dense which means a
relatively heavy boomerang. Draw the outline of a boomerang on
to a sheet of ply having at least 5 laminations and about 8mm
thickness.

The angle of the arms should be as near as possible to the
theoretically ideal angle of 109°. First cut out the boomerang
blank; the ,arms should then be shaped to their aerofoil section
with a rasp or coarse sand-paper; that is, rounded on the top
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surface and flat on the bottom surface, with a blunt leading
edge and a sharp trailing edge. The arms must have the
cross-sectional shape of a classic aerofoil providing lift
much as the classic aerofoil does.

Remember that, since the boome
rang is launched on a spinning
flight, the outside vee formed by
the arms will consist of one lead-
ing edge and one trailing edge.
Similarly, the inside vee has the
same characteristics but on opposite
arms. Some dimensions are given on
the illustration, but are probably
not critical as long as the general
proportions are respected. Final fini
shing is achieved with fine sandpaper,
but before doing so a test flight can
be made to see how the basic shape
flies. If its performance does not
come up to expectations, continue
shaping the arms in order to modify the aerofoil sections.

Remember that no two boomerangs have exactly the same
flight characteristics: it may be necessary to adjust one's
throwing technique slightly to adapt to a particular boomerang.
If the boomerang is capable of an exact return without wind
assistance it is by definition a success. Donrt forget 'that /
these instructions concern basic methods of making a rig~t

handed boomerang. A left-hander can be made if required by
shaping the arms to a mirror image of that illustrated. Con
trary to popular belief, the boomerang is usually thrown from
a verticaZ position with the concave vee section formed by the
arms facing in the direction of flight, that is away from the
thrower, if the shaping was done properly! This is not the
only way to throw, but no doubt anyone who gets into boomerangs
will find the other methods by trial and error.

It may be seen that boomerangs are by no means hit and miss
affairs. They fly according to strict rules of physics and aero
dynamics and their flight path can be predicted and/or modified
at the construction stage. To prove the point here are two ex
amples of extraordinary boomerang throwing. Felix Hess, a
Dutch mathematician, once worked out the theoretical trajectory
of a particular boomerang by pure mathematics and concluded that
he should be able to throw it around the Washington Monument, a
building which has a base of 16.9 metres square. Hess construc
ted his boomerang and threw it successfully to circumnavigate
the said Monument.

The late Frank Donnellan of Parramatta had such confidence
in the performance of his boomerangs that he used to throw a
boomerang whilst standing blindfolded and would allow the
boomerang to hit an apple balanced on top of his head. Even
William Tell would have raised his hat!

So, if you have become bored with frisbees, kites or other
flying objects, try a boomerang. And if you get fed up with it
too you can always throw it away - I suppose!
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M. A.B. Deakin, Monash University

In my final year at high school, I had an argument with my
maths teacher over the value of 00 • He said that it was equal

to 1, whereas I held it to be meaningless just as gis - that is

to say that we may assign to it any value we "please. It perhaps
says something for my mathematical ability that I was, by ~nd

large, right. But it also speaks for my arrogance at the time
that I now do not remember the grounds on which he argued his
side of the case - or even, for that matter, if he' had any.

He was, however, in good company~ I read recently that
Euler, one of the greatest mathematicians of all time, held
the same view. At first I was suspicious of this claim and so
I looked it up - it is correct. If you have access to Euler's
collected works, you may check it also - the very first volume,
page 65, with a footnoted disclaimer by the 20ih century editor.

This seems to have been the first attempt to discuss the
matter and the discussion is brief but enlightening - for Euler
did give a reason for holding the view that he did. He argued
as follows:

For every non-zero a~ a O = 1~ It is therefore
reasonable to define 0° to be 1 also.

In so arguing, Euler employed a form of discussion still
used today. For example we know that, when m, n are positive

and m > n,' am- n = am/an. We thus define this relation to hold
also when m = n and so reach a O = 1, the relation Euler 'used~

Euler's view was unchallenged until the 1820's, when
another mathematical great, Cauchy, stated (in a text-book on
calculus) the modern view that 0° may take any value at all.
There he gives no reas6n for this opinion, but in a slightly
later set of lecture notes, he states that 0 0 has the value

g- that is to say we do not assign lt a definite value.

There the matter rested until, in 1830, a mathematician
called Libri reiterated Euler's argument, and apparently he
was expressing the popular view. For Cauchy's opinion had no
support at all until 1834, when an anonymous author (he called
himself S., and I have no idea who he was) wrote a brief
article on the other side of the debate. Here S. queries the
"almost unanimous opinion of all geometers, in the works that
have come to my notice". Elsewhere he notes that "Cauchy is
the only author in whose work I have found [my] opinion".
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And S. argues his case. He proceeds as follows:

m-na

and 80~ when a F O~ a O = 1~ but if~ in
Equation (1)~ we put a = O~ and m = n~

we get 0° = %~ which is undefined.

However, S. was immediately challenged by Mobius (of
Mobius strip fame) who published a proof of the eql~tion

0° = 1.

(1)

The proof he attributed to an earlier C1814) unpublishea .;,';~j".

by the geometer and analyst Pfaff (still remembered' for wOlk ~~

partial differential equations). Mobius had been one of Pfaffts
students. Pfaff's proof, as revised by Mobius, essentially
gives the result

1, (2)

which is true, although I will not give either their or any
other proof in the course of this article. (You may care to

explore the behaviour of xX with a calculator.)

However, S. was not to take this lying down. He replied 
as did another author,who remained completely anonymous, that
Equation (2) did not settle the problem. Suppose we choose

where Lim fCx) = 0,
x+O

Lim xf(x) ,
x+O

or, for that matter,

Lim [F(x)] fCx) ,
x+O

where Lim F(x)
x+O

Lim f(x) = O.
x+O

(3)

(4)

For example, taking logarithms to base e and remembering that
Lim log x = _00 r we have
x+O

but, as x
log x

e ,

a + x
Lim log x
x+O

0,

a + x

Lim x log x
x+O

(logx)(~ + x)
Lim e og x
x-+O

Lim e a+x

x+O

ae

which may take any positive value at all (depending on the
value of a). This example came from Anon., who used the form
(3). S. gave, using the form (4), the example
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and

_1:. 2x

~ X) -2Lim e = e f 1,
x+O

etc. (Actually, in this last example, S. got
hope this was a misprint. )

1
~.
e

I sincerely

The argument continued, but Cauchy's view gained ground,
largely due to arguments such as these. Oddly enough, when I
had my debate with my teacher, I used much more·elementary
considerations. One could, it seemed to me, argue (as I now
know Euler did) that a O = 1 for all non-zero a, and hence put

00 = 1; on the other hand, one could say Oa = 0 for all

'positive a and Oa = 00 (or, if you prefer, does not exist)
for all negative a. So it seemed to me that the safest thing
to do was to leave it undefined.

A related point is made by the graphs of Figure 1. aX + 1
for a > 0 but if a = 0, the limit is zero, if approached via
positive x.

y
aX (a > 1)

bXCO < b < 1)
-~"""-b""'--"'l-""""a--"'y"""=-o""x-.---.- x

x > 0

The matter still generates discussion today. In 1970, a
mathematician called Vaughan argued for the equation 0° = 1.
His main ground was this:

1 1 + 2 + x 3
r::-x x + x +

0 + 1 +x2 + x 3 +x x ... ,

a form which is valid if -1 < x < 1. So, put· x = 0 and get

1
= 00 + 0,I
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giving 00 = i. Actually, Libri had used a similar argument
140 years earlier.

The value we assign to 0 0 depends upon the assumptions
we make in setting up the definition; these in turn depend upon
the purpose we have in mind.

g may be assigned values (by means of calculus) in speci

fic contexts as the result of specific limit operations. Much

the same is true of 0 0
, but there is, if you 1 ike, "a "more

preferred" value in this inst"ance.

Numerous commentators have remarked that although (as we
have seen) there are cases where the limits involved in Forms
(3) and (4) are not equal to 1, these are- rather difficult to
find. Usually, the limit works out to be i. This observation
was explained in 1954 by the U.S. mathematician L.J. Paige,
whose result may be given fairly simply.

THEOREM. If, in Expression (3)3 f(x) possesses a derivative
at x = 03 the Zimit is one.

A relatively simple proof (not that used by Paige) may be
constructed using the Pfaff-M6bius Theorem (Equation (2». It
runs as follows.

PROOF. Let the value of the derivative f'(O) be a. Then,
by definition of the derivative,

Lim~ = a.
x-+O x

So, for sufficiently small x~ f(x) may be approximated
to arbitrary accuracy by ax. Hence

Lim xf(x) = Lim xax

x-+O x-+O
Lim(xx)a = l a

x-+O
1.

a + x
Notige that Anon. 's counterexample, with f(x) = log x '

does not fall within the purview of the theorem, as log x has
no derivative at x = o. S's counterexample is a little more
complicated, as we need to put it into the form (3) before we
can analyse it. When this is done, we see that it becomes
equivalent to

1

[
__ (log ~(-log x~

Lim e
x-+O

-1 ]e ,

and once again log x has no derivative at the origin.

In 1978, two other math~maticians, Baxley and Hayashi,
looked at Form (4) and generalised Paige's result. The details
are, however, technical and I will omit them. This is where
the matter currently rests.
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LETTERS TO THE EDITOR

GREENBURY'S THEOREM

Greenbury's Theorem is a generalised extension of Cohen's
First Theorem (Function Vol.5, Part 2, April 1981).

Form a sequence by the rule:

T 2n Tm_
1

+ Tm_
2 , TO 0m

T
l 1

T2 2n(1) + 0 = 2n

T3 2n(2n) + 1 = 4n2 + 1

T4 2n(4n2 + 1) + 2n 8n 3 + 4n

T5 2n(8n 3 + 4n) + 4n2 + 1 16n4 + 12n2 + 1

T
6 2n(16n4 + 12n2 + 1) + 8n 3 + 4n = etc.

Right-angled triangles are now calculated by the Pytha
gorean Triple:

2 2a x - y

b 2xy

h x 2 + 2
Y

where y and x are consecutive members of the sequence; a and b
. the sides about the right angle; h the hypotenuse.

Green~ury's Theorem states that b = n.a ± 1 where

n = 1, 1i, 2, 2i, 3, 3!, ... to infin i t Y an d n h / a '"'"' In 2 + 1,

when n is an i~teger, and nh/a ~ ;(n + !)2 - 1, when n is not
an integer.

To explain line 1 in the table opposite" let n = 1.

If n = 1, the sequence is 1, 2, 5, 12, 29, 70' .. 0 • The
sides of the right-angled triangle are:

I 2 2
2xy x 2 + y

2y x I x - y
._..-.....~_. ~.~. -- ----

1 2 3- 4 5

2 5 21 20 29

5 12 119 120 169

12 29 697 696 985

29 7Q 4059 4060 5741
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It can be seen that b = 1.a ± 1 alternately. Also

his 5/3 = 1 0 6666

his 29/20 = 1-45

his 169/119 1 0 4202

his 985/696 1 0 4152

his 5741/4059 = 1 0 4144

which is approaching ~ ..

where s min(a,b)

Lt
n Sequence Triangles his

1 1, 2, 5, 12, 29 3, 4, 5- 20, 21, 29 12,
1~ 1, 3, 10, 33, 109 6, 8, 10; 60, 91, 109 13"
2 1, 4, 17, 72, 305 8, 15, 17; 136, 273, 305 15
2i 1, 5, 26, 135, 701 11O, 24, 26; 260, 651, 701 18
3 1, 6, 37, 228, 1405 12, 35, 37; 444, 1333, 1405 lID
3~ 1, 7, 50, 357, 2549 14, 48, 50; 700, 2549, 2451 vT5
4 1, 8, 65, 528, 4289 16, 63, 65; 1040, 4161, 4289 II7
4t 1, 9, 82, 747, 6805 18, 80, 82; 1476, 6643, 6805 /24
5 1, 10, 101, 1020, 10301 20, 99, 101; 2020, 10101, 10301 126

It can easily be seen that "b n.a ± 1 in each case.

Garnet J. Greenbury,
123 Waverley Road,
Taringa, Queensland, 4068.

[As with Cohen's letter:J Mr Greenbury's has been rather heavily
cut ~n the editing process. The omitted sections were concerned
particularly with more on continued fraction? and the various
'available methpds of triad generation. Eds]

BLYTH'S PARADOX

A statistician rates three types of pie at his restaurant
as follows: (ratings of 1 to 6; 1 denoting minimal, 6 denoting
maximal satisfaction):

Apple pie always a 3 score

Blueberry - .56% of the time scores a 2
22% of the time scores a 4
22% of the time scores a 6

Cherry pie - 51% of the time scores a 1
49% of the time scores a 5.
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Every day the restaurant offers both apple and cherry, the
statistician chooses apple because 51% of the time he will gain
more satisfaction.

[Were the restaurant to offer both. blueberry and cherry,
the statistician would ch.oose blueberry, because 61-78% of the
time he will gain more satisfaction.

Were the restaurant to offer both apple and blueberry,
the statistician would choose apple, because 56% of the time
he will gain more satisfaction.] .

Occasionally the restaurant offers blueberry in addition
to apple and cherry. Yesterday was such a day. 'When the
statistician entered the waitress said: "Shall I bring your
apple pie?"

Statistician: "No. Seeing that today you also have blue
berry, I f 11 tak.e the che_rry pie."

The statistician's order is based on the reasoning that
when he has a choice of all three, the cherry will provide
more satisfaction 38-22% of the time, the blueberry 33-22% of
the time y and the apple only 28 0 56% of the time.

per Francine McNiff,
Monash University.

[We note that the statistician does not maximize the expected
value of his satisfaction, but rather his chances of eating the
best available type of pie. The paradox owes its origin to this.
See, for a related case~ Michael Morley's letter on Pattslotto
Systems in Function, Vol.S, Part 2. Ms McNiff, d sub-dean of
the Monash Law School, tells us that this paradox was once a
part of their Problems of Proof course. Neither she nor we know
who Blyth was. Eds]

GUIDANCE?

A certain careers office advises students on the basis of
their answers to a single question: "A normal elephant has
four legs. If the trunk is also counted as a leg, how many legs
does the elephant have?"

If the student answers "Under the stated hypothesis, it
has five legs" he is counselled into mathematics.

If he says "That is an exceptional situation: .on the
a.verage, an elephant has four legs" he is headed towards
statistics.

If he says "A trunk is not a leg, and merely saying it is
does not reclassify it: the elephant has four legs" he is ad
vised to become a zoologist.

If he says "If the trunk counts, so should the tail, and
it· has six legs" then he is good at juggling facts and is
aimed towards the social sciences.



27

If he answers "You said a normal elephant has four legs
but you did not state that this one was normal: I would pre
fer to withhold my opinion for lack of evidence" he is advised
to consider law.

If he says "That's a good question!" he is counselled into
teaching.

T. Gilham,
R.A.A.F. Academy

00 00 00 00 00 00 00 00 00 00 00 00

PROBLEM SECTION

SOLUTION TO PROBLEM 5.1.1
This peculiarly capitalist problem came, we are told,

from a Russian problem book.

Three poor woodcutters, stranded in th~" bitter winter, seek
shelter in an abandoned cottage. "I", said the first, "have
5 logs of wood to help keep us warm". "And I", said the
second, "have 3 1T

• "Alas", said the third, "I have no wood, but
I have 8 kopeks to repay you for allowing me to share your fire~.

How should the 8 kopeks be distributed between the first
two woodcutters?

We received two incorrect solutions but nothing else.
Here is how the Russians solve the problem, according to our
informant.

Call the woodcutters A, Band c. C pays 8 kopeks for 1/3
of the heat. The total value of the heat is thus assessed
at 24 .kopeks. Thus each log is worth 3 kopeks. Thus

A donates 15 .kopeks' worth of timber and receives
8 kopeks' worth of heat

B donates 9 kopeks' worth of timber and receives 8
kopeks' worth of heat.

A is thus 7 kopeks out of pocket and B 1 kopek, and that is
how C's 8 kopeks should be divided up. (Note that A and Bare
using CIS kopeks to even out their own contributions.)

Karl Marx, we presume, is turning in his grave.

SOLUTION TO PROBLEM 5.1~2

This problem, originally proposed by AwK. Austin of the
University of Sheffield, first appeared in the U.S. journal
Mathematics Magazine .in 1971, as "Quickie Problem" 503. It read
(in our slightly altered version):
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A boy, a girl and a dog go for a walk down the road,
setting out together. The boy walks at a-brisk 8 kro/h, while
the girl strolls at a leisurely 5 km/h. The dog frisks back
wards and forwards between them at 16 km/h. After one hour,
where is the dog, and in what direction is it facing?

Austin's solution is that the dog may be anywhere between
the two and facing in either direction. He jtistifies this
answer by letting "all three reverse their motion until they
come together at the starting point at the starting time".
This solution was accepted by Martin Gardner, the Scientific
American colurnnist,when he ran the problem in July and August
of- 1971. This, h.owever, was not the end of the matter.

Four objections were published in December 1971 by Mathe
matics Magazine. The tenor of these may be gauged from this
extract from one of them, by M.S. Klamkin of the Ford Motor
Company. "The dog ~ou:J.d have a nervous breakdowrL~empting to
carry out his program ... let the initial starting distance be
tween the boy and the girl be [not zero, but arbitrarily small]
... the number of times the dog reverses becomes arbitrarily
large in a finite time [as this distance approaches zero]."

Gardner, relying on a letter from Professor Wesley Salmon,
attempted to answer the objections, the other three of which re
mark that whereas the telescoping motion envisaged in the
solution is well-defined, the expanding motion envisaged in the
problem is not. Gardner and Salmon embark on a lengthy analysis
to meet this point. It may be boiled down to this: that there
exists an expanding motion corresponding prec~sely to every tele
scoping one and the dog need only follow anyone of these.

The following analysis seems simpler and more to the point.
Suppose the dog to dawdle at a speed v km/h (where 5 < v < 8)
for time E, and, having done so, then frisks at 16 km/h accor
ding to specifications thereafter. This the dog may do for any
positive E, no matter how small. Moreover, v is arbitrary~
within the limits specified, and the dog may "break" toward
either the boy or the girl.

Although the dog is cheating, in that it does not obey
its instructions to the ~etter, we will never catch him at it
for € may always be made small enough to evade the limit of
precision of any detecting device.

In this analysis, it is the arbitrariness of E, v and
the direction of the "break" that accounts for the -arbitrariness
in the solution.

The velocity~time graph opposite shows what we have in mind.

Note that this analysis meets Klamkin'-s objection and also
the other objection, since, for given v, €, the expanding motion
is defined, and this corresponds exactly to the well-defined
nature of the telescoping motion, once the position and
direction of travel are specified.
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Boy

From p.30:

1000
First estimate is ~ = 40 months.

Interest on $1000 for 40 mon ths = $333%.

. 1
New principal = $1333"3.

1333i
Second estimate is ~,which rounds up to 54 months.

Interest on $1000 for 54 months = $450.

New principal = $1450.

Third estimate is 1450 = 58 months.25

Interest on $1000 for ~8 months = $483~.

1New principal = $1483"3 .

1483%
Fourth estimate is ~ ,which rounds up to 60 months.

Interest on $1000 for 60 months = $500.

New principal = $1500.

Fifth estimate is 1500 = 60 months.
25

Thus the answer to the problem is 60 months.
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SOLUTION TO PROBLEM 5.1.3

This problem, which arose in practice, read as follow$.

Suppose a debt of $1000 incurs simple interest of 10% p.a.
The borrower can repay a maximum of $25 per month. How long
will it take to pay the debt off? This problem is easily re
duced to a simple equation, but here is how some accountants do
it. (See calculation on p.29.)

Does this method always work, and if S9, why?

The answer is "yes". To justify this, h9wever, we need to
consider the problem in its full generality. Suppose $P are
borrowed and repaid in monthly instalments. The simple interest
rate is R% p.a. The borrower can repay a maximum of $M per month.
Now let us attack the problem by the standard method.

Suppose the borrower repays the loan over n months. His
total payment is $nM and this must equal the total debt incurred
which is $(P + PRn/1200). Hence

nM = P + PRn/l200,

which, after manipul~tion, becomes

n = T2"OOP
1200M - PR . (1)

There is, however, a complication. Although, in the
example given, n = 60, an integer, is readily found by use of
Equation (1), this case is not typical. More usually
Equation (1) will give a fractional answer, in which case, we
round up to get the true value of n. For simplicity, write
a = PIM and b = R/1200. Also write ]x[ for lithe smallest
integer greater. than or equal to x". Then the formula for n
becomes

n = ]al(l - ab)[,

and we note that ab < 1 is the condition the debt be paid
off at all.

(2)

We now put the accountants' method into this notation.
This yields: nO = ]a[, n i +1 = ]a(1 + bn i )[. We wish to show
that n. -+- n.

1.-

To do this, note first that
three properties of the sequence

nO < n.
{n .} :

1.-

We shall now prove

(a) if n. < n, then n i +1 > n.
1.- 1.-

(b) if n. < n, then ni +1 < n + 1
1.-

(c) if n. n, then n i +1 n.
1.-

Proof of (a): If n i < n, then n i < a/(l - ab). (This follows

at once from Equation (2) for, if al(l - ab) is integral,
then it is n; if it is not integral, the next integer up
is n, and n. (which is integral) is at most n - 1). But
now, by reafrangement, n. < a + abn. < n. 1.

1.- 1.- 1.-+
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Proof of (b): n i +1 < a(l + bn i ) + 1

~ a(l + ben - 1» + 1

a (1 + bn) ab + 1

< a + abn + 1

~ n + 1, since n ~ aiel ab).

Proof'of (c): First ni +1 ~ a(l + bn) ~ a(l + able1 - ab» =
al(l - ab) > n -'1. But also we have a < n(l - ab) + 1,
which yields, by rearrangement, n

i
+

1
= a(l + bn) < n + 1.

Thus n i +1 = n.

Thus the sequence begins with nO < n, and, by (a), in

creases (unless nO = n, in which case, by (c), we are done),

until it reaches n (since, by (b), it cannot "overshoot ll
).

Then, by (c), once it reaches n, it stays at that value. This
completes the proof.

SOLUTION TO PROBLEM 5.1.4
The problem was to show that the sum of the squares of

any five consecutIve integers is always divisible by five,
Ms Wen Ai Soong of Casuarina, N.T., solved this by noting that
the integers could always be written as a - 2, a - 1, a,
a + 1, a + 2 and then the sum of their squares reduces to

5a 2 + 10, which ,is indeed divisible by five.

SOLUTION TO PROBLEM 5.2.1
Ms Well also solved this problem: to find the digits x, y

for which x028y is divisible by 23.

Writing alb for fl a divides exactly into bTl, Ms Wen first
established the result:

al(b+e), alb => ale.

She then noted that the condition stated became

231(10
4

x + 280 + y),

which, by her earlier result, reduced to

23K4 + Y - 5x).

Examining each of the digits 0 to 9 in turn as values for x
then gave her this set of solutions

(x,y) E {(1,1),(2,6),(6,3),(7,8)},

[The dinner was held on the 10/2/81 and this problem gave the
date~ as the other three solutions were all unfeasible. Ed.]
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As usual, we conclude with some more problems.

PROBLEM 5,4.1
Let p be a prime greater than 3 and consider p consecutive

integers. Square them and add them up. Prove that the result
is divisible by p. (Compare this with Problem 5.1.4; why is
the theorem not true for p = 3?)

PROBLEM 5,4.2
We have had a number of problems from Russian problem-books.

This one, we are told, is from a recent Chinese examination.

Ten women in a village go to collect water at the village
pump. Some take only a short time, others rather more and yet
o~hers even more. How should one schedule them in order to
minimize the total woman-hours spent at the pump?

Now do the same problem for the case in which two pumps
are available.

PROBLEM 584.3
The diagram shows a

billiard table with a chess
board diagram on it. A ball
is cued out at 45° from the
top left sauare and is
pocketed when it reaches a
corner. How many squares
will it visit if the table
has m x n squares in all?
Notice that if a square is
visited twice, it is counted
twice~ and also that the
bounce at the sides is perfect. In the example diagrammed,
m = 4, n = 3, and S, the total number of squares visited, is 7.

MATCH TRICK NOB15 (CONT.)

At right is the solution supplied by
the Wilkinson Match Company. A number of
variants on this basic configuration are
possible, but note that all involve two
"planes" of matches each containing
three matches forming a triangle with ex
tended sides. (In the diagram at right,
the triangle is formed by the heads of
the three matches in each plane.)

Note that if matches were perfect
rectangular cuboids (which they are not)
we could arrange 8 matches so that each
touched all the others. Form two bundles
of four (as seen, end on, at right) and
bring them into juxtaposition, so that
o and 0' (the corresponding point on the
second bundle) are in contact. All 8
cuboids then touch at this common point.

SOLUTION

o
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