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The last issue concentrated largely on a single topic:
this does the opposite. WOe have articles on a wide variety of
subjects from complex numbers to negative mass. Then too
there are the miscellanea, over 11 pages of them, from the
numbers behind the space shuttle to what we think to be an
unsolved problem. At last, too, we reveal the answer to
Problem 3.3.5, with our special thanks to Mr Colin A. Wratten
and Dr Rod Worley for their extremely thorough solutions.
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THE FRONT COVER

M.A.B. Deakin, Monash University

The cover diagram is th.e basic pattern behind a geometric
result kno~n as PtoZemy's Theorem, which states:

If a quadrilateral is inscribed in a circle, then the pro­
duct of its diagonals equaZs the sum of the products of its
opposi te sides·.

The theorem first appears in the Almagest, the main work
of Claudius Ptolemy (100 A.D. - 178A.D.). This is the astrono­
mer after whom the Ptolemaic System (according to which the
planets circled the earth) is named. ·AI though this was later
superseded by the Copernican, it was a great advance for its
time.

A
In the notation of the

diagram to the right, the
theorem states:

AC~BD = AB.CD + BC.DA.

To prove it, we take
the point Eta be such. th.at
LDAE = LBAC. It follows
that LDAC = LEAB. But, by a
Euclidean theorem on angles
in the same segment of a
circle; LABE = LACD.

It follows quickly
from these observations
that the triangles EAB
and DAC are similar (i.e. scale models of one another).
Hence

BA/CA = BE/CD
or BA.CD = CA. BE.

In the same way, using the similar triangles ADE and CAB, we
have

BC.DA = AC.DE.

Adding, we find

AB.CD + BC.DA

which proves the theorem.

AC.BE + AC.DE
AC(BE + ED)
AC.BD.,
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THE INTRODUCTION OF

COMPLEX NUMBERS t

John N. Crossley, Monash University

Any keen mathematics student will tell you that complex num-
bers come in when you want to solve a quadratic equation .

ax 2 + bx + C = a when b 2 < 4ac. However, if one tries to find
out how they first came into mathematics then the surprising
answer is that they were first introduced in the process of sol­
ving not quadratic but cubic equations. When Bombelli (1526­
1572) first discovered what we call complex numbers he wrote
(in translation):

"I have found a new kind of tied cube root very different
from the others."

By a "tied cube root" he means a cube root expression like
f(2 - 1=f2I) where there is a square root under a cube root.

How did he come to consider such monstrous expressions?
And why weren't complex numbers introduced in the context of
solving quadratic equations as they are today? It is the pur­
pose of this paper to try to answer these questions.

The Greeks

It is often said-that the Babylonians (in the second
millennium B.C.) and the Greeks (no later than about 300 B.C.)
knew how to solve quadratic equations. In fact, if you look
at what they wrote then there are no traces of XIS, no ideas
of polynomial equations of degree 2, 3, etc. What we do find
are problems of the form: A rectangle has two adjacent sides
whose total length is 10 and its area is 24. What are the
lengths of the sides?

We think of this as a + b = 10, ab = 24 and then move to

the equation x 2 - lax + 24 = 0, regarding a, b as the r06ts and
-using the fact that the sum of the roots is 10 and the product
24. But this was not the Babylonian or Greek way. The Baby­
lonians gave a recipe (formula is not quite the right word in

t This paper is a version of a talk given to the Singapore Mathe­
rnatic~l Society on 23.3.1979 and published by them in their
journal Mathematical Medley in June 1980. We than~ the Singa­
pore Mathernatica~ Society for permission to reprint Professor
Crossley's talk. Related articles will be found in Function,
vol.5, Part 1 and Vol.3, Part 5.
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its. modern sense}, the Greeks a geometri.cal construction, to
give the answers. The Baby-Ioni.ans never consi.dered (so far as
we know') cases wh.ere problems had complex solutions. The Greeks
could never have produce'd a complex solution because their con­
structions produced actual lines and you cannot draw a line of
complex length (even though we do now use Argand diagrams for
representing complex. numbers).

al-Khwarizmi

From at leas~ the seventh century A.D. Hindu mathematicians
treated (the equivalent of) quadratic equations and they expli­
citly said that negative quantities do not have square roots.
Much of their mathematics was transmitted to the Arabs but,
curiously, the Arabs did not, so far as' we know, use negative
quantities.

al-Khwari.zmi (9th century A.D.), from whose name we get
the word "algorism" or "algorithm", wrote th.e first book on al­
gebra - indeed he called h.is book Hisab a l·.. jabr w"almuqabala
(830 A.D.) and that is why we use the Anglicized form of al­
jabr even today.

This book classifies equations and shows how to solve them.
Since al-Khwarizmi did not use negative numbers he classified
quadratic equations in the following sorts of way:

Square equal to numbers,
Square plus roots. equal to numbers ,.
Square equal to numbers plus roots, etc.

In our notation (with b, c positive):

c + bx.

2
x c,

x 2 + bx
2

x

= c,

He gave two kinds of solution. I shall call these geometric~l

and radical. Consider the equation

x 2 + lOx = 39

and consider the diagram

where the central square has side x and each oblong adjoining it
has its other side 2~. Then the figure without the corner

squares has area x 2 + 4(2!x) = x 2 + lOx. If we add the corners,
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each bf area (21)2, we get the whole area to be

x 2 + lOx + 4(2i)2 x 2 + lOx + 25.

But x 2 + lOx = 39 so x 2 + lOx + 25 39 + 25 = 64. Thus the
area of the wh.ole figure is 64 and, since it is a square, its
side is 8. Hence x = 8 - (2! + 2!) = 3. This is the geome­
trical solution.

The radical solution is that given by (essentially) the
well-known formula for solving a quadratic. Paraphrasing
al-Khwarizmi we have "square h.alf tfl.e coefficient of

x[(lO/2)2] and add the numbers [+39] II. Total 64. Take .its
root, 8. Subtract· half the coefficient of x[10/2]. Answer 3 tr

•

He neglected the other (in this case negative) root.

Omar Khayyam

Three hundred· years later algebra had advanced considerably
and cubics were being treated. It would appear that the work of
Diophanto8 (who probably lived some time between 150 and 350
A.D.) had been rediscovered. Diophantos was sophisticated enough
to consider not only cubes but also fourth, fifth, sixth powers.
Just how much Diophantos influenced the Arabs we do not know, but
Omar Khayyam (more famous for his Rubaiyat) wrote a book in which
he gave a fine treatment of cubics.

The major breakthrough. came from a theorem of Archimedes
(Th.e Sphere and the Cylinder,proposition 11.5). This gave a
geometric method.for solving a cubic equation. Groar Khayyam
used this technique and said that if one wanted to solve a cubic
equation then conics must come in (and not just ruler and com­
pass). He did not justify this remark except practically. He
solved cubics using properties of conics. What this amounts to
is producing lines which solve cubic equations. Then, of course,
if a numerical answer is required, the line must be measured.

Omar Khayyam's (not completely fulfilled) aim was:
(a) to classify cubics and (b) to solve them all. He cla~sified

them in the same way as al-Khwarizmi, considering the various
types such as

cubes equal to squares, roots and numbers, (x 3

with a, b, c all positive).

He wished to give three types of solution; (i) geometrical
solutions, (ii) radical solutions and (iii) integer solutions o
He was successful in the first endeavour, for the geometric
constructions he gave worked for all cubics (with real coef­
ficients)o He was not successful in the second, nor in the
third. In the latter case he wished to find conditions on the
coefficients wh.ich would ensure an integral solution. Diophan­
tos employed simi.lar considerations in h.is treatment of equations.

Not surprisingly, Omar Kh.ayyam did not approach. complex
numbers for th.ey had no place in the geometry 0 •
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Th.e Italians

By about 1200 Arab culture was becoming better known in
Europe. Fibonaccit , otherwise known as Leonardo of Pisa,
went across to North. Africa where his father worked in ·the
Customs. There O€ learned of Hindu-Arabic numberals (0,1,2, ...
. 0.,9) and he is generally regarded as one of the first to
introduce these into Europe. He travelled a lot and learned
a great deal of mathematics from the Arabs and in one· of his
works he did solve a cunic equation. He even showed that his

equation lOx + 2x2 + x 3 = 20 did not have an integral nor a
rational solution,§ and he worked out an approximate answer
to a high degree of accuracy (1.368 808). All this he did by
Euclidean geometry, not using conics. Indeed, Omar Khayyamts
work did not seem to have become known for a very long time.

From Fibonacci onward there were a lot of Italians work­
ing on algebra, but it was not until the end of the fifteenth
century that great strides were made.

Luca Pacioli wrote a book in 1494 - the first printed
book on algebra as opposed to arithmetic and in this book he
spent a lot of time doing manipulations with square roots and
cube roots. However, Pacioli was of the opinion that one
could not solve cubic equations by radicals. (In a sense he
was right: one cannot solve all cubic equations using only
real roots even if one restricts the coefficients to be real.)

Shortly afterwards, probably around 1510 or slightly
later, Scipio dal Ferro did solve cubics. Whether he knew how
to solve all types is unclear. Basically his treatment was

the modern one. After removing any x 2 term by an appropriate

substitution (in x 3 + ax2 + bx + C = 0 put Y = x + a/3) one is

left with either x 3 = px + q or x 3 + px = q where p, q are both
non-negative. Neglecting the easy case of p or q = 0, in
essence, Scipio's treatment was to compare the equation with

x 3 (u 3 + v 3 ) + 3uvx which he obtained from

(u + v)3 ='u 3 + v 3 + 3uv(u + v), where x = u + Vo

The problem then is to find numbers u, v such that

u 3 + v 3 = q and 3uv = p. If we write a = u 3 , b = v 3 then the
problem is to· find numbers a, b such that a + b = q and

ab = p3/ 27 . But' this problem is one whose solution was known
to the Greeks, as w~ noted near the beginning of this paper.
Having found a, b we have

x

where a, b = +q/2 ± 1«q/2)2 - p3/ 27 ). And now we see where
BombeIli's tied cube roots. .come.in.

t For more on Fibonacci, see Function, vol.l, Part 1.

§For more on this point, see p.31 of this issue.



7

In fact Cardan published, in his Ars Magna of 1545, the
solution of a quadrati.c equation with complex roots but Cardan
regarded these as sophi.sti.cand useless. It appears from
other writings that Cardan did not h.ave any clear grasp of com·­
plex numbers and how they worked. It was left to Bombelli, who
wrote his Algebra in the ~550ts but did not publish it until
1572, the year of h~s death, to give a full, formal and clear
treatment of these new numbers.

Bombelli was adept at manipulating expressions involving
radicals. Presumably h.e employed the same rules for his tied
cube roots and also performed dalculations such as in (in our

notation) (2 + i) 3 = 2 + iii. In treati.n.g .o.o.e cubic equation

he came up with the expression VC2 +.10 ~ 121) + Y(2-

/0 - 121) from "Which. he obtain~d (2 + ~) + (2 - ~)
which equalled 4. What he then did was to substitute this
solution back intoh~s cubic and it worked!

Bombelli had also been suspicious of these new numbers
but having empl6yed them for a while, he came to accept them
and overcame h~s misgivings. For him the proof of the pudding
seems to be in the eating!

Even though Bombelli gave rule$ such as (in modern, but
not very different, notation)

(+i) . ( +i) = -,
(+i) . {-i) = +

it was still quite a long time before complex numbers were
totally accepted. The final justification of the formula for
the solution of the cubic did not come until 1686 when Leibniz
showed by substituting the formal solution back in the cubic
that the formula always gave a solution. By that time the use
of letters for variables became common practice and this allowed
a general treatment which was not possible a century or so before.

Conclusion

Thus we see that the geometric context of problems which we
regard as polynomial equations militated against the introduction
of complex numbers for a very long time, and it was not until a
more 'algebraic' approach was adopted and the solution of cubic
equations was given a recipe or 'formula', that·it transpired
that numbers formally defined did lead to solutions - even when,
in the intermediate stages, those numbers were imaginary. Even
then it was a long time before these new numbers were formally
justified - first by Leibniz in the sense that th~y did give
proper solutions of the cubic and later, in the nineteenth
century, by Hamilton when he reduced complex numbers to pairs
of real numbers w'ith specially defined operations for addition
and multiplication - but that is beyond the scope of our present
essay.
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CAN A LINE SEGMENT

BE CONVERTED INTO A TRIANGLE?

Ravi Phatarfod, Monash Upiversity

If you cut a stick into three pieces, you can form them
into a triangle provided that each pair of pieces has combined
length greater than the third . What is th.e probability of. this
happening when the two cutt·ing points of the stick are chosen
independently and at random? The 'standard' solution of this
problem is fairly simple (and is given below'); however, if we
were now to extend the problem to tak~ng n points at random
and ask what is the probability that the n + 1 segments can
form a (n + 1)-sided polygon, the solution to the problem is
far from simple. The purpose of this article is to provide an
alternative solution to the first problem, which can be very
easily extended to the case of n points chosen at random.

First, let us consider the standard solution of the first
problem.

Let AB be a straight line of unit length (clearly, the
length of AB does not matter - so we take it to be of unit
length), and let the points chosen at random be denoted by C
and D. The variables X and Y, measuring the lengths of AC and
AD respectively, are independent and have uniform distribution
of probability (i.e. all values are equiprobable). In the
figure shown, C precedes D and so X < Y, but we could just as
well have D preceding C, in which case Y < X.

Y
r-----,-A. '1
A~C 0 B

The domain of all possible positions of the point (X,X) is
a square OMPN with'the sides OM = ON = 1. Let us find the
positions of the point (X,Y) when the segments can form a tri­
angle. First, let us suppose C precedes D; this means we have
X < Y and we are restricting attention to the region OPN. The
lengths of the three segments are AC = X, CD = Y - X, and
DB = 1 - Y. Then, in order that AC, CD and DB can form a tri­
angle, the following inequalities must be fulfilled:

(Y - X) + (1 - X) ~ X

X + (T

X + (1

X) ~ 1

Y) ~ Y

Y

x

i.e. Y ~ ~ ,

i.e. Y ~ X + .1..2 ,

i.e. X ~ t
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This means (X,Y) belongs to the triangle EPG. If on the other
h~nd, D precedes C, we get by symmetry the triangle PKL. The
required probability is

Area EFG + Area PKL
Area OMPN

The extension even to the case of 3 cuts is rather tricky.
Four segments can form the sides of a quadrilateral provided
each triple of segments have combined length greater than the
fourth. If X,Y,Z are the distances of the cut-points from A,
we have to consider the six congruent regions of the unit cube
defined by X < Y < Z and similar inequalities obtained by permu­
tations of X, Y and Z, and within each such region determine
the subset of the points (X,Y,Z) such that the condition for
the formation of a quadrilateral is satisfied.

To obtain the alternative solution, we first consider the
concept of points chosen at random on a circle. Consider three
points, A, C, and D chosen independently and at random on a
circle of unit circumference.

A

L,
c D A

Imagine now the circle being cut at the point A, and the
circle laid out as a straight line. We have three intervals
formed, AC, CD, and DA, and the situation is ideniical to that
of choosing two pointS' C, D at random on a straight line of
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unit length. We can therefore state the f9llo~ng Csomewnat
loosely worded) proposi.tiono

PROPOSITION i. Taking t~o point$ at random on a ~traigbt line
of unit Zengtn i~'equivalent to taking three points at ~andom

on a airaZe of unit ai~aumfe~inae&

Now let the lengths of the three intervals' formed by
choosing two points at random on a straight line of unit
length be denoted by £1' £2 and £3. The next proposition is

about the probability distribution of the three lengths £1'£2,L 3 .

PROPOSITION 2. The lengths of the th~ee intervals 3 L1~L2~L3

have the same probability distribution, namely for 0 < t < 1.,

Pr{L. > t} = (1 - t)2, i = 1,2,3. (1)
'l-

This result is surprising, since i.ntuitively we might
have expected that the length of the middle interval, L2
would have a distribution different from the one for the end
interval~ £1,L 3 . However, if we consider the equivalent situ-

ation of choosing three points at random on a circle and cutti.ng
the circle at the point A, then from reasons of symmetry,· the
lengths of the three intervals would have identical probability
distributions .. To obtain the distribution, we note that L1 > t

if and only if C and D fall in the interval (t,l), and the pro­

bability of this event is (1 - t)2.

We now give the alternative solution of the problem posed
at the beginning of the article. First, note that the condition
that the three segments can form a triangle is equivalent to the
condition that none of the £1' L2 or L3 exceeds i. Now using
(1) we have

Pr{L 1 > !} = pr{L 2 > !} = Pr{L
3

> !} = i.

Now comes the important point: the events {L1 > i}, {L 2 > i},

and {L 3 > i} are mutually exclusive (no two of them can occur

together). Hence,

Pr{L1 > !} + Pr{L 2 > !}
3

+ Pr{L 3 > !} = 4 ·

Now since the event {no L i > i} is the complement of the event

{some Li > !}, we deduce that the required probability that the

three segments form a triangle is '1 - ! = i
It is now easy to see how we can generalise the result.

We have, first of all, the proposition that choosing n points in­
dependently and at random on a straight line of unit length is
equivalent to taking n + 1 points at random on a circle of unit
circumference. Also, the lengths of the n + 1 intervals so
formed, L1 ,L2 , ... ,Ln +1 , have identtcal distributions, and
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Pr{Li > t} = (1 - t)n for 0 < t < 1, and i ~ 1,2, ... ,n+1,· so

that putting t = i, we have Pr{Li > i} = ct)n, i = 1,2, ... ,n+l.

We also note th.at, as before, the events {L i > i} (i = 1,2, ... n+ 1).

are mutually exclusive, so that Pr{some L .. > !} = en + l)(i)n.
~ .

This gives us the probability of the event {no'L i > i}, (the

condition for the n' + 1 segments to form a polygon) to be

.equal to 1 - (n + l)(!)n.

Consider this formula when n = 1,2,3. We get the answers
0,i,1 respectively. Of course, for the case n = 1, there is
no question of forming a figure of 2 sides. The answer (zero
probability) is the probability of getting both the segments.of
length less than i. As n gets larger and larger, th.e answer,
given by the formula, approaches one. Th.is i.mplies that as we
cut the line segment at random into more and more parts, it is
more and more certain that all the segments would be of length
less than i, i.e. that the n + 1 segments would form a polygon.

00 00 00 00 00 00 00 00 00 00

A PROBLEM IN GRAVITATION t

P. Baines, CSI-RO
Question. Wh.at would be the behaviour of two particles in proxi­
mity, one of which has negative mass?

Answer. Neither Newtonian Mechanics nor G~neral Relativity
Theory precludes the existence of negative mass, and although
it has never been observed, the concept leads to some interest­
ing results.

Suppose we have two particles, masses m1 ,m2 where m1 < 0,
m

2
> 0, aud apply Newtonian mechanics.

Then the force F on the first particle is given by

m·1m2
F = G --2-

r

where r is the distance between them and G is the universal
gravitational constant. The m1 to m2 direction is regarded as

positive. Let a 1 ,a2 be the accelerations of the first and

second particles respectively. The equations of motion then are

t This article was first published 20 years' ago, in Dr Baines'
student days. It appeared in the journal Matrix, published by
the Melbourne University Mathematical Society. It is reprinted
here with the permission of the. author and the publishers. We
have slightly altered the notation to accord with that now used.
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m1m2
G -2­

Jl

(the minus sign in the second equation coming from Newton's
third law), and so we get two positive accelerations:

2a1 Gm 2 /r

2
a 2 -Gm1/r.

Hence if we consider the particles to be initially at rest, both
will subsequently move in the same direction, and if the masses
are equal in magnitude, the negative mass particle will take off
after the other with a (common) constant acceleration.

Subsequent analysis of the problem shows that if m2 < -m1the distance r steadily increases, while if m2 = -m
1

the distance r is constant, as noted above, and if m2 > -m 1 the

distance r will decrease and the particles will collide. Subse­
quent behaviour is left as an exercise for the imagination of
the reader.

The above assumes the equality of inertial and grav~tation~

al mass, both positive and negative, and General Relativity
(which takes ~h~s as a principle) leads to the same results.

In conclusion we may notice that it is not possible
for all observed mass to be negative instead of positive, since
negative mass repels all other mass (both positive and negative)
while positive mass attracts. In a universe containing only
negative mass therefore, all gravitational forces would be
repulsive.

00 ~ 00 ~ 00 00 00 00 00 00 00 00

BARNES-MATH

According to Earle Hackett (The Body Programme, 3AR
30.5.1981), the Dorset poet William Barnes sought to re-Saxonize
the English language. Hacke,tt quoted two mathematical examples
(Pythagoras' theorem and the pons asinorum - Function, Vol.3,
Part 3) of Barnes-speak, and we were tempted to try another.
Here is our cover theorem in what may resemble what Barnes had
in mind.

An inrounded fourwinkeZ's pairwise twixtfoZded
aorossZying sides' sum is its erossbraoes' tweenfoZd.

Or wotds to that effect.

Barnes-speak had a brief vogue among super-patriots during
World War II. (E.g. flpushwainling" for "perambulator fl

). They
apparently did not recognise the fact that it is structurally
and verbally more Germanic than present-day English..
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THE RELIABILITY OF A WITNESS

Doug Campbell, Monash University

When a witness appears in a court of law, the judge and
jury will have to consider both

* the evidence that he gives, and
* how reliable the witness seems to be.

While it is rarely possible to present statistical evidence to
assist in assessing how reliable a witness is, it is an open
question as to whether statistical evidence would be properly
interpreted if it were available.

Consider the following situation.

1. In a certain city, 85% of taxis are blue and the other 15%
are green.

2. One night, a taxi was involved in an accident, in con­
ditions of poor visibility.

3. The only witness to the accident was Fred.

4. Fred had been tested, and was found to be 80% reliable in
telling the coJour of a taxi in those weather conditions.

5. Fred said the taxi in the accident was green.

What reliability can be attached to Fred's evidence?

(a) Fred is said to be an "80% rel'iable" wi tnesso This may mean
that, as a reporter, Fred is right 80% of the time,
whichever colour was the taxi, i.e.

If he sees a blue taxi, he will report that it
was blue with a probability of 0.80, and he
will get it wrong and report that the taxi was
green with a probability of 0.20.

If he sees a green taxi, he will report that it
was green with. a probability of 0.80, and that
it was blue with a probability of 0.20.

(b) A taxi drives past Fredo What will he report?

If a blue taxi drives past, there is a probability
of 0.80 that Fred will report "blue" and of 0.20
that Fred will report llgreen l1

•

The probability that a taxi is blue is 0.85. ~ence
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Pr(Fred will call a taxi "blue" and th.e taxi is blue)

= 0.85 x 0.80 = 9.68,

and Pr(Fred will call a taxi "green" and the taxi is blue)

= 0.85 x 0.20 = 0.17.

Similarly,

Pr(Fred will call a taxi "green" and the taxi is green)

= 0.15 x 0.80 = 0.12,

and Pr(Fred will call a taxi "blue" and th.e taxi is green)

= 0.15 x 0.20 = 0.03.

So
Proportion of

Fred Taxi is Total observations
reports as Blue Green correct

Blue .68 .03 .71 .68 = .96-:7Y

Green .17 .12 .29 .12 = .41-:29

From this, we conclude that, if Fred says the taxi was
blue, he is 96% reliable, whereas if he says it was green he
is only 41% reliable.

So much for our 80% reliable observer!

In case you find the law too abstract, consider an analo­
gous situation in medicine.

There are two fatal diseases, A and B, which give rise to
identical symptoms.

Of people with those symptoms, 85% suffer from disease A,
and 15% from disease B.

The only known meth6d of distinguishing between disease A
and disease B is a blood test, but it is known that this test
is only 80% reliable.

The .treatment for disease. A will bring about a complete
cure, for a patient suffering from disease A but will shorten
the life-expectancy of a patient suffering from disease B, and
vice versa.

If the blood test tells you that you have disease B, what
treatment (if any) would you request?

This article is based on a seminar presented by Jonathon
~ohen at the University of Melbourne and discussions with
Professor Frank Jackson and others.



MATCH TRICK No. 17

[p
PlacIng 2 matches

as shown divide the
triangje into hatves (2

areas of3 units each),
Usin!l3 matches instead
of 2 aivide the area into 2
halves. each with 3 units.
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LETTER TO THE EDITOR

A CARD TRICK

Nine cards are dealt face down. Somebody looks'at one·
of the cards and places it on top of the pack of nine cards.
These are then placed under the deck; face down. The dealer
now makes four piles of cards as follows. He turns cards up
counting 10, 9, 8, 7, ... and stops if one of the numbers he
calls coincides with the card. If there ~s no coiticidence by
the time he reaches 1, he puts a card face down on this pile.
In this manner he builds four piles and counts out that many
cards. Th.e last card he turns up is the card that was ori­
ginally selected and put on top of th.e pile of nine cards.

Here is why this trick works.

If there is coincidence at a in a pile, the number of
cards in the pile is 11 - a. If the pile goes to completion,
it has 11 cards. This corresponds to 11 - O. The sum of
the numbers appearing is a + b + C + d. The number of cards
in the four packs is 11- a + 11 - b + 11 - 0 + 11 - d
which equals 44 - (a + b + 0 + d). On counting a + b+ 0 + d,
the card arrived at will be the 44th card in the deck ~hich

is the card on top of the pack. of 9, there being eigh.t cards
remaining below it.

Garnet J. Greenbury,
123 Waverley Road, Taringa, Q'ld.

MATCH TRICK NOoIl
A number of readers have shown interest in the match

puzzles circulating widely in the community. Through the
courtesy of the Wilkinson Match Company, we have been issued
with a complete set of' these and will discuss some of the
mathematically more interesting ones in Funotion. Here we
consider No.17 (reproduced at
right). The main point of
mathematical interest here is
that the two matches internal
to the triangle do indeed
have the properties stated or
implied in the directions
given. That is to say, they
are perpendicular to the top
side and to the hypotenuse as
shown and do indeed just meet.
These statements can be veri­
fied using relatively
straightforward coordinate
geometry. That the area is
bisected can best be verified
by taking the right hand region,
b~secting it along its axis of symmetry and so calculating its area.

For the solution to the initial problem, turn to p.32.
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PROBLEM SECTION

SOLUTION TO PROBLEM 3.3.5
This problem h.as been outstanding for two years, and was

restated in Vol.5, Part 1. It read:

Consider the set {2n
, where 0 ~ n ~ N} - i.e. the first

N + 1 powers of 2. Let PN(a) be the proportion of numbers in

this set whose first digit is a. Find Lim PN(a). Is the
N-+oo

first digit of 2n more likely to be 7 or 8?

Two readers supplied answers (a bit too long to publish):
Colin A. Wratten of Bentleigh High School and Rod Worley of
Monash (who incorporated his solution in a general article).
The limit requested is given by

Lim PN(a) = log10(a + 1) - log10(a) = log10(1 + ~). (*)
N-+oo

Mr Wratten notes that if 2 in the problem is replaced by any
rational number oth.er than a power of 10, the equation C*)
still holds.

Equation (*) enables us to answer the second question.
We have:

a 1 2 3 4 5 6 7 8 9 ITotal

lim PN(a) .301 .176 .~25 .097 .079 .067 .058 .051 .046 1.000
N-+oo

Thus the first digit in2n is more likely to be 7 than 8, but
1 is the most likely digit.

Both readers gave full proofs of Equation (*), which we
will not attempt here, although we will present a plausible

argument. loge 1 + ~) is a good approximati.on to PN(a) even for

quite moderate values of N. Ralph Raimi, in an article pub­
lished in Scientific American (Dec. 1969), gives the following
table for P99(a), which you can reconstruct with a calculator.

a 1 2 3 4 5 6 7 8 9 Total

Pgg (a) o 30 .17 .13 .10 .07 <> 07 006 .05 005 1.00

which approximates well the one above.

To justify Equation (*), replace, as Mr Wratten does, 2 by
S and suppose that

for some m.

Then

n log S
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(H.ere, and below, we assume that all logari.thms are to the base
10.) m (the exponent) is of no interest as it'does not affect
the ini.tial di.git d1 ,

First take a case for which log 6 is rational, e,g.
B = 110, log S. = i. Successive powers of S begin w'ith 1,3,1,3,. ,.,
and this "two-cycle" is readily seen to be characteristic of
cases where log S has denominator 2. ,Similarly if the denomi­
nator is 3 a "three-cycle" results, etc,

If we layout the interval [0,1) on a logarithmic scale,
we find that the points of such cycles are equidistant. A
two-cycle has a point at the left-hand end 0, which corresponds
to an initial digit 1 (as log 1 = 0) and a point mid-way ,along,
which corresponds to an initial digit 3, as log IrIT = i, and
IIU = 3.162 .... For larger denominators the same even sec­
tioning of the interval persists.

Thus for 109 a = 0.301 029 995 1 (an excellent approxi­

mation to log 2), we would have a lOlO ....cycle splitting the in­

terval up into 1010 equal subintervals.

So far, we have given essentially Raimi's argument which
differs only in that he wraps the interval around into a circle,
and compares it to a calculating device, once widely used, the
circular slide-rule. (See Ravi Phatarfod's article in this
issue for another example of the trick of representing intervals
by circles.)

The next step in the argument is the most difficult, al­
though both our solvers negotiated it in all its gory detail.
Assume (we prove it below) that log 2 is irrational, Suc­
cessive rational approximations to its true value give us
cycles with more and more equal subintervals. It is plausible
to assume that as we approach the actual value, the points
separating th~se "smear" into a uniform distribution. (The
actual proof is difficult because it only holds if the limit is
irrational. As Dr Worley points out, other sequences can con­
verge to rationaZ numbers and the cycles suddenly collapse!)

Now the point representing 2 will be log 2 of the
way along this interval and will mark off log 2 of its
length. This much corresponds to initial digit 1. An initial
digit of 2 is found in the sub-interval between the points re­
presenting 2 and 3, and this has length log 3 - log 2, etc.
The lengths transform easily into probabilities because the
distribution is uniform.

It remains to show that log 2 is irrational. Assume
otherwise. Then for some pair of integers a, b, log 2 = a/b.

That is to say 10a/b = 2 or lOa = 2b . But the left-hand
side is divisible by 5 and the right-hand side .ii not, so we
reach a contradiction.

Equation (*) is known as Benford's Zaw and it is widely
found in other contexts. At first sight, it seems absurd that
the house-numbers in Who's Who or the areis. of the world's
major rivers should obey it, but this is a fact. A practical
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use of the law occurs in the minimization of computer round­
off error. When two numbers are multiplied, it is "the
leading digits that control the estimate of the propagated
error.

For more on this, see either Raimits article or one by
J.W. Sanders in our sister journal Parabola, VOl.17, No.1.

This is the only solution we publish in th~s issue. Our
problems vary greatly in difficulty from this standard down
to one solved by a nine-year old. We would like to see many
more letters from you about our problems. Here are some more.
Again they vary from the fairly simple to the quite difficult.

PROBLEM 5.3.1
An Armstrong number of order m is an m-digit number the

mth powers of whose digits add up to the number itself. Thus
153 is an Armstrong number of order 3 as

1 3 + 53 + 3 3 = 153,

and each of the digits 1, 2, ... , 9 is an Armstrong number of
order 1.

Prove: (a) There are no Armstrong numbers of order 2;

(b) There are ~nly finitely many Armstrong numbers.

PROBLEM 5.3.2 (From a Soviet problem book, and submitted inde­
pendently by Colin A. Wrat:ten and Y.-T. Yu.)

Is 22225555 + 55552222 divisible by 7? (Don't try to use
a calculator on this one!)

PROBLEM 5.3.3 (Also submitted by Colin A. Wratten.)

Prove

and its generalisation

n/n + nln + n/n _ nln < 2 nln for n ~ 2.

PROBLEM 5·.3.4
Let Sen) = 1 + ~ + %+ i + ••. + ~

Show ~hat Sen) is not an integer if n > 1.

PROBLEM 5.3.5 (Also from a Soviet problem book and submitted
independently by Colin A. Wratten and Y.-T. Yu.)

Find aZZ integer pairs whose sum and product are equal.

00 00 00 00 00 00 00 00 00 0000 00 00
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BOOK REVIEW

Ian Stewart and John Jaworski" (Eds). Seven r-ea!'~ of MANIFOLD:
1968-1980. CShiva Publ~Ltd, 4 Church Lane, Nantwich,
Cheshire, England.) U.K. Price l5. Australian Price
approx. $15 t .

Q: Why is a mouse when it spins?
A: The higher the fewer.

With such zany humour, John Jaworski, Ian Stewart, Ramesh
Kapadia, Co~g~ove, Tim Poston, Jozef Plojhar, Eve laChyl and
a number or-otner" onymous and pseudonymous edi tors, contributors
and supporters put out the distinctive student journal MANIFOLD
from the University of Warwick between 1968 and 1980, when the
last MANIFOLD appeared.

The jokes and the mathematics came thick and fast.
Poston's very simple gyro composed of two point mouses (and
some connecting rods) led to a witty and elegant account of
tops and gyroscopes.

MANIFOLD required an active, mentally alert involvement.
Seven Years ... follows this tradition. It collects typical
MANIFOLD articles from the entire period 1968-1980. As

J2 + INS remark, it is "in no sense a best of MANIFOLD";
rather it gives a "concentrated dose of the 'spirit of
MANIFOLD'''. That spirit was a jaunty, buccaneering, rollicking,
iconoclastic, high-powered, plagiaristic, highly original one.

The mathematics is challen~ing -. the reader is assumed to
be interested. The aim is to introduce him to the sub-culture
of Pure Mathematics; the method (to mix metaphors, and why not?)
is to throw him in at the deep end and bury him under a rapid
fire of stimulating if inane profundities.

Function has long had an exchange agreement with MANIFOLD ­
an arrangement under which we can pinch each other's material.
We did it once (Co~g~ove turned up in Volume-3, Part 5), do it
this issue (p.21~ana--w[11 do it again. Basically, however,
our audiences are" rather different. You graduate from Fun"ation
to MANIFOLD. We hope that after a dose of Funation (a much
more sedate, almost a family, magazine) and other mathematical
experiences, readers will appreciate the [(7 + /f+48P)/2] ­
colour theorem, the instructions on how to knit a Klein bottle
(though th.e result seems to need darning), the 15 new ways to
catch a lion, and the mating dance of the Alexander horned
spheres.

t six copies are to arrive at the Monash University bookshop.
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The editors are broad-minded, and so include some lateral
thinking exercises (stolen) from an Engineering prospectus.
(Could you use a suction hoverc:raft on a cei.ling?). However,
they do tell of the fellow, who~ walking through a university
campuS" and seeing a sign saying ·CONTROL ENGINEERING, agreed,
being a very pure mathematician.

MANIFOLD is now dead; God save MANIFOLD~ Co~gAove died
back in 1969, but the obituary made too much ofiJiis and he I'S
little the worse for the episode. Meanwh.ile we have this volume,
which despite its big value total of 2294 pages (well, if you
count the right way) omits much. Even Postonts mouses - apart
from the chap who turn$ up three times on the cover. WeIll just
have to have a sequel - called, perhaps, The Same Seven Years
of MANIFOLD: 1968-1980.

BARBEROUS MATHEMATICS

The cartoon opposite (from Manifold 15) is based on a
paradox due to Bertrand Russell. It is well described in this
excerpt from The Argus Students' Praatiaal Notebook No.5 ..

"It seems that fa] baron told the barber [of his village]
that everyone in the village MUST be clean shaven, and that the
barber MUST shave everyone who did not shave himseif. And the
baron threatened death if the barber did not obey these orders.

Of course the barber was pleased to be given such a monopoly
and accepted the terms gratefully. But when he had shaved all
those who did not shave themselves h.e noted that his own whiskers
were beginning to sprout.

He was just about to begin shaving h.imself when the bar.on
and the executioner entered his shop. Then, in terror, be.rea~

lised that if h.e shaved himself he would be shaving someone-who
shaved himself, and this would be against his contract. But if
he did not shave himself he'd break his contract if he did not
shave himself! .

Here the problem is to help the barber deoide how to re­
solve the diffiaulty. What do you suggest?"

The name Ooaam is a reference to th.e mediaeval philosopher
William of Occam (1285-1349) best remembered for a methodological
principle called Oooam's Razor. This is stated (in Latin);
"Entia non sunt multiplicanda praeter necess1tatem". A rough
translation runs "Don't complicate things needlessly". Nowadays
we take it to refer to the principle that the simpler of two ex­
planations is the preferable.

In preparing this note, the ch~ef editor consulted Webster's
New World Dictionary of the American Language: College Edition
(1957) and found himself plunged into a capturing DO-loop of re­
markable simplicity. The entry reads: Occam, William of see
Occam, William of. He still doesn't know if this is a deliberate
joke or not!
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YOU CAN'T ADD A SCALAR TO A VECTOR?

Student: I seem to have got stuck on this problem, sir.

Teacher: You stupid twit! How many times do I have to
say it? You can't add a sca~ar to a vector!

A common enough conversation, one would have thought. Let's
see what lies behind ito Matters are not as simple as the
teacher would have us believe.

Two-dimensional space may be represented by means of number
pairso We later learn that such number pairs may be thought of
as complex numbers 0 Thus the complex numbers and their algebra
provide a natural tool for the investigation of plane geometry
(Which does prompt the remark that we rarely use them for this
purpose!)o However, our world of experience is three-dimensional,
so that an extension of the complex numbers is needed if we are
to have an algebra applicable to it. The obvious th.ing to do is
to try to form an algebra of number triples [a,b,cJ or
a + bi + cjo

We would like the triples [a,b,O] to obey complex algebra,

so we choose i 2 = -1 0 Now investigate ij - set it equal to
a + bi + cjo Then

and assuming i(ij)

or

i(ij) = i(a + bi + cj),

(ii)j we find

-j = ai - b + cij (*)

But

ij £ _ a. 1. 1
c c~ - aJ , un ess c 00

ij = a + bi + cj,

so that, equating coefficients of j, we find c 2 = -1, which is
no help, as we are looking for real coefficientso (Besides,
even if we give up this requirement, we only find ij = ij,
which isn't much use eithero)

Assume now that c = 00 Then (*) states that j = b - ai,
so that j lies in the plane and we have a two-dimensional
situation o

Thus we reach an impasse. In fact, it may· be shown that
if ::c,y,z represent triples of numbers such as [a,b,c] no
algebra of such. triples can exist if we make the two natural
requirements (where 0 stands for [0,0,0)):

(i)
(ii)

xy = 0 implies x = 0 or y
x(yz) = (xy)z.

0;
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Indeed, we mi.ght expect that any usable algebra of the real
world would obey these requirements.

Th.is was the situation that confronted th.e mathematician
Hamilton when he crossed Brougham Bri~ge, Dublin, one evening
in 1843, while walking with his wife. But then:~

"[QuaternionsJ started into life, or ligh.t, full
grown .... That is to say, I then and there felt
the galvanic circuit of thought close, and the
sparks that fell from it were the fundamental
equations between i, j, k; exactly such as I have
used them ever since. I pulled out, on th.e spot,
a pocketbook, which still exists, and made. an
entry, on which, at that very moment, r felt that
it might be worth my while to expend the labour of
at least ten (or it might be fifteen) years to
come. But then it is fair to say that th.is was
because I felt a problem to h.ave been at that
moment' solved, an intellectual want relieved,
which had haunted me for at least fifteen years
before."

This account is Hamilton's own (as given in Crowe's A
History of Vector Analysis). Bell (in Men of Mathematics)
has Hamilton pulling out a pOCket-knife and carving th.e
b~sic table on the stone of the bridge, but this story (like
much else in Bell, see p. 27) would seem to be apocryphal.
In any case, a plaque now stands on the bridge and gives
the multiplication properties of quaternions.

The problem is solved by admitting four dimensions, rather
than restricting consideration to the impossible three. There
are three square roots of -1, called i, j, k, so that

i 2 = j2 = k 2 = -1.

Furthermore

ij = k, jk = i, ki = j,

which formulae are neatly summarisable as ijk = -1, the result
given on the plaque.

The algebra has one peculiar' feature: if the order of the
terms in a product is reversed, the value may alter. E.g.
ij = -ji. This is readily proved:

-ji = (ii)ji = i(ij)i = iki = i(ki) = ij.

You may care to explore matters further yourself.

Hamilton would have been aware of algebras that do not
allow automatic reversal of products (so-called non-commutative
algebras), so that his insight was essentially the admission of
the extra dimension.

Hamilton, and later another mathematician, Tait, devoted
much energy to the development of quaternions. The ~ndeavour,

indeed, occupied much of the rest of Hamilton's life. For Tait,
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the four-dimensionality of the result became th.e key to an in­
tellectual development in which abstract results ca~e ·to be seen
as more important than th.e needs of the practical man on wh.ich
they were based.

The general quaternion, a + bi + aj + dk, was seen as com­
posed of two parts (cf. the real and imaginary parts of a com­
plex number): the real or saalar part a, and the veator part
bi + aj + dk. This latter, being three-dimensional, was of most
interest for applications.

On this view, a vector is a quaternion of the special type
[O,b,a,d] or bi + aJ + dk. If two such. are mult.iplied together,
there results:

[0, bl' a l' d1 ] . [0, b2' a2' d2 ] =

[-b 1b2 - a 1a2 - d 1d2 , a1d2 - °2dl' d1b2 - d2b1 ,

b 1a 2 - b 2 a 1 ],

a full quaternion, so that multiplication of pure vectors does
not result in a pure vector product. CMfich the same as multi­
plication o~ pure imaginary numbers yields a real number.)

Two physicists, Gibbs and Heaviside) cut- this Gordian knot
by defining two products of the vectors (b,o,d), as they called
them. There was the scalar product:

b1b2 + a 1a2 + d1d2

(note the omission of the minus sign), and the vector product:

(a 1d2 - a 2d1 , d1b2 - d2b 1 , b1a2 - b2a 1 )·

A roaring controversy ensued. Hamilton and Tait felt that
an essential algebraic insight w~s being lost, that ·mathemati­
cal rigour was flying out the window, and that mere amateurs
were attempting to take ov~r the reins of advanced mathematics.
Gibbs and Heaviside, for their part, saw their opponents as
deliberate obscurantists. For them, vectors and scalars were
quite distinct species, and even though you might mathemati­
cally justify their being added together, it showed lack of
physical sense to do so. The eminent physicist Maxwell
weighed in on their side with the grumble that he didn't see
why he should yoke an ass to an ox to plough the furrow of
Physics.

The participants indulged in marvellous invective, which
makes splendid reading even today. Thus Heaviside:

"'Quaternion' was, I think, defined by an
American school-girl to be an tancient
religious ceremony'. This was, however,
a complete mistake. The ancients - unlike
Professor Tai t - knew not, and did not
worship Quaternions .... A quaternion
is neither a scalar, nor a vector, but a
sort of combination of both. It has no
physical representatives, but is a highly
abstract rna thematical concept. ft.



25

Nowadays, vectors are quite mathematically respectable,
and it takes some work. to understand what all the fuss was
about. The dispute was very largely over questions of no­
tation, but othBr more metaphysical matters did keep inter­
vening. The whole matter seems somehow so passe, so
Victorian, that we tend to forget how recent it is. One of
the lesser and later participants, C.E. W~atherburn, a
professor at the University of Western Australia, died as
recently as 1974.

The completeness of the victory won by Gibbs and
Heaviside may be judged from the conversation at th.e start
of this article and its dogmatic conclusion: You oan't add
a soaZar to a veo~or!

For Hamilton and Tait, you not only could, but you had to.

Oddly enough, the Minkowski 4-vectors Of Special
Relativity are close relatives of the quaternions, and even
Maxwell's equations, whose formulation in vector terms so
helped the anti-quaternionists, are expres.sible, using a
slightly artificial device, as a single quaternionic
equation. [M.D.]

MATHEMATrCAL 'SWIFTIES (AGAfN!)

The "Tom Swiftie" is a form of humour that had a vogue
in the U. S. in the early sixties ("By th.e way, don '. t make the
same mistake as I did with that big electric fan", remarked
Tom offhandedly). In Volume 3, Part 3, we gave some back­
ground and a number of examples of a variant entitled the
"Mathematical Swiftie". Some more examples followed in
Volume 3, Part 4.

These were taken up by K.D. Fryer who edits the Ontario
Secondary Sohool Mathematios Bulletin. Professor Fryer pro­
vided twenty more examples, such as these.

"The coefficients ofax2 + bx + 0 are not numerical", said
Tom literally.

"The number is divisible by 2", Tom stated evenly.

"You should know the shape of y = Ixl in the nei.ghbourhood
of the origin", declared Tom squarely.

"I'm no good at drawing three-dimensional diagrams", said
Tom flatly.

"Only a matrix with the same number of rows and columns
can ,have an inverse", Tom stated squarely. "But isn~t it
strange that not every such matrix will h.ave an inverse", Jane
replied degenerately. "It most certainly will not if its
determinant has that value", Tom concluded naughtily.

"I'll have to change all the coefficients if you multiply
by _1", noted Tom resignedly.
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Some more examples were provi.ded by another edi.tor of the
Ontario Bulletin, Steve Brown. Here are two samples.

llOne, three, four, five, thixth, theven, ... ", Tom
counted toothlessly.

"The distribution of test scores has two modes", Tom
noted abnormally.

AUSTRALIAN MATHEMATICAL OLYMPIAD 1981
For a number of years now a group of countries has got to­

gether each year for what is known as the International Mathe­
rna tical Olympiad. This consists essenti.ally of submitting at
most eight students from each country to the tortures of two
four-hour mathematical examinations on consecutive days.
Traditionally there are only a few questions on each paper
and equally traditionally, the questions are extremely
challenging. Most of us who ~anage to get one of these
questions solved in a reasonable amount of time 'are more th.an
satisfied. But the best students at the IMO solve more than
one question.

This year for the first time Australia will send a team of
eight when the IMO is held in Washington, D.C., in July. The
team was chosen on the strength of their performance in the
Australian Mathematical Olympiad examination which also con­
sisted of two four-hour papers which students sat for in
April this year.

Pushing back one stage further, students from allover
Australia were invited to participate in the AMO as a result
of their performance in State competitions such as the Mel­
bourne University Mathematics Competition, and/or in the
national Wales Competition.

Students identified as high flyers in these -competitions
were first invited to solve monthly sets of problems and dis­
cuss them with professional mathematicians. Then the best
and keenest of these were asked if they would like to try the
AMO examination.

So now they are eight. Of these, five are from New South
Wales, two from Queensland and one from Victoria, Whose lone
representative is Ken Ross, a Year 11 student at Mount Scopus
Memorial College. Congratulations and good luck from Function!

THE MAGIC OF TH.E EAST

"Singapore, ... , 8 days, 6 nights, from $563."

American Express Travel
Advertisement.
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TWO UPDATES

We like to keep our readers abreast of modern develop­
ments and so we update two stories run in earlier issues.
Our first takes us back to Volume 1.

Problem 1.4.3 (as we would, in present notation, describe
it) asked for a characterisation of functions such that
{u(x)v (x)} t = u' (x)v t (x) • Two school students successfully
solved the problem and a third correctly pointed that that
E.T. Bell (in Men of Mathematics) claims that Leibniz (one of
the founders of calculus) at one time thought this to be a
universal rule.

The editors were sceptical, but the story is in Bell - so
we ran it. Although Bell makes fun reading, he is unreliable,
and here, as elsewhere (see P.23), he goofed. One editor (N.C.)
looked into the matter, and writes:

"In a Leibniz manuscript of November 1675 he poses the
question as to whether

d(uv) = (du)(dv)

and answers negatively by noting that.

2
- x 2xdx + (dx)2

2xdx

(ignoring the higher order infinitesimal) while

dxdx = (x + dx - x)(x + dx - x) = (dx)2.

Her~ he is still searching for the, correct product rule.

In a manuscript of July 1677 he states and 'proves' the
product rule correctly."

More recently (Function, Vol.5,Part 1) we reported on
some medical speculation concerning the other founder of cal­
culus. It was hypothesized that Sir Isaac Newton suffered
from mercury poisoning~ A recent article in Scientific
American (Jan. 1981) disputes this. The more recent claim is
that Newton's illness was psychiatric in nature.

Here your editors adopt a neutral stance. Medical
historians argue endlessly over other such cases (Charles
Darwin, Henry VIII, the Philistines, etc., etc.). Doctors,
we note, do disagree over the diagnosis of living patients
with all the resources of 20th-century medicine at their
disposal! [M. D. ]

00 ~ 00 00 00 00 00 00 00 00
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NEW MATH rN THE. TH.IR.D WORLD

Depressingly many' third world countries rushed their

schools into trendy "New Maths" syllabuses quite unsuited to

their needs. One of these, Kenya, abandoned the experiment

recently. The move seems to have been a popular one as this

excerpt from the East Afrioan Standard indicates. (The entire

article is reprinted in The Age, 24.4.81.)

"Hats off to His Excellency President Daniel arap Moi!

Hats off to the timely demise of new mathematics,from the en­

tire syllabi of standards I-III in all Kenya ': s primary schools

and from form I in high. schools with effect from 1 January

1981.

His Excellency, the Presid'ent, a former sch.oolmaster who has

always been aware of the fact that all the worldts renowned

mathematicians, in th.eir heyday, had no desire whatsoever to

complicate mathematics to the extent of making the grasping of

the subject impossible for th.e youth of the Third World in

order to catch. up with. the trend of "science teaching" and its

intricacies, has saved this newly emergent nation from shame

and embarrassment.

Parents - and their affected ~hildren - from all corners of

the Republic, have been expressing genuine gratitude to President

Moi for having ordered that, with inunediate effect, the teaching

of new mathematics should be scrapped from the sy'llabi. -

When the new maths were being introduced in the Kenyan

teaching system just over a decade ago, it was claimed th.at our

schooling youth would be "brought into line" with those of the

world's most developed nations. As mathematics was th.e common

language used by shipbuilders, computer manufacturers and pro­

grammers, designers and manufacturers of modern armaments and

other destructive devices, it was then genuinely suggested that

the Kenyan youth should not be left lagging behin~ instead of

tldashing forth to catch up wi th the marvels of th.e year 2000° ..

Hence we see the need to go_on importing skilled personnel

from abroad."

A VIENNESE PUZZLE

Let a
O

be an odd number (say 3). Multiply it by 3 and add

1 (to get 10). Now divide out by bO' the maximum power of two

that will divide this new answer (here bO = 2). Call the result

a 1 (here 5). Repeat the proces s to ge t a2 (3 x 5 + 1 = 16, b 1 = 16,

a 2 = 1), and so on. The general formula is

3a n + 1

b n
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Dr Hans Lausch. passed this on to Funct~ono He learned of
it at the University of Vienna. The question fs: Does the
process always result (ultimately) in a string of ones? As
far as we can determine, the problem is unresolved, although
it seems likely that th.e answer is "yes". Clearly the number
1 generates itself by the forIl1:ula (*) (b o = b 1 = ... = 4),

and also (fairly clearly) no other number can be self-generat­
ing. We might envisage,however, some sequence of a increas-
ing without limit, or lock.ing into a cycle. n

We took some small odd numbers and explored their behav­
iour. 1,3' h.ave been dealt with above, and so, by implication,
has 5. From a O 7, we find:

7 -+ 11 17 -+ 13 -+ 5 -+ 1 -+ 1 -+ 1, etc.

And following on in this way, we can check. th.e next calculations,
omitting a O occurring in previous calculations.

9 -+ 7, etc.

15 -+ 23 -+ 35 -+ 53 -+ 5, etc. (b
3

32)

19 29 -+ 11, etc.

21 1 (b O ~ 64)

25 19, etc. _

27 41 -+ 31 -+ 47 -+ 71 -+ 107 -+ 161 -+ 121 -+ 91 -+ 137

-+ 103 -+ 155 233 -+ 175 -+ 263 -+ 395 -+ 593 -+ 445

-+ 167 -+ 251 -+ 377 -+ 283 425 -+ 319 -+ 479 -+ 719

1079 -+ 1619 -+ 2429 -+ 911 -+ 1367 2051 -+ 3077

-+ 577 -+ 433 -+ 325 -+ Q1 -+ 23, etc.

That last one looked like gettirig away for a while, didn't it?
We leave the next cases (33,37,39, etc.) as an exercise for
the reader. It is instructive to investigate calculations
such as these in binary arithmetic.

SHUTTLE NUMBERS

The following extracts from an article in The Guardian
13.4.1981 give some basic data on the space shuttle. The full
article is entitled "Reaching for the sky" and is by Harold
Jackson. We have not metricated h~s figures - sorry!

"The vehicle was supposed to be self-contained at first,
but that idea has long gone. Its basic weight is 67 tons in its
stockinged feet. To get this into the air needed an engine so
large that there wasn't room to carry the fuel for it. So they
added an external fuel ~ank weighing 35 tons empty (and which
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now gets thrown away in space after e~,gh.t minutes' use). Th.at
in turn fueant two booster rockets to h~lp it into orbit - 86
tons apiece - though th.ey float back. on parachutes to be re-used.
The object of this exercise is to propel th.is 274-ton masS' ver­
tically to a speed of 17 500 mph within 8i minutes.

So up goes the weight again with 500 tons of solid pro­
pellant for each booster and 100 tons of liquid fuel for the
Shuttle's own main engines. The veh.icle itself is capable of
carrying 29 tons o~ scientific experiments, space ~tation

modules, military satellites, or wh.atever. The grand total now
soaking in gravity on the launch pad is 1403 tons.

To generate the thrust needed to get th~s lot on its way,
the fuel has to be burned at the rate of 300 gallons a second
in the main engines and more than 900 gallons a second in the
boosters. The resultant blast exerts 5 750 000 lbs of pressure
against the concrete below - over 2500 tons pushing against 1400.
So there isn"t that majestically slow rise characteristic of the
Saturn launches in the Apollo programme. The Shuttle comes off
its ramp like a flea off a rabbit. '

Within seven seconds it rises more than 500 feet and, a
minute later, it is at more than eight miles. By the time its
fuel is expended and it has cast off both its boosters and ,the
fuel tank, it is 73 miles up and 1400 miles down range'. It
will not w~n any awards for economy - it will have averaged one
mile to every 179 gallons.

Once it is actually in orbit, of course, the ride is free.
It can spin round the Earth as th.e wh.im of the ground con­
trolle~s and the patience of the crew dictates. The operation
of the vehicle has a ehildlike simpltcity in many ways. Of
course, it is equipped with some pretty elaborate gadgetry
but, coming down' to basics, the crew will be able to la'unch a
new satellite simply by tossing it out of the window. (If
you have a satellite you want in orbit, you can hire space in
some of the flights after July 1985. The going rate is now
$2650 a cubic foot.) II

A TH~OREM ON IRRATIONAL NUMBERS

This rather nice theorem yields many irrationalities
straight away and may be proved by elementary means.

THEOREM. Let x

nx

satisfy the equation

n-1 n-2+,a 1 x + a 2x + 00' + an = 0 {*}

where a1~a2~ ... ~an are integers. Then x is either inte­
gra~ or irrational.

PROOF 0 Suppose the theorem to be false o Then..x will be ration-
aI, that is to say a> = p./q for some integers p, q 0 We assume
th.at p./q is in its lowest terms l i.e. P ,q have no common divi­
sor other than 1. We also assume q >1. We now show that
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these assumptions lead to a contradiction, and so prove th.e
theorem ..

Substitute p/q in place of x in Equation (*-). Then

n n-l n-2 n-l)P -q(a1P + a 2P q + ... + anq

after mul tiplying through. by' qn). Now suppose r is a prime di­
visor of q. It follows th.at r divides pn. But this in turn
means that r divides p. So r is the common divisor of p,q,
namely 1. So q ='1, since·every prime divisor of it is 1,
contrary to our assumption.

, It follows immediately th.at 12 is irrational for clearly
1 < 12 < 2, so that /2 is not integral. Similarly for 13, 15,
etc. In fact we have the

COROLLARY.

form nm (m

If N is a positive integer 3 which is not of the

being an integer)~ then ~N is irrational.

The theorem does n9t, however, tell us about the numbers
e,TI which are irrational but are also non-algebraic - i.e.
cannot be roots of polynomial equations. An unsolved and diffi­
cult problem is whether e + TI is rational or irrational.

MONKEY BUSINESS

"This law is extremely simple and intuitively evident,
though rationally undemonstrable: Events with a sufficiently
small probability never occur; or at least, we must act, in all
circumstances, as if they were impossible.

A classical example of such. impossible events is that of
the miracle of the typing monkeys~ which may be given the
following form: A typist who knows no other language than
French has been kept in solitary confinement with her machine
and white paper; she'amuses herself by typing haphazardly and,
at the end of six months, she is found to have written, without
a single error, the complete works of Shakespeare in their
English text and the complete works of Goethe in their German
text. Such is the sort of event which, though its impossibility
may not be rationally demonstrable, is, however, so unlikely
that no sensible person will hesitate to declare it actually
impossible. If someone affirmed having observed such an event
we would be sure that he is deceiving us or has himself been
the victim of a fraud."

~robabiZities and Life,
Emile Borel (1943).
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MATCH TRICK No.ll (CONT;)

The solution to the
match trick shown on p.15
is illustrated at right.
The unit square at thB
top left has been trans­
ferred from the left­
hand region to the
right-hand one, while
the converse transfer
has occurred for a
region, also a unit
square, above the
centre of the hypote­
nuse. Thus the total
area is still exactly
halved.

SOLUTION

00 00 00 00 00 00 00 00 00 00

UNCONSCIOUS MATHEMATICAL CREATIVITY

The French mathematician Hadamard, towards the end of his

life, researched and wrote on the mental processes involved in

mathematical creativity an~ research. He published the results

in a fascinating book titled The Psyohology of Invention in the

Mathematioal Field. It is Hadamard's contention that much such

discovery (or invention) is the product of our sub-conscious

mind. This is now widely believed by mathematicians and

psychologists alike.

In this excerpt from his book, he tells an interesting

story which demonstrates that a creative insight may be the

indisputable product of a mind which remains quite unconscious

of the result. According to Hadamard, the observation is

" ... reported by the prominent American mathematician,

Leonard Eugene Dickson, who can positively assert its

accuracy. His mother and her sister, who, at school:

were rivals in geometry, had spent a long and futile

evening over a certain problem. During the night, his

mother dreamed of it and began developing the solution

in a loud and clear voice; her sister, hearing that,

arose and took notes. On the following morning in

class, she happened to have the right solution which.

Dickson's mother failed to know."

Do any of olir readers know of comparable cases?

00 00 00 00 00 00 00 00 00 00 00 00 00 00
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