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This is~ue carri~s two ~ore schools' talks from the 1979
series and an excellent article taken from an address given
about a year ago in" Great Britain by Dame Kathleen Ollerenshaw,
an eminent mathematician" and educator. Dr Watterson's article
describes a clever statistical technique due initially to
S.L. Warner (1965), but subsequently improved by W.R. Simmons
and others (1967). Our article describes the Simmons technique.

It is nice to see too that we have contributions from many
readers on topics ranging from triangular chess to logarithmic
approximation.

CONTENTS

The Front Cover. R.T. Worley

A Pathological Function. Neil Cameron

Primes. R.T. Worley

Laputa or Tlon. M.A.B. Deakin

Methods of Proof. Dame Kathleen Ollerenshaw

Too Embarrassed to Ask? G.A. Watterson

Letters to the Editor

Problem Section (Completed Solution to Problem 3
Solutions to Problems 3.2.2, 3.2.3, 3.2.4, 3.2.7,
3.2.8, 3.3.1, 3.3.3, 3.3.4; Problems 3.5.1, 3.5.2,
3.5.3, 3.5.4)

Miscellanea

2

3

5

11

17

21

22

26

31



2

THE FRONT COVER

Ro To Worley, Monash University

When dealing with ordinary integers we classify certain
numbers as primes. Namely, an integer p is called a prime if
(i) P does not divide 1, (ii) P cannot be factored as a product
p = rs of integers except in the trivial ways where one of r,s
is +1 or -1 (+1,-1 being the two integers that divide 1), and
(iii) p > 0.

A number m+ni, where m,n are integers and i 2 = -1 is called
a complex integer. 1 + 2i is a complex integer that can be fac­
torized as a product of two complex integers only in the follow­
ing ways:

±(1 + 2i)(±1), (±2 - i)(±i).

We note that one of the factors is ±1 or ii, which are the four
complex integers that divide 1. Furthermore, 1 + 2i does not

divide 1, since 1/(1 + 2i) = ~ - ~i is not an integer. We

therefore callI + 2i a complex prime, or more correctly, a
Gaussian prime, in view of the similarity of its properties
wlth (i) and (ii) for ordinary primes. We shall call a complex
integer a Gaussian prime if (i) it does not divide 1, and (ii)
the integer only has trivial factorizations, where one of the
factors is ±1 or ±i.

Factorization of complex integers is not difficult to per­
form, and we shall illustrate this by factoring 1 + 7i. Let
1 + 7i = (a + ib)(c + id), so that'l - 7i = (a - ib)(c - id).
Then 2 2 2 2

50 = (1+7i)(1-7i) = (a+ib)(c+id)(a-ib)(c-id)=(a +b )(c +d ).

Thus a 2 + b 2 must divide 50, and so must be 2,5,10 or 25 (not 1
or 50 as we are looking for non-trivial factorizations).

Trying a
2 + b 2 = 5 gives a + ib = ±(2 ± i), ±(1 ± 2i).

Evaluating
(1+7i)/(2-i) (1+7i)(2+i)/5

so we have (-1 + 3i)(2 - i) = 1 + 7i.

(-5+l5i)/5 = -1+3i,

The diagram on the cover is a representation of the Gaussian
primes. Regarding the central hatched square as the origin (0,0),
the square with coordinates (a,b) has been blackened to indicate
that a + ib. is a Gaussian prime. The squares nearest the origin
show that ±(l ± i), ±(1 ± 2i), ±(2 ± i), and ±3, ±3i are
Gaussian primes, whereas ±(2 ± 2i), ±(1 ± 3i) and ±(3 ± i) are
not primes.

The symmetry of the diagram is due to the fact that whenever
a + ib is a prime, so also are ±(a ± ib), fiCa ± ib).
Another feature is that p = p + Oi is a Gaussian prime for the
ordinary integer p exactly when p is an ordinary prime of the
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form 4k + 3 (e.g. 3,7,11,19, ... ). Integers of the form a + ib
with a f 0, b f 0 are Gaussian primes exactly when

a 2 + b2 = 2 or a 2 + b2 is an ordinary prime of the form 4k + 1.

Exercises: 1. Complete the factorization of 1 + 7i by
factorizing (-1 + 3i), which our diagram shows is not prime.

2. Factorize 6 + 8i as a product of primes.

3. Which primes divide both 1 + 7i and 6 + 8i?

00 00 00 00 00 00 00 00 00 00 00 00

A PATHOLOGICAL FUNCTION

Neil Cameron, Monash University
It is not too hard to prove that between any two real

numbers there is a rational number. First of all recall that,
-for an arbitrary real number x the integer part [x] of x is
that unique integer k such that k ~ x < k + 1, e.g. [TI] = 3,

55
[~] = 13 and [-/2] = -2.

Suppose x and yare real numbers and x < y (so y - x > 0).
Define the positive integer n and the integer m by

n = [' 1__] + 1, m = [nx] + 1.
Y - x '

Can you show, in general, that x < p < y where p is the rational

number p ~? As an example, with x 12 and y = 13, we findn .

n = 4, m 6, p = I! and certainly 12 < I! < 13.

It follows ,that if x < y then there are two rational
numbers p and q, x < p < q < y. For example, with x = 12,
Y 13, P = I! then applying the technique to 1t and 13 we find

3
q = IS'

We can now go on to show that between any two real numbers
there is an irrational number. Again suppose x and yare real
numbers and x < y. Then, as above, there are rational numbers
p and q, x < p < q < y. Writing the positive rational number

q - p as ~ where m,n are positive integers we see thatn
2n(q - p) = 2m is at least 2, so greater than 12. Therefore

12 12
q - P > 2n so p < q + 2n < q.

12 10fCertainly z 12 P + 2n is irrational: (/2)it were rational then

so would be 2n = z - p and then 12 = 2n 2n, but it was known

to the Pythagoreans more than two thousand years ago that 12
is irrational. (This last result can be proved by supposing

12 is rational, writing 12 as ~ where m and n are positiven
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integers with no factor 2 in common and hence proceeding to a
contradiction.)

Thus between any two real numbers there are both rational
and irrational numbers. In particular 'if a is some fixed real
number and 0 is a positive real number then there are both
rational and irrational numbers between a and'a + o.

We can now give an example of a function whose domain is
the set of all real numbers, which is very simple to define,
whose graph is impossible to draw and which is not continuous
anywhere, namely .

fex) = f 1
l-l

if x is a rational number,
if x is an irrational number.

Let a be a fixed real number and 0 be an arbitrary
positive real number. If a is rational then as above there
is an irrational number, say x, between a and a + 0 so
fea) - fex) = 1 - (-1) = 2; if a is irrational then similarly
there is a rational number, say x; between a and a + 0
so fex) - fea) = 1 - (-1) = 2. Thus ~n either case there
exist numbers x arbitrarily close to a where the absolute
difference Ifex) - f(a)1 is 2. At an intuitive level, we see
then that f(x) cannot tend to fea) as x tends to a. Formally,
for a real-valued function g, continuity at a real number a
means:

for each positive (Error tolerance) E~ there is
a suitably small positive (oifference) 0 = OrE)
such that g(x) differs from graY by less than E whenever
x differs from a by less than O.

Thus f does not satisfy this condition for E ~ 2, so is not
continuous at a. But a was simply any real number, so f is
not continuous anywhere!

ProbZem: Show that between any two real numbers there are
infiniteZy many rational numbers and infinitely many irrational
numbers.

PROBLEMS OF DEFINITION

There are certain notions wh~ch it is impossible to define
adequately. Such notions are found to be those based on uni­
versal experience. Probability is such a notion. The
dictionary tells me that 'probable' means 'likely'. Further
reference gives the not very helpful information that 'likely'
means 'probable 1

•

-' Fac ts from Fi gure s, M. J. Moroney, 1951.
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PRIMES

RoTe Worley, Monash University

Prime numbers are perhaps the most studied of all natural
numbers. Besides being the basic building blocks from which all
integers greater than 1 may be formed by multiplication, primes
have other interesting properties which make them useful in
surprising ways. The study of primes is not always easy, be­
cause while they occur with reasonable regularity, their
occurrence is still suffi~iently irregular to make things
difficult. Indeed, one authority, Don Zagier, likened the
occurrence of primes in the list of integers to the appearance
of weeds in a field. Although you know there are more to appear)
you cannot tell where the next one will sprout. A glance at the
following table, where the primes have been lowered, will show
what he meant.

1 2 3 4 5 6 7 8 9 10

25 26 27 28 29 30 31

46 47 48 49 50 51 52

11 12 13 14 15 16 17 18 19 20 21 22 23 24

32 33 34 35 36 37 38 39 40 41 42 43 44 45

53 54 55 56 57 58 59 60.

The following table indicates that this irregularity does
not confine itself to small numbers.

Primes between 107 - 100 and 10
7

: 9 999 901, 9 999 907,
9 999 929, 9 999 931, 9 999 937, 9 999 943, 9 999 971,
9 999 973, 9 999 991.

Primes 'between 107 and 107 + 100: 10 000 019, 10 100 079.

However, despite this irregularity, there is still some
regularity as is shown by the following table. In this
table, n(x) denotes the number of primes less than or equal
to x. For example, n(10) = 4 because there are four primes
p ~ 10, namely p = 2, P = 3, P = 5, P =" 7.

n(x) n(x)logex
Tf(x)loge(x)

x x

10 4 9021 0"921
100 25 "115 .. 13 ... 1.15 ...

1000 168 1160 .. 5 ... 1.16 ...

104 1 229 10131 .. . x104 1 .. 131 ...

105 9 592 1 .. 104 ... x105 1.104 ...

106 78 498 1 .. 084 ... x10
6 1 .. 084 ...

107 664 579 1.071 ... x107 1 .. 071 ...

108 5 761 455 10061 ... x108 10061 ...

109 50 847 534 1 .. 053 ... x109 1.053 ...

1010 455 052 512 1.047 ... x1010 1.047 ...

t Text of a schools' lecture delivered on July 20, 1979. For other
articles on primes, see Function, Vol.2, Part 4 and Vol.3, Parts 1,4.
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From this table it seems that TI(x) and x/log x are related.
The fact that TI(x).log (x)/x + 1 as x + 00 was dis~overed by
Gauss in 1792, but wasenot proved till over a century later.

The fact that there are infinitely many primes has a fairly
simple proof, and we can show that there are arbitrarily long
gaps between consecutive primes by a small addition to the
proof. Let PI = 2, P2 = 3, P3 = 5, . "'P n be the first n

primes; and let N~ denote their product. That is,

Nn = 2.3.5.7. .P
n

.

Then none of 2,3, .. o'P n divide Nn + 1, for if P divides Nn and

N
n

+ 1 then P would have to divide the difference, i.e.

divides 1. Hence there must be at-least one more prime (one
dividing N

n
+ 1). In this way we keep producing more and more

primes, showing that' there are infinitely many. Now consider
the consecutive numbers Nn + 2, Nn + 3, Nn + 4, ... , Nn + Pn .

It is easy to see that none of these are prime. Consider for
example Nn + m. Since m ~ Pn ' it has a prime divisor P ~ Pn '

But then p must be one of P1'" .,Pn and so p also divides Nn .

Thus p divides N
n

+ m. We have therefore constructed a string

of P
n

- 1 consecutive numbers that are not prime.

For many years people have looked for a formula for primes,
but no useful formula has been found. Centuries ago it was

thought that pen) = n 2 + n + 41 gave only primes for integral
n ~ 1. Certainly it does for n = 0,1,2, ... ,39, but it doesn't
for m = 40, m = 41 when 41 divides p(m). Indeed, no polynomial
can give only prime numbers as values. However,recently
mathematical logicians have shown that the polynomial below, in
26 integer variables, has as its positive values precisely all
the primes.

F(a,b,c,d, ... ,lJ,x,Y,z) = [k+1] [1 - (wz+h+j_q)2_(2n+p+q+z-e)2
_ (a2u2_y2+1_x2)2

({e 4 +2e 3 }{a+l}2+1_o 2 )2
- (16{k+1}3{k+2}{n+1}2+ 1-f 2 )2

- ({< a+u 4 -au 2) 2-1}{n+4dy}2+1-
-{X+CU}2)2 - (ai+k+l-~-i)2

- ({gk+2q+k+1}{h+j}+h-z)2
(16r 2y 4{a 2_1}+1_u 2 )2
(p-m+~{a+n-1}+b{2an+2a-n2-2n-2})2

- (z-pm+p~a-p2~+t{2ap-p2-1})2

(q-x+y{a-p-l}+s{2ap+2a-p 2-2p-2})2
- (a2~2_~2+1_m2)2 - (n+~+v-y)~]

Other formulae for giving primes have been suggested. Fermat
(1601-1665) conjectured that

n
F 2 2 + 1

n

is prime for integral n ~ O. Certainly FO=3, F1=5, F2 =17, F3=257
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and F4=65 537 are prime, but F5~4 294 967 297 is not, being

divisible by 641. In fact no other Fn are known to be prime,

but some others are known to be composite.

[Exercise. Multiply out

(2 9 + 27 + 1)(223 _ 221 + 219 _ 217 + 214 _ 29 _ 2 7 + 1)

to get 2 32 + 1.]

Mersenne, in 1644, conj~ctured that

M = 2P - 1
P

is prime for prime p. However this is false since, while
M2 = 3, M3 = 7, M5 = 31 and M7 = 127 are prime, M

11
= 2047 is

divisible by 23. These numbers have been investigated deeply as
there are ways of testing for their primality. One of ~hese is
due to Lucas, who showed that M is prime if and only if oM

p 2 2 P
divides Lp _1 ' where L1 = 4, L2 = 4 2- 2 = 14, L 3 = 14 - 2 = 194,

L4 = 194 2
- 2 = 37 634, ... , Ln = L

n
- 1 - 2, .... In 1876 Lucas

showed 2127_1=170 141 183 460 469 231 731 687 303 715 884 105 727
was prime. This was the largest known prime, and held that
record for many years. In fact it was only the advent of elec­
tronic computers that led to larger primes being discovered,
The following table lists the larger primes that have been
discovered.

No.of Year No.of Yearp digits p digits
2127_1 39 1876 24253 _1 1281 1961

114(2127_1)+1 41 1951 24423_1 1332 1961

.1.-.(2148+1) 44 1951 29689_1 2917 196317
29941 _1180(2127_1)2+1 79 1951 2993 1963

2521_1 157 1952 211213_1 3376 1963
2607_1 183 1952 219937_1 6002 1971

21279_1 386 1952 221101_1 6533 1978
22203_1 664 1952 223209_1 6987 1978
22281_1 687 1952 244497_1 13395 1979
2 3217_1 969 1957

There are now 27 known Mersenne primes. Such primes are of
interest because of their relation to perfect numbers. A perfect
number is a positive integer n ~ 2 for which the sum of the
positive divisors of n is 2n. For example 6 has divisors 1,2,3,6
whose sum is 12, while 28 has divisors 1,2,4,7,14,28 whose sum is
56. It is known that an even number is perfect exactly when it

has t~e form 2P- 1M where M is prime. Thus, besides 6 and 28,
P P 44496 44497

other perfect numbers are 16 x 31, 64 x 127, ... , 2 (2 -1).
Since no odd perfect numbers are known, there are precisely 27
known perfect numbers.
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It is easy to show that M
n

is. not prime if n is not prime.

If n 8t,where 8 ~ 2, t ~ 2, then in the formula

r 1'-1 1'-2 2(a - 1) = (a - 1)(a +a +... +a. +a+l)

we set a t to obtain

(2 8 )t _ 1 = (2 8 _ 1)(1+28 +228 + . .·.+2(t-l)8)..,

which gives a factorisation of 2n
- 1.

[Exercise. Show that 2m + 1 is not prime if m is not a
power of 2 (i.e. if m is divisible by an odd prime q).]

We shall noW look at some of the properties of. primes. It
is easy to see that the prime p divides the binomial coefficient

(p) for r = 1,2, ... ,p-l, for
r

(p) = p(p-l) (p-r+l)
r r(r-l) 2.1

as each of 1,2, ... ,r is less than p. Using this fac~ we can

show that p divides nP - n for every integer n ~ 1. A couple of
cases will illustrate this.

Firstly, 1P - 1 = 0 is divisible by p. Secondly, by the
Binomial theorem,

2P-2 = (1+1)P-2 lP+(1)lP-l.l+(~)lP-2.12+... +(p~1)1.lP+1P-2

(1) + (~) + ... + (p~1)·

Since each binomial coefficient is divisible by p, so is the sum

(l) + + (p~l)· Thirdly

3P-3 = (2+1)P-3 2P+(1)2P-l.1+ ... +(P~1)2.1P-l+1P-3

P tJ-~p P(2 -2)+ {1)+ ... +2(p_1)'

and once again each term on the right is divisible by p. This
process can be continued indefinitely.

Since p divides n (n P-
1

- 1), it is clear that, if p does not

divide n, then p divides nP- 1 - 1. In particular, p divides

2P- 1 - 1 for p f 2. 25 centuries ago the Chinese believed that
an odd number q was prime if and only if q divides

2 q - 1 - 1. This belief lasted for more than 23 centuries. The
smallest q for which this fails is q = 341. We call a number

q a pseudoprime if it is not a prime but q divides 2q - 2. 561
is another pseudoprime which has the property that 561 divides

n561 _ n for every intege~ n. The first even pseudoprime,
161038, was discovered in 1950.

Recently large prime numbers have been used in coding of
secret messages. To understand how this works we shall look at
remainders. If p is a prime, then for an integer m we divide m
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by P, and let m denote the remainder. A few examples will
explain this: P

5

33

172

21

o x 7 + 5

4 x 7 + 5

24 x 7 + 4

3 x 7 + 0

5

5

4

O.

Remainders of large numbers can be calculated quite easily,
making use of the formula Cab) = (a .b ) . Once again some
examples will illustrate this. P P P P

(33 X172)7 = (33 7
x 172 7 )7 = (5 X4)7 = 207 = 6

(33
2

)7 (33X33)7 = C33 7
X33 7 )7 = (5 x5)7 ::: 25

7
::: 4

(33
4

)7 = (332X 33
2

)7 = «33
2
)7 X(33

2
)7)7 (4 X4)7 16

7
::: ~

'-'.

We have already seen that, if P does not divide n, then p

divides nP- 1 - 1. In other words (n P- 1 ) = 1. Now suppose that
P

c and d are numbers such that, for some integer k ,

cd ::: k(p - 1) + 1,

i.e. cd is one more than a multiple of p - 1. Then

(n k (p-1)+1)
P

_ (kCp-1) \

~(?nP-l)k P · n)p)p
-\\np .np p

= (l.n )p p
= n .

P
To see how this can be used in developing a code, we let p

be a large prime, and let the message be converted into a number
n less than p,

e.g. H E L P
08 05 12 16 p = 10 000 019.

We then choose a coding number c and decoder d, for example

c = 3, d ::: 66 666 679, so that cd = 2(10 000 018) + 1.

The agent calculates

(n 3 )
p

and sends that number. The headquarters than calculates

= n .
P

But n = n (because n < p), so headquarters has the message.

Of co~rse the calculation of m66 666 679 is simple, . using the
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forQula mentioned above, in these days of computers. The above
code is not the one actually used, for if the enemy captures one
agent he has c andp. It 1s then easy to work out d and so he
can decode all messages from other agents. In practice a number
P, the product of two distinct primes qlq2 is used in place of

p. After choosing a coding exponent C a decoding exponent D can
be worked out (so that CD = k(ql-1)(q2-1)+1) and the above

procedure followed. Because D cannot be worked out easily even
when C and P have been discovered this procedure is very safe.
In practice q1 and q2 have around 100 digits each, and since it

will take even the fastest computer to date over a year to find
the factors of P the code cannot be broken easily. Another
advantage of this code is that it is reversible. If head­
quarters wants to send out a message m, it computes

Cm D) and sends that out. The agent calculate~ ((mD)C) and
p p p

has m. Since only h~adquarters knows D, the agent is sure the
message is ,genui~e.

Some of the details are taken from an article in The
MathematicaZ InteZ~igencer, Vol.O, 1977. For more on coding
see Function, Vol.2, Part 4, and Scientific American, August
1977.

PERCENTAGES

since 1970 the number of students taking a "science"
HSC - ... - has declined more than 16%.

Whereas in 1970 one in every six HSC students took a
science HSC, today fewer than one in 10 does so.

Geoff Maslen, Education Editor, The Age,
Friday, 29 June, 1979, p.5.

If the decrease in numbers taking science HSC from 1970
to now is exactly 16%, show that the statement of the last
paragraph shows that there has been a 40% increase in the number
of HSC candidates since 1970.

[In fact the increase has not been this great; the dis­
crepancy would appear to be due to roundoff errors in the data.]

FROM A REVIEW

There is much that he does not say that he means, that he
knows you know he means, and so you.cannot contradict what he
does not say, what you know he means to say - and yet you
cannot agree with what he does say, for you know that that will
be taken to mean that you agree with what he does not say.as
well, and to that you are firmly opposed. I hope the reader
will survive·this. That is how I felt after reading [this
book] .
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LAPUTA OR TLON l'

M.A.B. Deakin, Monash University

My ~itle gives two possible answers to the question:
"What kind of dream-world do you mathematicians inhabit?" We
sometimes find ourselves relegated to "Cloud Nine ll

, "off the
planet I! , etc. Some of the public - even the influential public ­
see pure mathematics as consisting of airy-fairy flights of
imagination indulged in by a few rare nuts of a freakish turn of
mind~ Such a view places us in Laputa. Some of you may know of
it. After Gulliver had left the mini-micro world of Lilliput,
and had done with the super-dooper extra Texans of Brobdignag, he
visited several places, among them a land of airborne floating
islands, peopled by impossibly impractical researchers. This
was Laputa.

This land does not exist, being a product of Jonathon Swift's
embittered and satirical mind. Nonetheless, it is very real, for
it stands as a symbol of impractical and dilet~antish research.
Laputa lives on as an image of the most convolutedly abstract,
narrowly academic, deliberately useless thinking that mankind
can produce.

Mathematicians do not, outside the realms of fiction,
inhabit Laputa.

We live, in fact, in TZon - a world at once much more
dreamy and abstract, much more here and now, and much less
known to the average reader of this article. TZon is a fictitious
land, the invention of the heresiarchs of Uqbar, a country which
also does not exist. Uqbar was the result of a conspiracy by a
secret society known as Orbis Tertius - itself a fiction
lnvented by the Nobel Laureate, Jorge Luis Borges, who, you will
by now be pleased to hear, is alive and well, and living in
Argentina. .

TZon is thus a (fiction)3, and yet it is our reality, for
it is Borges' symbol of the way in which intellectual frame­
works affect our perception of the world. (1 shall not, in an
essentially mathematical article, enter the controversy over
the metaphysics or the theology of TZon.) Mathematics in its
development affects and is affected by the intellectual frame­
work we 'inherit.

Had Swift been told in 1726 that mathematicians were
investigating the square root of -1, he would undoubtedly have
relegated them to Laputa. In point of mathematical nicety, as
subtraction is a simpler operation than division, negative
numbers, arising from the former, logically precede fractions,
owing their genesis to the latter.

t Text of a schools' lecture delivered on August 3, 1979.
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None of which, of course, reflects the actual sequence- of
historical acceptance. The Greeks of Pythagoras' time had not
only fractions, but irrational numbers. Yet 23 centuries later,
Euler regarded negative numbers as "imaginary quantities".

The point is that I can imagine (for example) i of an apple,

without undue mental strain. To imagine -1 apple, however, in­
volves my envisioning some sort of "hole" in the fabric of the
universe.

In discussing the square roots of such quantities, we
enter a world of unreality that daunted our mathematicai fore­
bears. To this day, we speak of "real numbers" and "imaginary
numbers" - the latter being those that, when squared, give
rise to a negative (nowadays respectably real) number. A
"complex number" is the sum of a real and an imaginary number.

Now, you may have been told, or you may have imagined for
yourself, that complex numbers were invented because of some
aesthetic need for completeness. The equation

x 2
- 1 = 0

has two solutions, while

x 2 + 1 = 0

has none. We are being unfair to the second equation.

Life was never so simple. The point is rather different,
insofar as historians have been able to piece it together (and
this is a difficult matter).

Consider the quadratic equation

ax2 + bx + e = O.

You and I know that we can solve this by, if all else fails,
using the formula

~{-b ± ;b2 - 4ae} ,
2a

if b2
> 4ae.

This much was known to the Greeks of antiquity. It was
the genius of Renaissance Italy to solve the next problem in
line - to wit

ax 3 + bx2 7 ex + d = o.

It is possible simply to write down a formula (a very
messy one) for the roots of this equation. But no understand~

ing lies that way. Let us first simplify the problem. Observe,
to begin with, that we can divide through by a (unless, of
course, a = 0, a trivial case).

This gives, with change of notation,

x 3 + Ax2 + Ex + C = O.
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This form of the equation may be simplified yet further.

I will deal with two specific examples:

8 o·

o.

(1)

(2)

To simplify Equation (1), put x = Y + h. This yields

y3 ~ (3h-3)y2 + (3h 2-6h+6)y + (h 3-3h 2+6h-8) O.

Now choose h 1, to produce

y3 + 3y - 4 = O. (3)

A similar process applied to Equation (2) gives (with h -2)

y3 _ 21y + 20 o. (4)

You may check that Equation (3) has the single root
y 1 (i.e. x = 2), and Equation (4) has three roots
y -5,1,4 (i.e. x = -7,-1,2).

We may similarly reduce all cubic equations to the standard
form

y3 + 3Hy + G o. (5)

The solution of Equation (5) is nowadays widely attributed to
the Italian mathematician Tartaglia (1500? - 1577), although
there is some dispute about this among historians of mathematics.

The key insight now is the observation that

y3_3pqy+(p3+q3) = (y+p+q)(y2_[p+q]y+[p2+q2_pq ]). (6)

(You may easily check this factorisation.) It follows that the
equation

may be solved. One root is y = -(p + q). The others (if
present) may be found by setting the quadratic factor equal
to zero.

Now compare Equations (5) and (7). Equation (5) may be
solved if we can determine p,q to satisfy

-H, p3 + 3 G,pq q
or

3 3 _H 3 ,p3 3
P q + q G.

3 3 thus the roots of a quadratic equationp , q are

(This holds because (t
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It follows that

p

q =

{~[G + ~2 + 4H 3 ]}1/3

{~[G _ ~2 + 4H 3 ]}1/3

G

q
q

Applying this procedure to Equation (3), for which H

-4, we find, after some work, p = (15 _ 2)1/3,

-(15 + 2)1/3. We may now check that p = !(15 - 1),
-~(15 + 1). As the root y is -(p + q), we find

y = -i (15 - 1) + ! CI5 + 1) = 1,

1,

as expected.

Turn now to Equation (4). In this instance H
so that we reach

-7, G 20,

p

q

flO + qi=3}1/3

{10 qi=3}1/3

We can proceed no further, as our formulae involve the dreaded
square roots of negative numbers. (This is all the more
maddening, as we know that three perfectly respectable real
roots are there waiting for us in the wings.)

The decisive step seems to have been taken by another
Italian mathematician, Bombelli (1526-1572). Writing i for
!=I, without thought to whether or not i exists, we may
discover

1 + 3/3
ip -2 --r

1 3/3
iq -2 - -2-

results which may be checked by cubing and writing -1 in place

of i 2 , wherever it occurs.

N t ( ) 1 313. 1 3/3. 1 h· how we pu y = - p + q = 2 - ~ ~ + 2 + --2- ~ = ,w lC

is one of the three roo~s. Note, however, that to find this
real root, we had to have recourse to complex numbers. (It is
a theorem, and you can prove it from the formulae given in this
article, that this is always the case when a cubic has three
real roots.) Bombelli passed through the valley of the shadow
and emerged unscathed. To re-enter reality, he had to travel
through Tlan.

But once T16n has been sighted, be it ever so briefly, there
is no turning back. Like all early voyagers, he left confused
maps and log books. "I have found", he wrote, " a new sort of
cube root, easily distinguished from the others". What he had
found (haven't we just been saying it?) was a new sort of square
root.
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The matter depends on how you see it. We look back on
Bombelli's achievement with four centuries of cheaply·
inherited wisdom. Naturally he had discovered cube roots. After
all, they cropped up in connection with cubic equations. Any

old fool can write i
2 = -1, and even invent a play algebra'around

it. He will inhabit Laputa and never sight Tlon. To qualify for
residence in Tlon, one needs not only to entertain zany ideas,
but to know what to do with them, and how to tame them to human
purposes.

3 Let us take a simple cubic - a very simple one, namely
x - 1 = O. This is readily factorised to give

(x - 1)(x
2 + x + 1) =.0

and we recover the solitary root x 1, as we should expect. But
now we have the possibility that

x 2 + x + 1 o. (8)

We cannot shirk it, as our earlier excuse, that square roots of
negative numbers do not exist, no longer holds water. We have
ourselves gainsaid it.

We apply the formula to Equation (8), to find

x = --! ±
13.
""2 'L..

W ·t 1 + 13. d h k th t 2 1 13.e may wrl e w = -2 ~ 'L. an c ec a w -2 - :2 'L..

w3
= 1, as we may verify the matter by calculation; (w 2 )3 1

also.

A similar analysis may be applied to the quadratic factoT
in Equat ion (6). This now factorises into

(y + wp + w2q)(y + w2p + wq).

Equation (7) has two other roots besides y = -(p + q). They

are y = ~(wp + w2q) and y = -Cw2p + wq). I leave it as an
exercise to you, the reader, to check that in Equation (4), these
produce for us y = -5 and y = 4, the two other Toots whose
whereabouts may have troubled you.

Our picture is still unsatisfactory, however. It is still
possible to object that all this is very fine, but that these
calculations involving i are disreputable and suspect, because
i does not exist. The objection is, in essence, that, thinking
to find Tlon, we have drifted off to Laputa. What is required
is a proof that the imaginary numbers are every bit as real as
tpe real numbers.

We need to show that it is possible to represent complex
numbers and their properties entirely in terms of the properties
of the more familiar real numbers. The first successful proof
along these lines was due to Carl Friedrich Gauss (1777-1855),
who is often regarded with Archimedes and Newton as one of the
very greatest mathematicians of all time.
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Modern texts, however, tend to follow a later and simpler
treatment, due to Hamilton (1805-1865). On this account, com­
plex numbers are pairs of real numbers [a,b] that add and
multiply according to the laws

[a,b] + [c,d] [a + c, b + d]

[a,b] [e,d] [ae - bd, ad + be] .

The imaginary numbers are those pairs [O,b], for which the first
number is zero, and i is an abbreviation for [0,1]. We may now

calculate i 2 as [0,1] . [0,1], whose value is found quite readily
to be [-1 , 0] .

This is not exactly the real number -1, but is so close to
it in behaviour that we abbreviate it to -1. A similar con­
vention applies in the case of any other complex number whose
second member is zero. These numbers are referred to as "real",
although there is a slight misuse of language involved' here.

The point of these manoevr~s is that they demonstrate con­
clusively that there is no mystery to the complex numbers, after
all. We can happily use them, as Bombelli did and know we're
not talking nonsense. We will be safe living in Tlan.

That we have come to live there is perhaps best indicated by
the fact that those eminent realists, the electrical engineers,
treat alternating currents and voltages as complex quantities,
and combine the resistance, inductance and capacitance of a
circuit into one complex quantity - the impedance. I=I is here
to stay.

Further Reading

Gulliver's voyage to Laputa is described in Book Three of
Gulliver's Travels, which should be readily accessible to the
reader. Tlon is described in the short story Tlon~ Uqbar~ Orbis
Tertius, which is less widely available. The best English
translation is to be found in the collection Labyrinths, edited
by D.A. Yates and J.E. Kirby and published in the Penguin Modern
Classics series.

My account of complex numbers and the solution of cubic
equations is based on that given by C.V. Durell and A. Robson in
Modern Algebra~ Vol. II., published in 1937. Modern treatments of
complex numbers are e~sily accessible.. There are not so many
goo'd treatments of cubic equations. However, College Algebra,
by J.R. Rosenbach, E.A. Whitman, B.E. Meserve and P.M. Whitman
(published by Ginn) has a good account.

My treatment of the history of these matters is based on a
study by my colleague, J.N. Crossley, and available from him.
A recent study is P.L. Rose's The Italian Renaissance of
Mathematics.

The electrical uses of I=T are to be found in almost any
standard text on A.C. Circuit Theory. In this context, i
represents current and ~ is denoted by j. w is angular
frequency, and hence is not used to abbreviate (-1 + ~)/2.
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METHODS OF PROOF

Dame Kathleen Olleren·shaw,

Institute of Mathematics

and its Applicationst

There are several recognised methods of mathematical proof,
but proof is never absolute and there are varying degrees of
rigour. A mathematical proof is only valid within the limits
of the definitions la~d down. We can change the rules or move
the goal posts in mathematics as surely as we do in other
evolving activities and start an entirely new ball game, often
very· fruitfully. Geometrical truths, though eternal in a
Euclidean world, did not suffice for the geometry of outer
space. Proof may traditionaily be by the "direct method" (as
with Pythagoras's theorem); by one of the indirect methods such
as reductio ad abiurdum; or by inversion or translation from
other known results; or by the method of exhaustion of all
possibilities. An example of the latter is the standard proof
that there can be (and are) only five regular Platonic Solids ­
the tetrahedron, the cube, the octahedron, the dodecahedron and
the icosahedron. Sir Hermann Bondi and I used this method when
solving and finding.the correct answer to the classical Nine
Prisoners Problem this time last year.ttThe recently accomplished
computer-crushing solution to the famous Four Colour Map Problem
is an example of proof by exhaustion of defined possibilities.#

As an example of proof by translation, in this instance by
projective geometry, here is one of the most beautiful results
of all mathematics found by Pascal (1623 - 16$2) at the age of 16.

Pascal's theorem states that:

If a hexagon is suoh that its six points of intersection lie
on any conic~ then the three points of intersection of opposite
sides lie on one straight line.

t A professional organisation of mathematicians, based in the U.K.
This article is excerpted from Dame Kathleen's presidential address,
entitled The Magic of Mathematics, and is reproduced, with
permission, from the Institute's Bulletin (Vol. IS, No.1, Jan.1979).

tt i . e . 1977.

#see Function, Vol.l, No.1.
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The points can be taken in any order (Fig.1). The theorem
can be proved by using "cross-ratios1J (which I shall not
explain here) and for the simplest of the conics - the
circle. By projection this establishes its truth for all
conics as cross-ratios remain invariant under projection and
all conics are projections of one another.

A

z
Figure 1.

y

x

The result is astonishing, beautiful and of great generality, and
the proof is elegance itself. To add to the magic, 144 years
after the death of Pascal in 1662, another Frenchman,
C.W. Brianchon, when still a studen~ discovered by means of the
"principle of duality" a related theorem.

Brianchon's theorem states that:

If a hexagon formed by six straight lines is such that they are
tangents to a conic~ then the three lines joining opposite vertices
intersect at a point (Fig.2).

o

Figure 2.

The figures for these two propositions do not look alike,
which emphasises the power of the particular method of proof
employed, in which one result is deduced from the other.

I had thought to show you several classical proofs of special
beauty. I shall ration myself to just two, the first in
probability which I came across for the first time only recently.
This is known as Buffon's Needle Problem. In a Sultan's palace
the floors were tiled to give thin parallel lines, narrowly
spaced at a distance d apart. The ladies of the harem would
keep dropping their embroidery needles. The Sultan decided to
lay bets on the probabil~ti of a needle when dropped crossing a
line. If the length of the needle is l, l < d, what odds was
he to lay to be sure over time of being the winner? Buffon's
solution involves the multiplication of two probabilities and a



19

difficult integration, ,the answer being 2Z/nd. Buffon died in
1788. More than a hundred years later another Frenchman,
Rabier, provided a marvellously simple method of arriving at.
the same solution. I use Rabier's description as quoted in
Coolidges's "Mathematics of the Great Am~teurs." "The
probability of the needle crossing a line is the expectation of
a man who is to receive one crown if a crossing takes place.
This expectation is the sum of the expectations of the various
elements of the needle, and these are unaltered if the needle
is bent into a circle. The probability of a crossing is now
the ratio of the diameter of this circle, namely 'l jn, to d,
the distance between the lines~ But if the bent needle
crosses a line once, it will cross it twice, so the expectation
is 2ljrrd" (Fig.3). I had a real thrill out of this and I have

/ Figure 3.

revelled in it - a difficult problem· until Rabier thought of
bending the needle into a circle, rather like Christopher
Columbus and the egg.

The second example is simpler. In the February '1978

Bulletint Professo~ Patterson of Aberdeen at the end of an
article about "Mathematical Challenge," the competition
initiated in Scotland for sixth-formers, put forward a problem.
I quote: "Consider the game of noughts and crosses. In how
many ways can a line of three noughts or three crosses be
achieved? The answer is eIght. There is a three-dimensional
version (trade-named Plato). this has 27 holes and two
players each with a set of coloured marbles who place these
in turn in the holes. The winner is the player who achieves,
when all the holes are filled, the larger number of rows-of­
three in any direction. Question: How many different ways
are there of achieving a row of three?" The makers of the game
give an incorrect answer 48, whereas by counting carefully and
remembering the diagonals we can check that there are 49. The
problem Professor Patterson posed was to extend this to n
dimensions and to give the number of rows-of-three in an
n-dimensional hypercube. Several people sent the correct answer,
most by inelegant methods or in inelegant form, but a proof sent
by Dr David Singmaster, which it later transpired had already
been given in 1941 in the Scientific American, has a delightful
simplicity.

t The Bulletin of the Institute of Mathematics and its
Applications.
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Consider first the two-dimensional noughts-and-crosses
matrix (Fig.4). There are nine positions represented here
by the nine little circles or "holes". The three horizontal

+ + + + +

+ a a a +

+ 0 a 0 +

+ 0 00+

+ + + + +

Figure 4

rows of holes, three vertical rows and two diagonals, give the
eight possible rows of three. Now surround this matrix of
holes wi th a boundary of crosses (shown here as plus signs).
There must plainly be 16 crosses, that is 52 - 3 2 = 25 - 9.
Then, through any particular cross, say the cross in the first
column and second row, one and only one line can be drawn
which passes through three holes. Moreover, this line will
pass through one and only one other cross. This is t~ue for
each of the crosses. It follows that the number of rows-of­
three for the holes of the original matrix is· ~(.52 - .3 2 ) = 8
as we already know. In exactly the same way in the three­
dimensional game Plato, the 27 holes can be surrounded by a
boundary of (53 - 3 3

) =98 crosses, and precisely the same
argument establishes that the number of rows-of-three which
can be achieved with the 27 holes is ~(53 - 3 3

) = 49. More-

over, the argument can be extended to give ~{(k + 2)n - kn } for
the number of rows of k in an n-dimensional k-hypercube. When
k = 4 which Is another well known form of the game, there are
76 rows of four where n 3.

Reprinted from Manifold, No.15 (1973).
(Student Mathematical Journal,
University of Warwick.)
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TOO EMBARRASSED TO ASK ?

G.A. Watterson, Monash University

Iil its work, the Australian Bureau of Statistics has /to ask
people some very embarrassing questions. Naturally it wants
correct answers, but it may not get them. (Headmaster: "Do you
smoke in the school toilet?" Student: "Oh! No, sir!")

Some years ago, a very clever way of overcoming this problem
was found. The interviewer gives the interviewee the possibility
of two questions to answer, the embarrassing one and another,
innocuous one. "I want you to answer, truthfully, one of these
two questions; (1), Do you smoke in the school toilet? or (2),
Is your birthday on an even day of the month? Decide which
question to answer by tossing this coin; I ~ill not know which
you have answered." This interviewee can now answer "Yes"
without embarrassment; he may be answering the second question.

The idea behind this type of interviewing is to find out
what proportion in the population would answer "Yes" to the
first question, if answering truthfully. Call that proportion
P1" We are not really interested in the proportion,' P2' who.

would answer "Yes" to the $econd question, because we can
calculate it for ourselves. In fact, if birthdays are evenly
distributed throughout the year of 365 or 366 days, then as
there are 179 "even" dates in the year,

179 x 4 '"
P2 = 3 x 365 + 366 ~ 0-49. Even if birthdays are not evenly

distributed, we may know that P2 ~ 0·49 anyhow, from other data.

But by giving the person the chance of either answering
question (1) or question (2), equally likely, the probability
of him answering "Yes" is

! x P1 + ! x P2' = P say,

using the "Law of" Total Probability".

We can estimate p by doing a large sample survey of the
population. We ca~ then estimate the sought-after proportion
Pi by

even though nobody but the interviewees knows which questions
they were actually answering.

Suppose that 30 boys out of 100 answered "Yes". This would
suggest that the proportion who smoked in the toilet was
approximately 30

P1 = 2 x 100 - 0·49 = 0"11,

but not one of them has incriminated himself!
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LETTERS TO THE EDITOR

TRIANGULAR CHESS

I have spent some considerable time trying to invent a
variation of chess for three players. After a lot of failures,
I've come up finally wlth a playable game. The board is tri­
angular, with triangular spaces (97 of them: 52 white and 45
black). There are three "armies" (White, Black and Red), each
of 15 pieces: one King, two Rooks, two Bishops, two Knights,
seven Pawns and one Trois. This last is a new piece, so
called because it can move in
any direction up to three White's queening edge
triangles. There is no Queen
initially, but if a pawn Red Black
reaches the opposite edge,
the Trois is promoted to
Queen power - i.e. its
range becomes unlimited.
The first Pawn to reach the
opposite edge is removed
from the board~ but sub­
sequent Pawns are promoted
to Queens.

I've played this. game
with my two sons and feel
seriously enough about it
to -have taken steps to secure copyright and patent cover. Of
course there's much more than I can go into here - precise move
rules, etc., but this may give some idea of my invention.

Roley Whiting,
10/3 Condamine Court,
Turner, A.C.T.

A FACETIOUS APPLICATION OF THE FIBONACCI SEQUENCE

The Fibonacci Sequence (see Function~ VoZ.1~ Part 1) is

1 1 2 3 5 8 13 21 34 55 89 etc.

After the first two numbers, successive entries are calculated by
adding together the two' preceding numbers. We may write the
sequence out twice as follows:

1 1 2 3 5 8 13 21 34 55 89 etc.

1 2 3 5 8 13 21 34 55 89 144 etc.

In this form, it gives a fairly accurate table for converting
miles to kilometres, or vice versa. E.g. 8 miles ~ 13 km, or
89 km ~ 55 miles. We may interpolate easily. Suppose we want
the kilometric equivalent of 28 miles. Then 28 = 21 + 5 + 2.
This converts to 34 + 8 + 3 - i.e. 45 k~ which is the correct
answer to the nearest integer. Conversely, 73 kilometres
(2 x 34 + 5) ~ 45 miles (2 x 21 + 3).
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The reason for this is that successive terms of the
Fibonacci sequence, fa = 1, f 1 ~ 1, f 2 = 2, f 3 = 3,f 4 5,

f
5

= 8, etc., satisfy the relation

f n +1 1; 15 ~ 1-618.---r;: +

The number of kilometres to a mile is approximately 1·609, so
the approximation is quite good.

R.R. Watson,
Melbourne High School.

[For more on the miles to kilometres question~ see Problem
3.5.4. Eds.]

THE APPLEFORD APPROXIMATION

Suppose we write out a table of functions and their anti­
derivatives (ignoring the constant):

f(x)

F(x)

-0-99 -0-9x x o
x

1 .
x

-1-001x
-1

x
-0·999x

This pattern suggests the following approximation

_n
2

(x1/n _ -lin)logex ~ Lim \ x . = y (say),
n+co

(1)

found by averaging the values on either side of logex in the
table. The approximation could also be written, putting
n = lit,

Note that

1
Lim 2t
t+O

(
t -t)x - x y (2)

dy
dx Lim 2~ (\tX t - 1 + tx- t - 1 )

t+O

-1
xLim x t - 1

t+O

which supplies a check on the formula.

David Appleford, Year 12,
Fairhills H.S., Knoxfield.

[David's limiting equations (1) and (2) are in fact exact, but
unless x is near 1, we require very large values of n (small
values of t) to get good approximations from them. The error
involved in the approximation is itself approximated by
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t2(logexJ3/6,., if this quantity is small,", i.e. t must be small or

logex must be small., that is to say x must be near 1.

David's use of differentiation to check his formula is
correct", though., in strict logic., i~ requires the theorem

Lim d~ f(x,t) = ad Lim f(x,t).
t+O ,x t+O

That is to say: the order in which the limiting and
differentiation processes are carried out is irrelevant.
In the present instance., this is correct~ although in other
more complicated cases~ this is not always true~

~) j t
00 00 00 00 00 00, 00 t..._ (;\.~' •

GRAPHICAL SOLUTIONS OF QUADRATICS

A quadratic equation, x 2 - ax + b = 0, can be solved using
a circular graph. First plot a point C at (0,1), and then plot
(a,b). The line from C to (a,b) may be taken as the diameter
of a circle. Find the intersections of this circle with the
x-axis. These give the solutions of the quadratic equation.

This works because of the following analysis.

. fa b+l\The circle formed has centre pOlnt \2' ~). The radius is

!~2 + (b - 1)2, by the Pythagorean formula. Thus the equation
of the circle is

(
a\2 (, b+1\2 2' 2

x - 2) + \y -~) = !{a + (b - 1) }.

When y 0,

(
a)2 ( b+

2
1)2

x -"2 + \-

Multiplying by 4 and expanding, we find

4x2 - 4ax + a 2 + (b + 1)2 = a 2 + (b _ 1)2,

which simplifies to

x 2 - ax + b = 0.

As can be seen, this is the original quadratic, so that its
roots are the intersections of the circle with the x-axis.

Janet Watterson, Year 10,
Presbyterian Ladies College.

[It's nice to see this method again. I recall its being on the
Year 10 syLlabus in Tasmania some 25 years ago., although even then
not much attention was paid to it. I liked it because it saved
me from plotting parabolas., which I couldn't do very well. M.D.]
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MAKING STAMP DUTY FAIRER

S

0-02

0 .. 03

C

of
the

0 .. 015

0 .. 025

0 .. 03G

Stamp duty is a tax payable to the State on sale
real estate. Let C be the cost of the property and S
rate at which stamp duty is
levied. S is a function
of C which is represented
graphically at the right
(solid lines). Note that
the horizontal axis is
logari thmic (distanc.es
are proportional to the
difference between the
logarithms of the numbers).
On this scale, the vertical
axis is infinitely far to
the left, but has been
moved to its present position
for convenience.

The method of calculation is irrational, irregular and
discontinuous. At each of six arbitrarily selected and
rigidly fixed points, the amount payable leaps abruptly and
alarmingly, merely because the price increases over the
limits by as little as one dollar. In one case, the extra
tax on this last dollar is a staggering $5003.50!

If the price lies at the foot of a precipice, the purchas­
er gains and the revenue suffers, but if it sits at the left­
hand edge of a pla~eau, the reverse is the case. I suggest
the use of the dotted line in place of the present formula.
This has been chosen to make the total area of the six
triangles to the left equal to that of those to the right.

A relatively straightforward calculation gives the result

_ (l·og C - 10g 1075 . \ .
S - \ log 32 + 1.1)/100,

where the logarithms are taken to base 10.

George Strugnell, Solicitor,
106 Bell Street, Coburg.

[There certainly seems to be some merit in Mr StrugneZl's
suggestion. His formula may be given to reasonable accuracy as

S =(i log C - 1)/100.

I~ would be nice to think our legislators were progressive enough
to adopt some such suggestion. Eds.]

00 00 00 00 00 00 00 00 00 00

QU Ie KI E PROBLE~'"

If an outward journey is undertaken at 20 k.p.h. and the
return journey at 30 k.p.h., what is the average speed?

Submitted by J.F. Pike,
Rydalmere, N.S.W.
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PROBLEM

COMPLETED SOLUTION TO PROBLEM 3.1.2

SECTION

We require four consecutive odd numbers whose product is a
square. It may readily·be seen that there are three cases.
(1) The numbers are -3)-1)1,3. This gives a solution.
(2) All the numbers are positive. We consider this case below.
(3) All the numbers are negative. This reduces to Case 2.

Consider now Case 2. Let the numbers be 2n - 3, 2n - 1,
2n + 1, 2n + 3, where n ~ 2. Then

(4n 2 - 9)(4n2 - 1) = m
2

(say).

This gives 4n2 = 5 ± ~2 + ~6, so we require m2 + 16 to bea
perfect square. There is only one such case, given by m = 3.

Then 4n2 = 0 or 10, both of which are inadmissible. ijence the
only solution is that given by Case 1.

SOLUTION TO PROBLEM 3.2.2
p(x),Q(x),R(x) are all polynomials and satisfy the identity

pex 3 ) + xQex 3 ) = (1 + x + x 2 )R(x).

Prove that P(x),Q(x),R(x) are all divisible by x - 1.

No one soived this problem, which was based on a U.S. Math.
Olympiad question. The key to one method of solution is to be
found in Hans Lausch's article on Galois (Function, VOl.3, Part 2).
There are three cube roots of 1, namely 1 itself and the two

i/3 2 _ 1 il3·
complex numbers w = -! + ~ w - -2 - --2- . Substitute these

into the identity to get three equations:

P(1) + Q(l)

P(l) + wQ(l)

PC 1) + w
2

Q( 1)

3R(1)

~] (as 1 + w + w
2

0) .

Solve these to find P(l) = Q(1) = R(l) = O.

Hence P(x),Q(x),R(x) are all divisible by x - 1, by the
remainder theorem.

SOLUTION TO PROBLEM 3.2.3
This problem asked for a proof that, of all the teenagers

in the world, at least two had the same number of teenage friends.

Let us agree on two usages:

(1) We will not allow the case "A is a friend of A";



(2) Assume that tlA is a friend of B" implies tlB is a
friend of "A II •
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Then if there are n teenagers, "each may have m-friends, where

m = 0 or 1 or 2 or ~ .. or (n - 1).

If the result is to be false, then m must take each of these
values exactly once, as there are precisely n such values. B~t,
then, one teenager has all the others as friends while another
is totally friendless. This contradicts statement (2) and so
the result is proved.

SOLUTION TO PROBLEM 3.2.4
The problem read:

A bag contains three red balls and five white ones. Balls
are drawn at random from the bag without replacement, until all
have been withdrawn. Show that the probability of getting a
red ball on any particular draw (e.g. the fifth) is 3/8.

Suppose that after a number of draws, m red. and n white
balls remain~ The probability of drawing a red ball is
m/(m + n). On the next draw, we will have either

(m - 1) red balls and n white ones, with probability m/(m + n)
or m red balls and (n - 1) white ones, with probability n/(m + n).

Thus our chance of drawing a red ball this time is

m
m+n

Thus the probability is the same from draw to draw. As it was
initially 3/8, this is the value for all draws. It is important
to realise that this probability is that which we assign before
any balls are drawn. It should not be confused with the con­
ditional probability, given some later information.

SOLUTION TO PROBLEM 3.2.7
Given real numbers a,b,c, the problem was to prove that

2 2 2 .
3a + 4b + 18c - 4ab - 12ac = 0

implied a = 2b = 3c.

Equation (*) may be written

(a - 2b)2 + 2(a - 3c)2 = o.

But squares are never negative, hence each is zero, and the
result follows.

(*)
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SOLUTION TO PROBLEM 3.2.8
We are given (say) a loop of string of length £ and are

asked to arrange it as a triangle. Prove that this triangle
has maximal area if it is equilateral.

A number of calculus p'roofs are possible, but most become
~ery tedious. Here is a simpler approach.
Let ABC be the triangle giving the ~

maximal area. Suppose it is not ~~A
equilateral. Then some vertex,
say A, connects sides which are
unequal. Keep B,C fixed, but
move A to At where B C
AlB = Ale = t(AB + AC). Clearly
this increases the height of the triangle while leaving the base
unaltered. We have thus increased the area, contrary to our
assumption.

SOLUTION TO PROBLEM 3.3.1'
This question asked if it is possible to construct two loaded

dice in such a way that the totals 2,3,4, ... ,12 shown on their
uppermost faces after a toss are all equiprobable.

The answer is "no". For suppose the first dice to be loaded
so that the probabilities of 1,2,3, etc. falling uppermost are
P1,P2,P3' etc.CP1 + P2 + ... + Ps = 1). Similarly let the

probabilities for the second dice be Q1,Q2,q3' etc. We now have

Pr{total 2} 1
P1q 1 11

Pr{total 7} + P2q 5 + + P6 Q 1
1

P1Q6 ... 11

Pr{total 12}= 1
P6 Q6 11

along with eight other similar equations.

(1)

(2)

(3)

But now, by Equations (1), '(2), Q6 < q1' Ps < PI' while

Equations (2), (3) imply q6 ~ Q1' P6 ~ Pl' This means that

PI = P6 and Ql Q6' but now Equation (2) reads

1
P.lQl + P2Q5 + ... ' + PlQl = 11'

contradicting Equation (1).

SOLUTION TO PROBLEM 3.3.3
The problem was to devise a method for multiplying two four­

figure numbers together, using trigonometric tables (rather than
logarithms) .

There are several possible techniques, of which this may be
the simplest. Begin with the formula

cos A cos B = ![cos(A - B) + cos(A + B)l

and treat the numbers as cosines of angles. E.g. to multiply
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0 .. 1357 by 0·8249, note that these numbers are respectively
cos 82° 12' and cos 34 0 24' (to the nearest minute). Then
their product is![cos· 47 0 48' + cos 116 0 36'] =
![cos 47° 48' - cos 63° 24'] = ![O·6717 - 0-4478] = 0-1120.
This may be compared with the true answer of 0 0 1119.

Decimal points in other positions are best dealt with
by adjusting the calculation, using powers of 10.

SOLUTION TO PROBLEM 3.3.4
Lindsay Pope of Motueka H~S~ (N.Z.) asked for the area

EFGH enclosed between the four
quadrants inscribed in a square
ABeD, whose side we will call a.

A calculus approach gives
the answer, but David Lumsden
(4th Form, Scotch College) and
Paul Burnett (Form 5, Boronia
Technical School) both sent
accounts of a nice geometric
solution. We print a composite
of their letters.

Construct the triangles AFG, BAG. This latter is seen to
be equilateral, so thatLBAG = Tf/3. Similarly LDAF = Tf/3, and

it follows that LFAC =~. Then because the triangle FAG js
5n

isosceles, LAFG Lflcp = 12' Note that AF = AG = a.

Now the area required is equal to the sum of the area of
the square EFCH and four times the area of the minor segment on
the chord GH. To find this latter area, compute the area of

the sector APG. This is readily seen to be- na
2

/12. We now

subtract the area of the. triangZe APG which is ia
2

sin i, that

is to say a 2 /4. Thus the segment area is (n - 3)a 2 /12, and the
area required is

-2 2GF + (n - 3)a /3 2 2 5n 2
4a cos 12 + (n 3)a /3

2 2 5n Tf 2
a (4 cos 12 + 3 - 1) ~ O·315a ,

which may also be expressed as

2 . 2 n n n
2a (2 Sln 12 + 6 - sin 6)·

This allows us to arrive at the form given by the proposer,

name I y a
2 (1 - 13 + ~).

A few new problems for the vacation period follow.
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PROBLEM 3.5.1
Mr Ray Bence, formerly deputy curator of Carlton Football

Ground, noticed that some football scores may be calculated
correctly by multiplying the number of goals by the number of
behinds. He asks for a list of all scores for which this is
possible. (For those in our northern states, or not up with
Australian Rules, the score is calculated by adding the'number
of behinds to six times the number of goals.)

PROBLEM 3.5.2

--~~- Qs

~
o

p ~

This is based on a problem from Fitzpatrick and Galbraith's
Applied Mathematics, referred to us by a number of teachers.
A camera at 0 tracks a horse
running along PQ, We require
the value of s for which e
is maximised, given that its
velocity at P is u, and that
its (uniform) acceleration is a.

PROBLEM 3.5.3
(Submitted by Y-T. Yu, Knox Technical School, ~oronia.)

Set Sl(n) 1 + 2 + 3"'+ ., . + n,

S2(n) 1 2 + 22 + 3 2 + + n2 ,

S3(n) 1 3 + 2 3 + 33 + + n 3

When does n divide Sl(n)? S2(n)? S3(n)? Can the result
be generalised?

PROBLEM 3.5.4
8The number of kilometres in a mile is often given as 5'

Given only that the approximation is expressed in,this form,
estimate the error involved.

THE VALUE OF SYMMETRY CHECKS

News of the safari racket surfaced when hunters noticed that
one lion had made four left-paw prints.

The Age~ 7.9.1979.

THE THEOREM THEOREM

If if, then then.

Journal of Irrerrnduciblc Results~ Vol.25
(19i9).
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ODD ODDS

Recently, The Age (21, 22, 23, 24/8/'79) gave some space to
the problem of computing the odds that four consecutive numbers
occur in'a Tattslotto draw. That is to say: Of the numbers
1,2,3, ... ,40, six are chosen at random. What is the probability
that four (or more) of these are consecutive? Published answers
varied from 1/174 to 1/3·8 million.

Dr G.A. Watterson (one of Function's editors) and some
others got the right answer. The reasoning is as follows.

There are (~O) ways of completing the draw. If exactly four of

these are to be consecutive, then we could have:

(a) 1,2,3,4, not 5, and two of the remaining 35 numbers.

(b) 40,39,38,37, not 36, and two of the remaining 35 numbers.

(c) 2,3,4,5, not 1 or 6, and two of the remaining 34 numbers.

( d) Similar cases to the last beginning the consecutive run
with 3, 4 , 5 , ... , 36 .

The number of ways in which Case (al can occur is (325) .
Similarly for Case (b). Case (c) can occur in (324) ways, as can

each of the 34 Cases (d). This gives a total of

2 (~5) + 35 (~4) = 20825 ways

out of

(~O) = 3838380 in all.

Taking the.ratio of these two numbers gives 0·00543 or
1/184. The odds against exactly four consecutive numbers are
thus 183 to one.

For five consecutive numbers, we have (computing as above)

2 x 34 + 34 x 33 = 1190

possibilities, and for six consecutive numbers we have exactly 35
possibilities. This gives a total of 22050 draws having four
or more consecutive numbers. This corresponds to a probability
of 22050/3838380, i.e. 0·00574 or 1/174. The odds are thus 173
to one against.

Slightly different interpretations (e.g. counting five
consecutive numbers as two consecutive groups of four, etc.)
c.an give slightly different answers.

Dr Watterson notes that of the first 360 Tattslotto draws,
six in fact did produce results of the type under discussion.
The probability of six or more such results out of 360 may be
calculated, from the Poisson distribution, as

1 - e-~(1 + ~ + ~2/2 + ... + ~5/5!),

where ~(= 0 0 00574 x 360) is the expected number of such results.
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This gives II = 2"07 and a probability of approximately 0°02.

The probability of such a result occurring purely by
chance is thus 1/50, which is food for thought.

A LARGE SLICE OF PI

Tokyo: Hideaki Tomoyori, 46, an electronics company worker,
yesterday claimed a world record by memorizing 15 151 decimal
places of "pi", the ratio of the circumference of a circle to
its diameter.

He recited that number of digits after the decimal point
correctly to three newsmen at the Yomiuri n~wspaper company
here in three hours and ten minutes, breaking the world record
of 5 050 set by Michael John Poultney in England in March,
1977, and recognized by the Guinness Book of Records.

Tomoyori, who works for the Sony Corp., was inspired to
the feat when a 17-year-old Canadian student memorized the
ratio down to the 8750th decimal place last August. The
student's record has yet to be endorsed by Guinness.

A resident of Yokohama, Tomoyori adopted the method of
memorizing figures in groups of ten ,and translating them into
phonetic approximations to words.

For example, the figures "2,9,8" could be pronounced "fu,ku,
ya" in Japanese and be remembered as Fukuya, which means "tailor".

After every 100 places, he bent fingers on his right hand and
after every ten places, those of his left hand in associated
motions to remember figures.

Tomoyori recited digits with a break after every 1000 places
while the newsmen checked them with computer readouts of pi.

From a recent report in the San Francisco
Chronicle.

00 00 00.00 00 00 00 00

THE HAWKINS CIPHER

Professor Crossley's letter (Function, Vol.3, Part 4) deals
with an interesting detective story in the history of mathematics.
The "strange message ll reproduced is written in code - a rather
simple code. To read it, adopt the following rules:

(a) Interchange the following pairs of consonants (b,z),
(c,x), (d,w), (f,t), (g,s), (h,r), (Z,p), (m,n);

(b) Delete vowels indicated by a grave accent (e,o).

The message then appears as a letter reading:



Articl~s ... bave···sC)fa.r,. appea;:r;-ed' on•.•.. t;h~.· ..·.wpaleoil .. versus
J9jobabeandebate; .mercury in 'tgeel)vironment, the qrne~a

·11.v,i-gation system~, hydro'gen at· Ha~risburg and other, topics.

m
n
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