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Our main article this issue concerns the mathematical
art of M.e. Escher. This fascinating artist produced so many
wQrks of interest to mathematicians that the 'author,
John Stillwell, has concentrated on a single group of pictures.
There are, however, many others which will intrigue you. Many
of these are available as posters (see the advertisement on the
back cover), and can lead to hours of fascinated enjoyment.

We also print a further paper on Einstein and his work and
another of the Monash Schools' lectures, Professor Ewens'
popular talk on Probability Theory and Statistics. As to the
cover, it touches on what may be the best mathematical contri
bution by an amateur this century: Wayne Watts' discovery of
a connection between the Tutte Graph (cover) and the Kozyrev
Grinberg theory of graphs. To complete the list,· we have a true
story of Statistics in a real life situation.
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THE FRONT COVER

-" THE TUTTE GRAPH

D. A. Holton, University of Melbourne

The path to the solution of the Four Colour Map Theorem is
paved with a large number of false "proofs". The present cover
shows a graph which arose in the course of one of these attempts.

For a background to the problem, see John Stillwell's
article in Function, Vol.l, Part 1. The idea, of course, is to
prove that the regions of any map can be coloured with four or
fewer colours, so that no two adjacent countries have the same
colour. This can be Converted into a graph theoretical problem
by taking a dot to represent the capital of each country and
joining two dots by a line if the corresponding countries have
a common boundary. Each dot of the resulting graph can then be
coloured in four or fewer colours so that no two joined dots
have the same colour, if and only if the original map can be
coloured in four or fewer colours. For convenience, this graph
theoretical formulation was the one used by Appel and Haken in
their p~oof of the Four Colour Theorem.

In 1880, Tait observed that in order td prove this Four
Colour Theorem, it would be enough to show that the lines of
every cubic, 3-connected planar grapht can be coloured in 3
co10urs so that no two lines with the same colour meet at a
give"n dot.

Tait claimed that, clearly, every cubic 3-connected planar
graph had a hamiZtonian cycZe, that is that there is a route
along the lines of the graph which starts and ends at one dot
and which passes through all the other dots once and only once.

Now if a graph is cubic it is not difficult to prove that it
must have an even number of dots. Should the hamiltonian cycle
exist, its lines could then be coloured alternatively in two
colours. The remaining lines could then use the third colour.
So if Tait was right about these cubic 3-connected graphs
having hamiltonian cycles, the Four Colour Theorem would surely

'" follow.

t A cubic graph is one i~ which 3 lines come in to every dot and
a graph is 3-connected if it takes the removal of at least 3
dots, and their incident lines, to disconnect the graph. A
planar graph is one that can be drawn in the plane so that no
two lines cross.
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For a long while people puzzle~ over Tait'shamiltonian
claim. It waited, however, till 1946 before Tutte produced the
graph on t~e cover which finally showed that not all cubic
3-connected planar graphs were hamiltonian.

But how do we prove that ,the Tutte graph is not hamiltonian?
One way, of course, would be to illustrate, by exhausting all
possibilities, that there is no cycle through every point of
the graph. This is enormously tedious.

Is there a characterisat±on of hamiltonian graphs? If
there is, then there is.a theorem that says "G is 'hamiltonian if
and only if 'blaa" ' . All we need to do then is to test Tutte's
graph. If it didn't have the property 'blaa' then we would
know that it was not hamiltonian.

Unfortunately, despite a great deal of effort, no one has
yet come up with this magic property 'blaa'. If and when they
do they will be accorded instant mathematical fame. In the
meantime we have a graph at hand. What to do?

Well, fortunately we have some partial 'blaa' results. For
instance, Tutte himself has proved that every 4-connected planar
graph is hamiltonian. Unfortunately, Tutte's graph is not
4-connected. We can find three vertices whose removal will
disconnect the graph. So that test is out.

Another partial 'blaa' comes from two Russians - Kozyrev and
Grinberg. Their result says that if G is planar ,and hamiltonian
with n dots, then

n
L (i

i=2
o.

i.e. 0(f2-f2) + 1(f3-f3) + 2(f4-f4) + .' .. + (n-2)(fn-f~) = O.

To explain the f i and the fi look at the planar graph of Figure 1,

which has the hamiltonian cycle 1, 2, 3, 4, ... , 15, 16,1.

Figure 1.
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This cycle divides the plane i~ two. Various lines of the graph
divide the inside of the cycle into regions. One region is
formed by 1, 2, 14, 15, 16, another by 3, 4, 7, 8, 11, 12. The
term Ii is the number of such regions inside the hamiltonian

cycle formed by i lines. Hence, for the graph in Figure 1 we
have, 12 = 0, 13 = 0, f 4 = 2, 15 = 2 and 16 = 1. The If
term tells us the number of regions formed in a similar wayan

.the outside of the cycle. So we se~ that 13 = 1,14 = 1,
15 =1'[6=2.

Substituting these values in the Kozyrev-Grinberg
expression

n
I (i - 2)(fi - Ii)

i=2

we get

(3-2)(0-1) + (4-2)(2-1) + (5-2)(2-1) + (6-2)(1-2)

which is indeed zero.

Now Tutte proved his graph was not hamiltonian, but a nicer
proof was given by an amateur mathematician, Watts, in 1972.
This proof uses the Kozyrev-Grinberg result. It is a little
too long to include here but the basic idea is to assume that
Tutte's graph has a hamiltonian cycle and use the Kozyrev
Grinberg equation to obtain a contradiction. The complete
proof can be found in the book "Mathematical Gemst', by
R. Honsberger (published by the American Mathematical Society,
1974). In the same book the Kozyrev-Grinperg theorem is also
proved.

For more results in the area of hamiltonian graphs you
should read L. Lesniak-Foster: "Some recent results in
hamiltonian graphs", Journal of Graph Theory, Vol.l, 1977,
27 - 36. If you have any difficulty in getting hold of this
paper then write to me care of the Department of Mathematics,
University of Melbourne.

CONJUGATING SENTENCES

I am a statistician,
You are unreliable,
He lie-s.

I am a systems analyst,
You programme,
He codes,
She punches.
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PROBABILITY IN THEORY

AND PRACTICE t

W.J. Ewens, Monash University

My aims in this discussion are fourfold: first, to describe
what probability and statistics are; second, to discuss why
probability and statistics enter into modern science; third,to
illustrate this by describing a specific probabilistic process
and various of its scientific applications, and finally to
discuss what changes in scientific procedure have been brought
about by a statistical way of thinking.

Although in some quarters statistics is seen as being tied
up with batting averages, records, lists, computers and so on,
I wish to concentrate on the more specifically scientific
meaning of the word "statistics". In a scientific context,
statistics is in a sense the converse of probability theory,
or, better, statistics and probability theory form the two
sides of the same discipline. More precisely, probability
theory and statistics are respectively the deductive and in
ductive sides of arguments involving random unpredictable
phenomena. In probability theory we assume some state of the
real world and deduce the probabilities of various possible out~

comes, whereas in statist~cs we start with the observation of an
outcome and try to make an induction about the state of the real
world which generated this outcome. As a simple example, consider
tossing a coin ten times. A typical statement of probability
theory would be "If the coin is fair, the probability of getting
ten heads is 1/1024", while a typical statement of statistics
might roughly be "I have observed this coin to give ten heads
in ten tosses. I therefore doubt that it is fair". This last
statement is a rough and ready one, but it does nevertheless
indicate the inferential or inductive nature of a statistical
statement. The probability argument assumes a state of the real
world (that the coin is fair) and makes a deductive statement
based on this assumption, and the corresponding statistical
induction is in large part based on this statement. The structure
of probability theory is like that of Euclidean geometry, whereby
one makes certain assumptions and by logical argument deduces
various conclusions, whereas the nature of statistics is like
that of ·an experimental science where, from certain observations,
one tries to understand the state and rules of the real world.

My next aim is to ask why statistics, as just defined, enters
into modern science. The main reason for this is that modern
science (in contrast to the science of past centuries) deals
very much with random phenomena. There are two main reasons why
this is so. The first is that developments within even an

t Text of a Schools' Lecture, delivered on April 20, 1979.
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"exact" science such as physics show that at a fundamental level
an observer must accept some degree of uncertainty in his
measurements of physical phenomena. Perhaps more important,
however, is the .second reason, which is that science itself
now embraces a far wider area of activity than previously and
in most of the new areas, particularly agriculture, biology,
economics and sociology, it is quite impossible to avoid un
predictable random phenomena entering in. A student of
evolutionary theory, for example, has to accept that there will
be a random transmission of genes from parent to offspring
which cannot be predicted in detail and he must gear his theory
to encompass and allow for this random behaviour. In other
words, evolution must be seen as a statistical process and an
analysis of evolution must be a statistical one (rather than a
deterministic one). Similarly an agricultural scientist must
accept that unpredictable rainfall, unknown soil fertility
differences, ~nd so on, influence his experiments, and so also
must treat his observations on a statistical basis as the out
come of an experiment necessarily involving chance phenomena.
The same is true of the economist, the sociologist and indeed
of almost all contemporary scientists.

It goes without saying that the unavoidability of some
degree of uncertainty leads to a rather different philosophical
view of the naiure of science and scientific laws than was held
previously. Such a change in outlook was resisted to some
extent, particularly in physics, but the great majority of
scientists nowadays accept the philosophical implications of
the uncertain nature of science.

It is perhaps worth noting, at this point, that much of
our mathematical and scientific training, deriving often from
the work of Newton, is deterministic in nature and that perhaps
because of this our intuition is often all at sea in a non
deterministic, random, context. Consider for example the fOllow
ing very simple question. A fair coin is tossed twice and we
are told that at least one head appeared. What is the probab
ility that in fact two heads appeared? Try to give a quick
answer to this, and then check with the correct answer, which
I give at the end of this paragraph. This very question is
very close to the following question in genetic counselling.
Individuals can be classed asAA~ AB or BB. Those who are AA
or AB are normal, those who are BB have some genetic defect
or disorder. If we know someone is normal (by observing him)
we know he is AA or AB, and for purposes of genetic counselling
we might wish to know the probability that he is AA. If A and
B are equally frequent in the population the required probability
is 1/3, and this also is the probability in the penny-tossing
experiment re~erred to above. Very few· students get this
question correct when asked for a quick int~itive answer.

I now turn to the third aim, namely to describe a certain
probabilistic process and to show how it can be used in various
scientific contexts. The process I will consider is the so
called iandom walk (or drunkard's walk or gambler's ruin), the
mathematics of which was largely established by mathematicians
several centuries ago in connection with gambling. Imagine a
gambler with initially x dollars and an adversary with
inLtially k - x dollars. A sequence of games is now con
ducted in the following way. A coin (with probability p·for
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heads) is tossed and if it comes down heads the adversary gives
our gambler a dollar, whereas if it comes 'down tails the
gambler gives his adversary a dollar. The sequence of 'games
continues until one or other gambler has all k dollars in the
system, when it stops. We seek the probability that ultimately
our gambler has all the money in the system and also the me~n

duration of play. The same mathematics can clearly be used
to describe the behaviour of a drunkard's walk where steps to.
the right and left occur with probabilities p and 1 - P
respectively, and the drunkard starts at the point x and
continues walking until reaching 0 or k. In some scientific
contexts it is convenient-to think in terms of the gambler's
ruin and in others in terms of,the drunkard's walk, when
analysing a specific scientific problem.

There are various scientific areas where the mathematics of
this process can be used. One of them is in the estimation of
Avogadro's number, namely the number of molecules per mole for
any gas at standard temperature and pressure. It was observed
by the botanist Robert Brown in 1827 that small particles
immer,sed in a liquid undergo ceaseless irregular motion, and
this is now known to be caused by the ceaseless bombardment
of the particles by the molecules in the surrounding fluid.
If we now think in terms of the drunkard's walk and imagine
that the drunkard is staggering about not because he is
drunk, but because he is being pushed to left and right by a
platoon of policemen, then clearly the rate at which he
staggers about will be related to the number of policemen in
the platoon. Similarly the rate at which the particle moves
is related to the density of molecules in the surrounding
liquid, which can in turn be related to Avogadro's number.
The mathematics of the drunkard's walk now allows an
estimation of Avogadro's number from the rate at which the
particle moves, and estimation of Avogrado's number through
this method agrees very well with estimation from entirely
different approaches.

A second application for the drunkard's walk arises in
evolutionary theory, and here it is more convenient to think
in terms of the gambler's ruin. The fundamental process in
evolution is the replacement of an inferior gene in a
population by a superior gene, brought about by natural
selection over the course of a number of generations. Now this
replacement process is by no means certain and deterministic.
Random events in each generation, together with the random
transmission of genes from one generation to another, ensure
that random changes occur (both up and down) in the number of
superior genes from one generation to another, just as the
fortune of the gambler goes up and down depending on the
results of the tosses of the coin. In the evolutionary context
we may interpret the probability that the gambler eventually
wins all the money in the system as the probability that
eventually the superior gene takes over in the population, and
similarly calculations on the mean duration of the gambling
game give' us some idea of the rate of evolutionary genetic
processes.
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Another application of the gamblerts ruin problem concerns
testing for ESP. One way of testing whether a certain person

-who claims to have ESP really does have some such ability is to
allocate him, say, 50 points, and give him a series of tests
where we deduct one point if he fails the test and add one
point if he passes the test. Testing 'continues until he has no
points left or has (say) 100 points. The theory of the gambler's
ruin can clearly be used to test wheth~r the outcome of this
experiment gives evidence of whether the person in the experiment
does have some ESP ability or not.

A final application of the gambler's ruin arises in pure
mathematics. Suppose we decide to ,represent heads by 1 and
tails by O. Then the sequence heads, heads, 'tails, heads, ...
in a penny-tossing experiment become 1101 ... . We can put a
decimal point in front of this sequence to produce the number
.1101 ... , which can be thought of as a number between 0 and
1 represented in binary notation. It follows that there is
a one-to-one correspondence between the binary representation
of any number between 0 and 1 and the complete history of an
(infinite) gambler's ruin game. Here the theory of the gambler's
ruin can. be used to suggest and prove results in number theory.
For example, it is perhaps expected that with a fair coin the
fraction of tosses giving heads should approach one -half as
the number of tosses increases, and this suggests that the
fraction of l's in the binary expansion of most numbers should
also approach one half. A proper analysis of the gambler's
ruin problem indicates the extent to which this number theory
result is true, and the insight into these problems gained by
viewing them in the gambler's ruin cohtext is often most
valuable.

My final aim is to outline the changes in scientific
procedure brought about by the statistical, or probabilistic,
approach to science. Consider for'example the problem of
weighing two objects on a beam balance. There are at least
two ways we can do this. The first way is to weigh the
objects separately and the second is to weigh both objects
together and then put them in separate pans to find the
difference of their weights. If the weights of the two objects
are xl and x 2 ' and if the weighing can be done without error,

these two procedures give the equations

and

Xl + x 2 = w3 ' xl - x 2 = w4 '

where w
1

' w
2

' w
3

and w4 are the weights put in the pans to achieve

a balance. From the last two equations we can calculate xl and
x 2 and we will get the same values as through the first approach.
Thus the two procedures are equivalent, although in practice we
would probably prefer the first approach because of its greater
simplicity.

The situation is changed when we recognize the existence of
errors in the weighing procedures. We now have equations
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and

(i.e.

Xl w
1 + e 1 , x

2
w

2 + e
2

xl + x 2 w3 + e 3, xl x 2 w
4 + e4

w-a + w4 e
3

+ e 4
xl 2 + 2

lU'3
.- .w4 e

3 -
e 4 )x 2 2 + 2

where e 1 , e 2 , e
3

and e 4 are small error terms associated with

errors in the weighing procedure. Curiously- the two weighing
procedures are now no longer equivalent, the second procedure
being more accurate than the first. The variances of the
estimates of the weights of the objects, under the second
procedure, are half the values of ~hose under the first
procedure. This indicates that when the existence of un
certainty in scientific measurements is admitted, a whole
new problem, namely the best way to design experiments so as
to minimize the errors in one's estimation of various quantities,
arises. Strangely (and this is already apparent in the above
example), the best way to achieve this is usually through a
complex, "many at a time" experiment, instead of the previously
favoured simple "one at a time" experiment.

In this brief outline I have tried to sketch the general
nature of probability and statistics and to indicate how they
extend into, and indeed determine, the nature of current-day
science and scientific experimentation. Few subjects today
can have such a far-reaching effect, or lead to such a
varied and interesting scientific life for its practitioners,
as do probability theory and statistics.

FLYING BLIND WITH STATISTICS

The Skylab project director, Mr Richard Smith, said it
was statistically unlikely that anyone of the billions of
people along Skylab'~ path would be injured.

This was because bits of Skylab debris travelling at up
to 500 kmh will be spread out along a track 6500 kilome~res

long.

The Age, 9.7.79.

THE VALUE OF PARITY CHECKS

It can't be 112 points - not wi th an odd number of behinds.

Jack Dyer, 3KZ, 16.6.79,
(detecting an error in the
South Melbourne scoreboard).
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TO TURN OR NOT TO TURN

- THAT IS THE QUESTION

N. Barnett,

Footscray Institute of Technolog~

It is common to have someone approach a statistician with a
problem for which none of the usual statistical analyses at his
disposal ~s qUite appropriate, in which case he has to improvise.
Recently, however, a doctor from the Dandenong General Hospital
presented me with some figures for which some simple meaningful
calculations were possible. This turned out to be fortunate
because he wanted a statistical analysis of his experimental
results available for the following day!

Before proceeding to share one of the calculations with
you, I would like to draw your attention to a feature of
Dr Watterson's art.icle on "Trapping Animals" (Function,
Vol.3, No.3). The aim is to contrast the method adopted there
with the procedure to be used here to analyse the doctor's data.

Dr Watterson's method was to assume the existence of
conditions which permit use of the Poisson distribution and
th~n use the experimental results (or observations) to estimate
~, the mean of the Poisson distribution. (~is otherwise
called the parameter of the distribution.) In this respect his
procedure could be termed parametric - he used a parametric
technique. Most distributions have ~ne or more parameters,
t6ese are merely constants which need to be known in order to
define the distribution uniquely. Some distributions possess
parameters which affect the location of the distribution,
while others affect the shape. For example, the'normal dis
tribution has two_parameters, ~ and ° called, respectively, the
mean and standard deviation. Whatever the values of ~ and 0,
the distribution is always bell-shaped'but the point of symmetry
and the spread change with different values of V and 0. This is
illustrated in the figures below.

Normal curves with W
1

and 01 = 02·
Normal curves with U

1
and 01 < 02.
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In the analysis of the doctor's data the technique I use
isn't centred around estimating the value of a parameter of an
assumed distribution. In th~s respect it is typical of
statistical procedures called non-parametric or distribution
free. You will notice that a well-known distribution is used
but not in the context of attempting to estimate parameters.

The doctor's problem was as follows. In performing a
certain treatment on patients, the standard procedure is to
keep the patient's head in the normal straight position.
Unfortunately, in the ensuing treatment there is a possibility
of neck injury which the doctor believed would be reduced if
the head were first turned prior to treatment. The doctor
subsequently treated some patients in the standard way and
others by first turning their heads. Over a period of time
he accumulated the following data pertaining to the
incidence of neck injury in the two procedures.

No. with neck No". without Total
injuries neck inju'ries

Head turned 2 43 45
Head straight 5 50 55

Total 7 93 100

At first glance, the table indicates that turning the head
prior to treatment is advantageous in reducing injury but the
question remains, "Is this just chance or is a real effeet
evident?" In order to answer this question we calculate the
probability of getting these tabulated values purely by chance.

We have 100 patients and suppose we randomly assign them to
undergo either the head turned or head straight procedure. The
number of ways we can choose the 45 patients who undergo the head
turned technique is

100.99.98 56
1.2.3 45

The number of injuries in this 45, if 7 occur in the lQO, we
regard as a random variable capable of taking the values
0,1,2, ... :7. In actual fact, we obtained only two injuries and
the probability of two or fewer injuries is

+ +

since, under th~ assumption that there is no real difference
between the two treatments, the number of injur~es has a hyper
geometric distribution. Calculation of the above probability
yields a value of about 0-3. Our finding then is that there
is a probability of approximately 0-3 that the tabulated values
(those more favourable to the head-turning treatment) could have
occurred purely by chance.



12

If this probability had been very small, say 0·05, then we
would be inclined to disbelieve that this event occurred by
chance. We would believe there to be a real difference
between the effects of the two tr~~tments rather than accept the
occurrence of a highly unlikely event. We all know that un
likely events do occur, but in statistics we usually conclude
that if our assumptions give "the observed events only a small
chance of occurring~ th~ assumptions are probably incorrect;
we can often calculate the probability of wrongly so rejecting
the assumptions. So from the doctor's data we cannot, with any
degree of conviction, state that the head-turning treatment is
less hazardous.

If the same data had arisen in, say, the operation of two
machines manufacturing small, fairly inexpensive- mechanical
parts (the two treatments corresponding to a new and old
machine and injuries corresponding to the incidence of the
production of faulty parts), my advice would have been to take
larger samples and apply the analysis again-to see if· a more
convincing result could be obtained. With large samples, we
would be reducing the chance of getting 'untypical' results.
However, in the case in question, we are dealing with injuries
to people. We might well consider the result 0 0 3 sufficient
ground for using head turning rather than risk subjecting
patients to the standard and possibly more hazardous procedure.
If the doctor does proceed to treat all patients by first turn
ing the head, he can, .of course, combine his observations of
injury with those previously obtained and do his statistical
analysis again.

Since the calculation of the figure 0·3 is based on the
assumption that injuries due to the treatments do not differ
significantly, you might like to play around with the table of
values a little in the following manner. Through all changes,
keep the totals "( 45 and 55) the same but al ter the number of
injuries in the first column, maintaining the total of 7. With
these new data, make an intuitive comment ~bout what you think
is the effect of head turning (or not), and then make the cal
culation of this configuration -occurring by pure chance, as was
done above.

TEETHING TROUBLES WITH METRICATION

The Age Weekender's Handy H~nt for 15.6.79 gives a method of
bracing fenceposts, taken from the Paul Hamlyn Handyman's
Encyclopedia. Unfortunately, they used the metric conversion
formula 2' 6" = 700 em, and so wrote: "Allow that the fence
post will go about 700 cm into the ground".

As a reader, Gary Donovan, pointed out (Access Age., 18.6.79),
this needs 29' fence posts - a tall order indeed.

On the ABC, an agricultural journalist, Trevor Johnson, in
News Commentary (4.7.79), also showed himself a little unhappy
with the new units. He spoke of "a record acreage of
10.8 million hectares".
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THE TESSELATION ART
OF M.C. ESCHER

John Stillwell, Monash University

The Dutch artist Maurits Escher (1898 - 1972) is probably
known to many readers for his mathematically inspired graphics,
which have appeared as textbook illustrations, posters and
record covers. A number of books have been written on his
work, the most informative from the mathematical point of view
being perhaps The Magic Mirror of M.G. Escher by Bruno Ernst
(Ballantine Books, 1976). Nevertheless, the richness of
Escher's work is such that much more could be written on its
mathematical impltcations, some of which Escher himself did not
realize. In this article I shall discuss just the tessellation
designs.

A tessellation is any pattern produced by filling the plane
with non-overlapping tiles. Floors have been made this way
since ancient times, so it was well-known that the only regu
lar polygons which could be used for tiles were squares,
regular hexagons or equilateral triangles. The second figure

shows the "dual" relationship between the hexagonal and tri
angular tessellations. The symmetry of these designs is so
blatant that artists through the ages have invented refinements
of the basic patterns to make their symmetry more subtle. These
refinements involve either

(1)
or (2)

changing th~ shape of the basic tile
. imprinting a design on the basic tile

so as to eliminate certain lines of symmetry or to make them less
obvious.
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For example, to kill the diagonal lines of symmetry in the
square tessellation one can imprint the basic tile with an
asymmetric pattern, such as

which gives a more interesting tessellation, due to Escher:.

Exactly the same result can be achieved by changing the shape
of the basic tile to the flying horse;

The ,fact that the flying horse tessellation is symmetrical,
but less so than the pl§Yi"n square tessellation, is reflected
by an analysis of its~ymmetry group. We may define a symmetry
to be any motion of the plane which results in the tessellation
being superimposed on itself. Then it is cle~r that any
symmetry of the flying horse tessellation is a combination of
horizontal and vertical translations of unit length (= side of
the square). Such a translation ca"n be concisely specified by
a pair (m,n) of integers,' where m,n are respectively the
horizontal and vertical distances covered in the motion.
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It is clear that the result of symmetries (m1,nl ) and

(m 2 ,n2 ) in succession is the symmetry (m l + m2 , m1 + m2 ), and

that the symmetry (m,n) has the inverse (-m,-n) which moves
every point back where it started. These properties imply that
the symmetries form a group in· the mathematical sense, and ·what
we have just given is a precise description of the symmetry group
F of the flying horse tessellation.

Another wa¥ to describe F is by letting X,Y denote the unit

translations to the right and upwards, and x-I, y-1 their
inverses. Then if we write combinations of the unit translations
as "products" of the corresponding letters, any motion reduces
to the form

which is what we previously denoted (m,n). For example

This calculation uses the relation XY = YX, which is valid of
course, since the result of translations is the same whatever
their order.

The symmetry group S of the plain square tessellation
obviously includes X and Y, but also some additional motions,

suc~ as a rotation R thrOUgh; about a vertex. Without finding

them ~nd their relations explicitly, this confirms that the
plain square tessellation is "more symmetrical" than the flying
horse tessellation. The increase in symmetry is due to the
greater symmetry of the basic tile - the square has a number of
symmetries by reflection or rotation, while the flying horse
has none. But one can use the fact that the square has only
a finite number of symmetries to show that there are only
finitely many symmetry groups based on square tiles. Similar
reasoning for the hexagonal and triangular tessellations leads
to the conclusion that there are only finitely many plane
symmetry groups.

This means that artists designing floors, wallpapers etc.
have only finitely many (17 in fact) types of symmetry to
choose from. All of them were exhibjted in.the wall decorations
of the Alhambra in Spain, made by the Moors in the· 15th century,
so Escher came on the scene far too late to make any innovation
in this area! His contribution was to find interesting shapes
for the basic tile, which is what group theorists call a
fundamental domain for the symmetry groups.

He took advantage of the fact that fundamental domains could
be recognizable human or animal shapes. Here are some of his
best known ones:
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He also produced designs in which tiles of different types

alternate, for example

in which case the fundamental domain is a union of tiles, one of

each type. This can also happen when all the tiles are of the

same shape, if they are. coloured differently.

In the 1950's Escher became interested in depicting the

infinite in terms of tessellations which packed (in theory) an

infinite number of tiles into a finite space. Naturally the tiles

cannot all be congruent in this case, and the artist faces the

problem of making them become arbitrarily small in a natural and

symmetrical way. Escher, who always freely admitted that he did

not know much mathematics, was unaware that the ideal tessella

tions for his purpose had been found by mathematicians in the

19th century, but he was lucky enough to stumble on the example

opposite in the book Introduetion to Geometry by H.S.M. C9xeter.

The curvilinear triangles which fill the disc are not congruent,

but they all have the same angles ~, i, ~, and their 'size

diminishes nicely as they approach the boundary. In fact, each

triangle is a fundamental domain of a group 01 transformations

which .map the disc into itself. The transformations concerned

are called linear fraetional transformations, which we will. not

describe in detail here. .
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A diagram of the above type was first discovered by the
Swiss mathematician H.A~ Schwarz in 1872, while studying
functions which are invariant under linear fractional trans
formations. (These generalize the "functions cos z and sin z
which are invariant when z goes to z + 2n.) About 10 years
later, the great French mathematician Henri Poincaret made the
sensational discovery that if "distance" is defined in a new.
way for the disc then it can be considered as a "non-euclidean
plane", in which the circular arcs perpendicular to the
boundary are "straight lines", the triangles are "congruent",
and the linear fractional t~ansformations described above are
"motions".

Poincare imagines that the physical laws inside the disc
are such that all objects shrink by a factor 1 - r 2 when they
travel a radial distance r from the centr~, so that size nears 0
as they approach the boundary r ~ 1. Thus the inhabitants'
steps will always fall short of the boundary, and if they are
unaware of the shrinkage, they will consider themselves to live
in an infinite space. And they certainly need not be aware of
it, because the relative sizes of neighbouring objects always
remain the same, in fact they can use rulers, tape measures, etc.
to assign constant sizes to objects just as we do. In particu
lar, the straight' line between points A, B is the position of
a tape measure between A,B which g~ves the smallest possible
"length". It turns out that this "straight line" is the
unique circle through A,B perpendicular to the boundary (or
the diameter, if A;B are on the same diameter) - as desired .

. We can also think of the Poincare disc as a bird's eye view
of a plane, with the disc boundary as horizon. However, this is
not the euclidean plane, because for any "straight line"
and a point P outside it there are many "parallels" to J1, through
P.

t Also attributed to ~the Germ~n Felix Klein.
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It turns out that the geometry is simply that of Euclid
with the "single parallel" axiom replaced by a "mul tiple
parallel" axiom, a famous geometry first proposed by Bolyai
and Lobachevsky (Hungary and Russia respectively) in the
1820's. Poincare's disc not only provides a model of
Bolyai-Lobachevsky.geometry, but it shows that it. is a good
geometry to use when studying linear fractional transformations.

This observation has extraordinarily wide implications, with
consequences in the theory of equations (both algebraic and
differential), theory of numbers and relatively modern areas
such as coding theory. There are also surprising connections
with other parts of geometry, such as the study of curves on
surfaces and in 3-dimensional space - just recently the
problem of classifying knots has been solved using intricate
constructions in the Poincare disc

But to return to tessellations: in contrast to the euclidean
plane, there are infinitely many symmetry groUf-S in the Bolyai
Lobachevsky plane. In particular, we can choose the funda-

mental domain to be any triangle with angles ~, ~, ~ wherep q r
p,q,r are integers stich that ~ + ~ + ~ < TI. This is because

p q r
Bolyai-Lobachevsky geometry allows the angle sum of a triangle
to be any value less than TI. We can see this in the Poincare
model: the angle sum approaches 0 as the vertices 'approach the
disc boundary and approaches TI (the euclidean value) as the
size of the triangle approaches O. Since it remains true that
the sum of the angles at a point is 21T., a tessellation wi th

congruent (~,~,~) triangles can be constructed with three types
" p q r

of vertices

(a) where 2p angles of
TI

meet-
p

(b) where 2q angles of 1T meet-
q

(c) where 2r angles of 1T meetr
at which the basic symmetries are "rotations" through angles of

!.., :!!.., !.. respectively. There are also "trans,lations" whi·ch carry
p q r
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any vertex onto any other of the same type.

The amount of symmetry is so overwhelming that to our
euclidean eyes all non-euclidean tessellations look much the
same. Escher's main concern was to find interesting shapes for
the fundamental domains, which 'he did in a series of pictures
entitled Circle Limit I, II, III, IV. His favourite number, III,
is a very elegant design using fish, but mathematically dis
appointing because it depends on some lines which are not
"straight", namely, circles not perpendicular to the disc
boundary. Number IV (also known as "Heaven and Hell" or

"Angels and Devils", and available as a poster)t is mathe
matically correct as well as being an interesting artistic
statement. The fundamental domain is a black devil and white
angel side by side

the underlying triangle of each being Ci,i,i).
Circle L1mit IV is the best picture we have of the world

imagined by Poincare (see overleaf).

If one stands' close to the large poster it is possible to
accept the disc boundary as "horizon" and the remarkable
spaciousness of the Bolyai-Lobachevsky plane becomes apparent.
Not only do parallel lines diverge in many directions, but
population growth explodes in all directions too. Concentric
rings of angles and devils around any point grow rapidly in
size,· each ring containing more than twice 'as many 'as its
predecessor. This shows that population can grow indefinitely
at its natural exponential rate in the Bolyai-Lobachevsky
plane - something which is not possible in euclidean space 
so in some ways this imaginary world works better than the
real one.

t see advertisement on back cover.
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A diagrammatic version of CircZe Limit IV.

00 00 00 00 00 00 00 00 00 00 "00 00 00 00

MORE MATHEMATICAL SWIFTIES

"The lines intersect", stated Tom and Jane simultaneously.

"Why isn't 'IT equal to 22/7?", inquired Tom irrationally.

"What is the area of the unit circle?", Tom asked piously.

".!. sin.!. oscillates near x = Ofl., Tom" yelled wildly.
x x
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EINSTEIN'S

PRINCIPLE OF EQUIVALENCE

Gordon Troup, Monash University

Consider two observers moving relative to one ano~her. Each

uses a frame of reference, or coordinate system, to follow the

motion of a particle. If we make due allowance for their

relative motion, we must arrive at consistent descriptions. The

f~rst observer will express his law of motion in terms of three

spatial coordinates x,y,z and a time coordinate t; the second

will use x' ,y , ,z' and t I •

Galileo was the first to produce a principle of relativity 

the statement that under the transformation

X' x - Vt, y' = y, Z' = Z, t ' = t (1)

(where V is the relative velocity of the observers - along the

x-axis), ,the laws of classical dynamics are unaltered.

"~" I '
Newt()n~an mechanics obeys Galilean' relativi ty, but electrici ty

and magnet£Sm do not. This apparent paradox was resolved by

Einstein, in his special theory of relativity. The appropriate

transformation is

Xl (x - Vt)(l - v2 /c 2 )-i

y' y, Z I = Z
(2)

t ' (t - Vx/c 2 )(1 v2 /c 2 )-i,

where c is the speed of light (3 x 108 metres per sec.).

This set of equations is known as the Lorentz t transformation.

When V is much smaller than c, the Lorentz transformation (2)

is approximated by the Galilean transformation (1). Already we

can see that the Lorentz transformation (2) involves an inter

play between space co-ordinates and time co-ordinates.

But it is not the intention of this article to examine the

consequences of special relativity. The aim is to show how, by

remarkably simple (to us now!) reasoning, Einstein arrived at

his principle of equivalence, the foundation of his general

theory of relativity.

Special and Galilean relativity apply to observers using

inertial frames, namely those in which Newtonian dynamics

applies in constant relative motion. General relativity

toutch Physicist '(1853 - 1928), Nobel Laureate 1902~ whose work

anticipated and prepared the way for much of Einstein's special

theory of relativity.



22

applies to accelerated frames, as well as to inertial frames.

We shall start by considering two observers, one of whom
is being accelerated.

Let the first observer be the one using an inertial frame
(I) with coordinates (x,y,z,t), and the second be the one
whose frame (N), with coordinates (x' ,y' ,z' ,t'), is accelerated.
Suppose that N is subject to a uniform acceleration A along the
x-axis of I, and is coincident with I at a moment t = t' = 0,
when the initial velocity of N is also zero ..

By using the well-known expressions for uniformly
accelerated motion,. we find

x' x -

yl y, z' = z,
(3)

and we will assume the'Galilean condition t' = t. (In view of
our experience with good watches on trains and in cars, the
assumption is a good one - provided any speeds involved are
'very much less than the speed of light.)

Fixing our attention now on the x and Xl components, we have

dx' - ~ = ~(x _ iAt 2 ) = dx - At (4)""dt' - dt dt dt

for the velocity transformation, and

d
2

x ' a 2
x' d

2
x _ A (5)

dt ,2 dt 2 dt 2

for the acceleration transformation. Thus even a constantly
accelerated frame does not keep accelerations constant.
Because Newton's laws give us the value of a particle's
aaaeteration, it follows that accelerated frames are not
inertial frames.

Nevertheless, it is sometimes convenient to use accelerated
frames, ,so it becomes necessary to know the consequences of
being in such a frame. Let us consider the results of some
experiments performed in a constantly accelerated laboratory.
(See Figure 1.)

y

°

J

y'

Floor

0'

X

N

mD
m

Laboratory

X'

Figure 1
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With respect to the fixed inertial frame I, the non-inertial
frameN is moving along Ox with a coristant acceleration A.
Consider a laboratory fixed in N as shown; an observer in it
cannot see out of the laboratory, but can communicate with I,
whose observer can see into the laboratory.

The observer in N performs the following experiments.

(1) He releases a mass m from "re-st" in N.

(2) He suspends a mass m from a spring balanc~ as shown.

(3) He observes a pulse of light which is emitted from
I parallel to Oy.

The observer in I describes the results as follows. On
release, the mass m.continues moving along parallel to Ox
with the instantaneousvelocit~it had just before release,
since no forces now act and the law of inertia holds. However,
the laboratory N accelerates past the mass m, which is there
fore struck by the floor.

The mass m on the spring requires a force F to keep it accellera
tinge rhis is given by F = mA, and so the spring will be
stretched by the amount necessary to make the tension force
in it equal in magnitude to mAo

Let the pulse of light enter the laboratory at time t = 0,
and travel for a time ~t parallel to Oy. The distance travelled
parallel to Oy will be e~t; meanwhile the laboratory will have
moved a distance !A(~t)2 parallel to Ox.

The observer in N describes the results as follows. On
release, the mass m accelerates towards the "floor with
acceleration - A.

The spring is stretched by just the amount that it would be
stretched if there were a 'weight force' -mA acting towards
the floor.

.r '0'

The light beam travels a distance c~t parallel to O'y', and
a distance -iA(~t)2 parallel to O'x'. This relationship
characterises a parabola. (Refer to a particle projected
horizontally in a uniform vertical gravitational field of
acceleration A downwards; see figure 2.)

/1 ( I\t ) 2
, ~f ~ _

Figurf' 2
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Since the observer in N cannot see out of the laboratory, he
cannot tell

e·

(i)

(ii)

whether the laboratory is "being uniformly accelerated
parallel to Ox (as the observer in I knows it is); or

whether he (N) is stationary in a uniform gravitational
field of acceleration - A parallel to O'x' .

Thus in every dynamical experiment N performs he must
postulate the ~xist~nce of the force -mA on a mass m if, for
him, the law of inertia is to hold. From the viewpoint of
the inertial frame I, this force is non-existent. It is
therefore called a 'pseudo~force', 'fictitious force', or
(better) an 'inertial force', since it is very real to anyone
experiencing it, as in a rap~dly decelerating car. Hence:

(i) in a uniformly accelerated frame the effects of the
acceleration are equivalent to those of a uniform
gravitational field of the same acceleration, but
oppositely directed;

(ii) the acceleration aN relative to the non-inertial
frame N is equal to the acceleration aI relative
to the inertial frame I minus the acceleration A
of the non-inertial frame:

(6)

Einstein's 'Principle of Equivalence', on which is founded
his General Theory of Relativity, states that it is impossible
to distinguish between uniform acceleration of a laboratory
and an oppositely directed, unifor~ gravitational acceleration
(field) of the same magnitude by experiments performed solely
in the laboratory. A consequence .of this is that the path of
a light ray should be curved in passing through a gravitational
field. The results of measurements'on the bending of starlight
passing near the sun are not inconsistent with Einstein's
General Relativistic prediction. Very accurate measurements
of the delay of radar echoes from Venus which pass by the sun,
and of the radio signals from deep space probes, have agreed
very well with Einstein's predictions. A further prediction is
that frequencies of electromagnetic radiation emitted by simi
lar sources will differ if the sources are in different
gravitational fields, or if they are ,at different heights in a
constant gravitational field. This has also been verified.
Finally, the General Theory of Relativity predicts gravitational
waves, whereas the Newtonian theory does not. It may be that
these waves have been detected; the work still goes on to make
better and better gravitational wave detectors, since most
scientists working in the field of gravitational waves now
doubt that Weber in his pioneering work did in fact detect
such waves. In Australia, a group in Perth is working on
gravitational wave detectors.

In February of this year, the astronomers Taylor, Fowler
and McCulloch (a Tasmanian) reported observations on a binary
pulsar which indicate that the system is losing energy by
gravitational radiation. (See New Scientist, 8 February 1979,
or Nature, also 8 February, 1979.)
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The considerations leading to the equivalence of the
results of dynamics experiments in a uniformly acceler~ted

frame to the results of the same experiments iri a frame sub
ject of a uniform gr~vitational field (or equal, but
oppositely directed ~ccelerati~n) are co~paratively simple.
Yet Einstein· was the first to publish these considerations.
He displayed his genius by extending this equivalence to the
results of all physical experiments, and then insisting that
the equivalence was a two-way one so that, for example, light
should be bent on passing through a gravitational field.

Of course, Einstein's theory of general relativity is not
written in the simple mathematical language used above. It is
written in terms of tensor calculus - with which Einstein was
not particularly familiar when he first published his early
works on general relativity, but to which he contribu~ed later
on. Nevertheless, after he pioneered the way, we may grasp the
basis Df his theory - the equivalence principle - by means of
comparatively simple considerations.

Example: (a) By working out the problem in"the aaaeZe~ating
frame, show that a man in a lift, which is in
free fall, will be essentially weightless.

(b) Show the same thing for an astronaut in an
earth satellite with a circular orbit.
Hint: see Equation (6).

00 00' 00 00 00 00 00

PROJECT STEP

By now, your school should have received copies of a recent
report on the progress of Project STEP (Secondary-Tertiary Edu
cation Planning). This Monash-based study is the most compre
hensive survey to date of Victorian school students and their
subject choices. Its aim is to provide realistic planning
data for the development of tertiary courses.

The preliminary report is of especial interest to readers of
Funation because its main concern is with mathematics. Among
the major patterns noted in the data are:

(1) There has been a SWing away froQ the study of mathe
matics at Year 12 - the trend to General Mathematics
(in place of Pure and Applied) has been followed by a
tendency to drop the subject altogether;

(2) Girls, more so than boys, tend to drop mathematics at
Yea~ 12, although overal~ more girls than boys sit
HSC and they also have the better pass-rate.

The project officer, Mr B.J. Walsh, asks if students may not
have too much fleXibility in their choice of subjects. He

" suggests that many courses actually chosen by students at HSC
level lead to very little freedom of choice at the tertiary level.
In the Foreword, Mr Alan Wilkinson, the Personnel and Public
Affairs Director of Shell (Australia), whose company funded
publication of the well-produced report, expresses concern at
"the trend away from mathematics.
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LETTERS TO THE EDITOR

RECORDS TUfv1BLE

244497 ~ 1 is prime

In quick succession the largest known prime has grown larger.
Last year came the surprising announcement (L.A. Times November
16, 1978) that two freshman students of USC Hayward, Laura Nickel
and Curt Noll, had completed a high school computing project by

showing that 221701 - 1 (a number of 6553 digits) is prime.
Curt Noll continued this work, and next in February, 1979, found

that 223209 - 1 (6987 digits) is prime. His good fortune ~s
illustrated by the more recent announcement (L.A. Times May 31,

1979) that the next prime in the sequence 2m - 1 is 244497 - 1
(a number of 13 395 digits); this finding is due to Harry
Nelson and David Slowinski who apparently had access to con
siderably faster computing facilities than did Noll; the
latter is reported to have remarked that it Would have taken him
16 years to duplicate this finding. So now we know of 27
Mersenne primes (primes of the shape 2m - 1) and by the same
token, of 27 perfect numbers: a number is said to be perfect
if it is equal to the sum of its divisors other than itself,

and it has long been known (Euclid) th~t 2P- 1(2 P - 1) is

perfect if 2P - 1 is prime. The complete list of known Mersenne

primes is 2m
- ~ with

m = 2 3
1279
19937

5 7 13 17 19 31 61 89
2203 2281 3217 4253 4423

21701 23209 4449~

107
9689

127 521 607
9941 11213

A.J. van der Poorten
Macquarie University

[~hings are moving in this area of mathematios. This is
the third time we have reported the highest known prime. See
Func t ion -' Vol. 2-' No. 4 -' and Vol. 3 -' No.1. We wo nderhow l 0 n g
this"new reoord wiZl Zast. Eds. l.

A MESSAGE FROM THE CRYPT

On a recent trip to England, I bought a copy of Cocker's
Decimal Arithmetick (John Hawkins' edition) of 1685. This book
·shows how to use decimal fractions (introduced not long before
by Simon Stevin), how to·extract square and cube roots and how
to manipulate them and also how to solve quadratic equations.
Near the beginning of this book, however, there appears the
strange message reproduced opposite.
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Anix, tHO Anamftggi1J() Jarammi Lehkeg Loj,xr,rJ..
mlri; T.rpiemglZ 1m XQnifafu Difthemiemg; PNwi
nlljigfehfJ•

G 18,

I T you Lepeag fo zegfod gan~ at yauh glahe
. rouheg im lehugims fre toppodims feQeafige

you dipp frem ze fre zeffeh azpe fo juws rod I
rave glemf nime, .amw it ny laimeg freheim nay
ze Lhotifal.pe fo fre luzpixk I rave ny digr, zuf
it mot; if ig moC a foow frims mod imweew I wo
~ay go.

Oxfoz. ~o. 168....
ThonPomwom

6 I "II, I a»

rOff/J rJm·z,pe ltinlJJ1J[
Jorm Radking.

One should not underestimate the information which is pro
vided by the physical appearance of the message.

John N. Crossley
Monash University

PROBLEM SECTION

As in earlier cases, we begin with solutions - some sub
mitted to us, others (regrettably) supplied by the editors. We
leave some earlier ones open, and print some new ones. One
reader queried us on PROBLEM 3.2.3, asking if we were serious.
Yes, we are. Some reasonable assumptions have to be made. The
problem read "Prove that, of all the teenagers in the world, at
least two have the same number of teenage friends". We might
begin by disallowing the usage "A is a friend of A", and we
need another slightly less obvious understanding. After this,
the problem is entirely mathematical in character, and not
difficult if you approach it from the right direction.

SOLUTION TO PROBLEM 3.1.1
This problem read:

Two of a 3-man jury each independently arrive at a correct
decision with probability p. The third.flips a coin. The
decision of the majority is final. What is the probability of
the jury's reaching a correct decision?

This problem is referred to as "the problem of the flippant
juror". A simple writing out of all cases produces the value p
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for the required probabili~i - i.e. the value is the same as
that expected if the decision rested with a single "non-flippant"
juror.

PARTIAL SOLUTION TO PROBLEM 3.1.2
If the product of four consecutive integers is a square,

what are the numbers?

There are three cases to consider:

(1) One of the integers is zero - this clearly leads to
four solutions;

(2) All the integers are positive - this case is dis
cussed below;

(3) All the integers are negative - this case reduces
trivially to case (2).

In case 2, we may choose a ration~l number x, such that
(x - 3/2)(x - 1/2)(x + 1/2)(x + 3/2) = m2

for integral m. This equation may be solved to give x 2 = i ± 11+m 2

from which" it follows that~ is integral, and 1 + m2 is a
perfect square. This is impossibl8 for m > O.

Hence the only solutions are those for which one of the
integers is zero.

We leave ope~ for the present, the second part of the
problem which asked for four consecutive odd numbers whose
product is a square.

SOLUTION TO PROBLEM 3.1.5
This problem asked how many different palrlng arrangements

could be produced from 2n players in a ~ennis tournament.

Line the players up and pick off pairs from one end. This
can be done in (2n)! ways. The order in which the pairs "are
taken is irrelevant. There are n! such orderings. Nor does it
matter in which order the members of any individual pair are

selected. There are 2n arrangements of pairs. Thus the re

quired answer is (2n)!/Cn! 2
n ), which is the answer given in the

problem.

SOLUTION TO PROBLEM 3.1.6
This version of a well-known brainteaser read as follows:

Hanging over a pulley is a rope ·with a weight at one end.
At the other, there is a monkey of equal weight. The rope
weighs 250 gm per metre. The combined ages of the monkey and
its father total 4 years and the weight of the monkey is as
many kilograms as his father is years old. -The father is
twice as old as the monkey was. when the father was half as old
as the monkey will be when the monkey "is three times as old
as the monkey was. The weight o~the weight plus the weight of
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the rope is half as much again as the difference between the
weight of the weight and the weight of the weight plus the
weight of the monkey.

How long is the rope?

Caecilia Potter (Year 11, Siena Convent) solved the
problem correctly. She put a for the monkey's age, b ior
that of its father, the weight of the monkey and the weight of
the weight. (All of these are easily seen to be equal.) If
now L is the length of the rope in metres and w its weight in
kilograms, we easily find

L = 4w, b = 2w~ a + b = 4,

i.e. three equations in four unknowns. To find a fourth
e~uation,' we need to unravel the complex sentence beginning
"The father is twice as old as the monkey was when, .. ",
This first "when" refers to a time x years previously, and the
final "when" to a time y years before the description. The
sentence may now be disentangled to produce three further
equations:

9b = 2(a - x), b - x = 2(a - y), b - y = 3(a - y).

There are now six equations in six unknowns, and solving for L,
we find L = 5. The rope ~s 5 metres long.

[This problem has stayed in my mind because of a painful
memory. Twenty years ag0 3 I was a cadet industrial engineer
with Mt Isa Mines and learned of this problem through a book
of businessmathematics in their library. Two of my senior
colleagues and I had a competition to solve it. I finished
in 30 minutes 3 the next man in 45 and the third gave up after
an hour. The second man won the competition because I 3 having
reached the conclusion b = 2~3 had written L = 2b = 2 x 2~ = 3.
Very sad! M. D. ]

SOLUTION TO PROBLEM 3.2.1
This problem asked for a proof that every year contained at

least one Friday 13th. To show this, note that only 14 different
types of year can occur. A year may be leap or non-leap and
may start on any day of the week. We simply check each possi
bility. The calculation may be greatly reduced, however, by
using the techniques described in Dr Sonenberg's article in
Function, Vol.1, No.1. In a non-leap year, the 13th of the
months January, February, March, etc. occur on the .13th, 44th,
72nd, etc. days of the year. Taking a set of remainders after
division by 7, we find that each of the numbers 0, 1, 2, 3, 4,
5, 6 occurs at least once. A similar result is found for leap
years. As this remainder determines the day of the week on
which the 13th falls, the proof is complete.

SOLUTION TO PROBLEM 3.2.5
This considered a regular pentagon ABCDE, whose diagonals

AD and EC meet at Q. Readers were asked to show that the seg
ment lengths AD,AQ,QD satisfied the equation
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AD AQ
AQ QD

and hence to show that the ratio AD/AQ equals ~(1+ 15).

c

o

B

E

A

Stephen Tolhurst (Year 12, Springwood H.S., N.S.W.) solved
this problem. He writes:
Let a be the side of the pentagon,
and let LEAD = a. Then LEDA = a
as the triangle AED is isosceles.
The triangles AED and EDe are
congruent and therefore LCED
LECD a. It follows that
LDQC = LAQE = 2a, and
LEQD = n - 2a, as LDQC =
LQDE + LQED. Then LAEQ = LQDC
n - 3a. But, since ABCDE is a
regular. pentagon, a = n/5.

Now apply the sine rule to the triangle ADE to find

AD = (a sin ~n)/(Sin ~). Similarly from tri~ngles AEQ and QDE

respectively, we find AQ = a, QD = (a sin ~)/(sin 2;). It
follows that

AD
AQ

AQ
QD' (*)

Stephen then gives a trigonometric argument to-show that

AD/AQ = t(l + 15). He finds cos ~ = t(l + 15) in the course of

his investigation. A somewhat more direct argument is possible.
Put x for each of the ratios in equation (*) and note that the

left-hand side may be written as 1 +! Then 1 + ! = x, fromx x
which we find x = 1(1 ± 15) and clearly the p6sitive root is the
one required.

[We have slightly amended Stephen's letter - most notably by
changing degrees to radians. Degrees are arbitrary units~

whereas radians are natural mathematically. The French, a~d

some other continentals, measure angles in grades, of which a
hundred (cent) make up a right a~gle. The existence of this
centigrade scale ~s the reason that we now use the term Celsius
for the metric temperature scale. Eds.]

SOLUTION TO PROBLEM 3.2.6
What is the probability of three coins all falling alike

when tossed together? One argument has it that they all fal]
heads with probability 1/8, and tails with the same probability.
The answer on this argument is t. Another view is that as some
two coins must fall alike, the third could fall the same or
different. On this view, the probability is!. Who is correct,
and why?

Stephen Tolhurst also answered this, pointing out that the
first argument is correct. "The second argument arises if the
coins are indistinguishable, i.e. HHT is the same as THH or
HTH." In the case of coins, one expects to be able to mark
them (say with a felt-tip pen) in such a way as to distinguish
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the coin without affecting the results of the experiment.
Nevertheless, this.expectation is not a mathematical result
and it does require checking. Stephen did this, subjecting,'
a.s he writes, "three images of Her Majesty to a most undigni
fied procedure". In 100 such trials, he found 30 cases in which
the. coins all agreed. He asked how good this was as evidence
for the figure of ! as. opposed to ~, and how many trials should
be carried out before the results may be considered reasonable.

Stephen's letter was passed on to the editor who posed the
question. Here is his reply.

Stephen is wise to be not firmly convinced by his own reason
ing and hence to resort to experimental verification. In physics,
elemen~ary particles behave as if they are indistinguishable.
If we were dealing with photons rather than coins, there would
be four equally likely cases HHH, HHT, HTT, TTT, not eight as for
coins.

For the experimental verification, let us define a "trial"
as being the tossing of three coins, and call a trial a "success"
if all three coins fall with the same face showing. Let p denote
the probability of success in one trial. If we perform n
independent trials, we can be fairly sure that the observed
proportion of successful trials will be close to the true
probability, p, provided we make n large enough.

Let X denote the number·of successful trials out of n.
Then X has a binomial probability distribution, mean np and
variance np(l - p). The proportion X/n has a mean p and variance

pCl - p) With a high probability, perhaps around 95%, X/n
n

will be within two standard deviations of its mean:

I~ - p I ~ 2!P (1 n- p) .

The standard deviation is largest when p
pretty confident that

t, so we can be

1* - p I ~ 2 ! ~ (1 n- i) = in .
Taking n = 100 trials (as did Stephen), X /n should be wi thin

__1__ ~ ~ qf the true p value. This should distinguish
/100 10
between the two possibilities p = ! and p = t; in fact Stephen's
observation of X/n = 30/100 is within 1/10 of ! but not within

;0 of t, supporting the argument that p = t. In order

confidently to estimate p to wi thin 160' say, we would ne·ed

1 1.'in = 100' 1.e. n = 10 000.
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We leave you with some further problems.

PROBLEM 3.4.1
Five sets of traffic lights are spaced along a road at

200 metre intervals. For each set, the red signal lasts 30 sec.,
the green 28 sec. and the amber 2 sec. The lights are synchro
nised in such a way that a car travelling at 36 k.p.h. and just
catching the first light, just catches the other four. The
width of the cross-street at each light is 20 metres. Find all
the speeds at which it is possible to travel without being held
up at any of the lights.

PROBLEM 3.4.2
Many hallways have light switches at eitper end, allowing

the light to be operated from each. How can the wiring be
arranged to achieve this?

PROBLEM 3.4.3 (Submitted by Andrew Mattingly, Science I,
Monash University.)

Let ~n denote the number of ways of putting n letters into
n addressed envelopes so that every letter goes into a wrong
envelope. Derive a formula from which ~n may be calculated.

PERILS OF THE DOUBLE NEGATIVE

President Carter's unpopularity has reached an all-time low.

ABC News) 3AR, l6.7~79.

1979 PRIZE FOR TAUTOLOGY

You get this feeling of deja vu, after the things have
happened.

John Gribbin, author of Timewarp,
ABC Science Show, 9.6.79.

HOW THE MANAGER KEPT HIS WORD
(See Function, Vol.3, No.3, p.l9.)

The manager brings Professor Fist a cake just after eleven
o'clock and says:

"This is how I surprise you. I leave it so late you no
longer have any reason to believe I'll give you the party, and
so I can do what I promised."

Do you'think his explanation is satisfactory?

00 00 00 00 00 00 00



Anaxagoras (ca. 500 B.C. '- 428 B.C.)

.<Nomore fiction for us: '.. we calculate; but .thatwe may
:eaJ;.hUlate, we had to make· fiction first .

Friedrich Wilhelm Nietzsche (1844.-·1900)

....................... A.· .. qllanttty .. \Vh+ch. is increased or .. deer~wsed by .•. a Il·.infini
te§im~ll.y small quantity is neither increased nor decreased.

Johannes·Bernoulli (1667'- 1748)

Tl10se impost(}rs, then ,whoIIl .. theycal1mathernatieians, I
c9n.stiltedwithQut$cruple", because th~y. seemed to.tiseno
sacrifice, nor pray to any spirit for their divinations.

St Augustine (354- 430)

It.ls.true· .. thttt th.e mathematician. who .isnot somewhat
ofa poet, will never b~a perfectmatheIIlatic1a.n.

Karl Theodor Weierstrass (1815 - 1897)

From a nightmare of Friedrich Engels (1820 -1895)

.. ·.• last·.week. in a dream I gave a I.ellow my shirt
buttons to differentiate a.nd the fellow ranawa.ywith them.

The closely .hel.d consoT~tionofs.ollle rationa.lizing
lI}~tlJ.~rna.ti.ei.aIlsthatdb:and dx are·. in· fact only infinitely
small ... fs a chimera.

Karl Marx (1818 - 1883)

I take space to be.absolute.

Isaac' Newton· (1642 -1727)

I hold space to be something ptireTyreTative as time is.

Gottfried Wilhelm Leibniz (1646 - 1716)

00 00 00 00 00 00 00 00 00 00 00 00
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