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Many people have judged David Hilbert to be the greatest
mathematician who ever lived. Whatever this kind of judgement
is worth, few would deny that his influence on twentieth
century mathematics has been immense. Many would say that more
than half of twentieth century mathematics has directly arisen
in response to challenges set by Hilbert. One such set of
challenges was given at the International Mathematical Congress
in Paris in 1900. He was inv~ted to survey past and future
mathematics at this junction of the centuries. He offered
twenty-three problems which he thought provided the key to
important advances. Our leading article in this issue gives
Max Dehnrs solution of his third problem. The first part of
the article is scissors and paper mathematics - what is
discussed describes what can be done by cutting a sheet of
paper in various. ways. The rest of the article extends the
discussion to three dimensions.

Good problems are the heart of mathematics. ' And Problem
2.6 of Volume 1 has proved this. We have had at least a
hundred comments on or attempts at solutions of this problem.
We print the elegant solution of Christopher Stuart in this
issue. If you have not met the problem before, try to do it
before you read the solu~ion.
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HILBERT'S THIRD PROBLEM
John Stillwell, Monash University

INTRODUCTION

In 1900 the great German mathematician David Hilbert
challenged mathematicians of the 20th century with a list of
23 problems. Hilbert's problems have been a great stimulus
to mathematics, and some of them are still unsolved. The
only one which turned out to be at all easy was the third,

"and it was solved by Max Dehn a few months after Hilbert
proposed it. The problem is the following:

Given two polyhedpa P and Q of equal volume~ is it
always possible to cut P into polyhedral pieces which re­
assemble to fopm Q?

Polyhedra P, Q for which this is possible are called
equideaomposable. For example, an oblique prism is equi­
decomposable with a right prism, as the following diagram
shows:

However it was not known (before Dehn) whether even a regular
tetrahedron was equidecomposable with a cube.

--.--- pieces?~

On the other hand, it was known that the corresponding
result in the plane was true. Namely, if P and Q are polygons
of equal area, then P and Q "are equidecomposable. Two special
cases of this are

1. Papallelogpams with the same base and height ape equi­
- decomposab le.
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As the diagram shows, filling a horizontal strip with
copies of the two parallelograms automatically cuts the original
parallelograms into corresponding pieces:

2. ReatangZes of the same area are equidecomposabZe

Rectangle ABCD is equidecomposable
with parallelogram AEFD, which has

H the same base and height as the
A ...-----..;;:...~--_----. other rectangle, GHFD. Thus both

rectangles are equidecomposable
with the parallelogram, and'hence
with each other, as can be seen
by superimposing two sets of cuts
on AEFD - one set dividing it into
pieces of ABCD, the other set

F' dividing it into pieces of GHFD~

The general case follows from the two special cases in four
easy steps.

e.g.

a) Cut given polygon Pinto triangles

A~

~v
b) Convert each triangle into,a rectangle

c) Convert each rectangle into a rectangle of width 1
(using special cases 1 anp 2) and stack them up. Thus
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a rectangle R of
heigh~ h, say.

d) Now if Q is a polygon with the same area as P it will
also be equidecomposable with R, and hence with P itself (by
superimposing two sets of cuts on R, as in special case 2).

A RECTANGLE DECOMPOSITION PROBLEM

In proving that rectangles of the same area are equi~

decomposable, we first rotated one rectangle, then cut it
obliquely. Is it possible that the decomposition can be
made

(i) without rotating pieces (i.e. just sliding them)
(ii) with all ~uts horizontal or vertical?

Certainly this is possible if the rectangles have sides which
are multiples of the same unit, e.g.

12 unit
t---........-.;..-+----+---t-----tt----t~ ~

squares

However, it is not possible otherwise. For example, it is not
possible to cut the unit square into rectangles, then slide
them to form the rectangle with,sides y2 and 1/V2.

To prove this, we shall convert the problem into algebraic
form. Rectangles will all be placed with their sides vertical
and horizonta~ and

will be denoted by x ® y.

Since we are not allowing rectangles to be rotated, x ® y is
not necessarily equal to y ® x. We can form sum and difference
of these symbols (called tensors) and two expressions will be
considered equal just in case this follows from the rules (1),
(2) below, which reflect the results of vertical and horizontal
cuts:

(a + b) ® a, a ® a, + b ® a, • ~. (1)
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Bs
a a. a ® (a + (3) = a ® a. + a ® (3 (2)

Similarly, or by deduction from (1) and (2) , we can show
that

(a - b) ® a = a ® a - b ® a

a ® (a - 8) a ® a - a ® $.

It follows that a ® 0 = 0 ® a = 0, because

a ® 0 = a Q9 (y - y) = a ® y - a ® y 0

and 0 ® a = ( x - x) (8) a = x (8) a. - x ® a. = o.

Now observe that the problem of deciding whether the unit
square decomposes into the same rectangular pieces as the
rectangle wi th sides x and 11 is the same as the problem:

Does 1 (8)' 1 = x ® y?

I
I I
I I
I I
I I

I I

I I
I I
I I

--r ---
I I
I I---r II

For the decomposition of the
unit square can always be made
by a series of vertical and
horizontal cuts (dotted lines)
corresponding to decompositions
of I ~ I by rules (1) and (2),
then recombining the resulting
pieces into the given rectangles,
again by rules (1) and (2).

It is possible to solve this algebraic form of the problem
by introducing the ideas of rationaZ dependenoe and rationaZ
basis.

Non-zero numbers aI' '.', an are called rationally

dependent if there are rational numbers r l , r
n

, not all

zero, such that

rIal + ... + rnan O.
1 2For example, 2 and 3 are rationally dependent, because

132
2. 2 + (-2")·3=0

whereas 1, V2 are rationally independent since any equation

r l · l +r
2

· V2=0

would imply that V2 is rational, which 'is not the case. A
rational basis for numbers aI' ... , an is a set of numbers

(31' 8m such that

(i) 81 , ... , 8m are rationally independent
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(ii) each a
i

is a rational combination of the S's

i.e. a i = PlSl + ... + PmBm for some rationals PI' ... , Pm·

This expression for a i is unique, for if two dif~erent

rational combinations of the S's were equal their difference
would be an expression rlB l + ... + rmSm = ° with not all

r i O.

A rational basis for aI'

the a.'s themselves as follows:
~

an can be chosen from among

each following from its
predec~ssor by one of
the rules (1), (2).

Step 1: Put a
l

is the basis.

Step 2: See if aI' a 2 are rationally dependent. If not,

put a 2 in the basis. Otherwise go to Step 3.

Step i: See if a i is rationally independent of those

previously chosen, and only then put it in t~e basis~ Go to
Step i + 1.

For example, 1, V2 is a rational basis for 1, V2, l/v2,
II (v'2 - 1) because l/v'2 = v'2/2 = 0·1 + ! . v'2 and
1 I (v'2 - 1 ) = (v'2 + 1) I ( (v'2 - 1) (v'2 +. 1 » = (v'2 + 1)
= 1 · 1 + 1 · v'2.

Fundamental Tensor Theorem: If aI' ... , an are rationally

independent then

Xl ® a1 + ... + x n ® an 0

holds only if all xi = o.

Proof· If xl ® a l + ... + x n ® an = 0, the demonstration

of this fact will be a series of expressions

E
l

)E2

Ek = 0

Now if F is any function with the additive property:

F(a + S)

it will satisfy the rules

(a + b)F(a)

aF(a + B)

F(a) + F(B)

aF(a) + bF(a)

aF(a) + aF(S)

(1)'

(2)'
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whiCh have the same form as (1), (2), so we will be able to
demonstrate that

xlF(al ) + ... + xnF(an ) = 0

via a corresponding series of expressions

. .. (3)

each following from its
predecessor by one of
the rules (1)', (2)'.

E k ' 0

There is a lot of leeway in the choice of F, and we now
proceed to show that it is possible to arrange

F(ai ) = 1 and F(a j ) = 0 for j f i

for any i we please. What makes this easy is that F only needs
to work on the numbers a mentioned in the expressions El'~ •.. ~

Ek '. There are only finitely many of these a's, so starting

with aI' ... , an we can find a rational basis for them, say

Then if

a = rIal + ... + rmam

is the unique expression for a we can define

F(a) = r i (the coefficient of ai )

and F is obviously additive, with F(a.) = 1, F(a.)
1,. J

j f i.

Equation (3) then becomes

o for

... + x ·0 = x. = 0n 1,.

and since the choice of i was arbitrary, all xi = O. QED

This theorem shows that the unit square and the rectangle
(1/V2) @ y2 do not decompose into the same rectangular pieces
because 1, v2 are rationally independent and hence

i.e.

DEHN'S THEOREM

1 @ 1 - (1/V2) @ v2 f 0

1 @ 1 f (1/'\/2) ® v2.

Dehn succeeded in dealing with the polyhedron problem by
reducing it to a 2-dimensional proplem similar to the rectangle
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problem above. The use of tensors greatly simplifies Dehn's
argument, and was introduced by the Danish mathematician
Borge Jessen in the 1960's.

. .. (4)a ® 7f = 0

Given a polyhedron P, we associate a tensor a @ Ct

with each edge, where a length of the edge; and
. Ct angle between the faces which meet

along the edge.

The sum
a l ® Ct l + ... + an ® an

over all the edges of P is called
the Jessen functionaZ on P, J(P).
With these tensors we introduce
the additional rule

because it will then follow that if P conslsts of polyhedral
pieces PI' P2 then

. .. (5)

In other words, the value of the Jessen functional on the
whole is the sum of its values on the parts, so if polyhedra
P, Q decompose into the same parts, .J(P) = J(Q).

p

It is easy to see that (5) is true when none-of the edges
of PI' P2 overlap, e.g. in the

example shown the edge a in P
2

with angle a becomes an edge in
P with angle a + n. However
a @ (a + n) = a ® a + a ® 7T

= a ® a by (4), so the con­
tributions of edge a to J(P

2
)

and J(P) are the same. And
when the edges do overlap, as
in the example at left, the
ordinary tensor rules on
J(P

I
) + J(P

2
) give

a ® a (contribution from J(P
l

))

+ a2 (8) S (contribution from J(P
2

))

(a l + a2 + a 3 ) ® a + a 2 ® S

a l @ a + a2 ® (a + S) + a 3 ® a

which is the correct contribution
of the edge a to J(P) except
perhaps when a + S = 7T and the
edge a2 "disappears". But in this

case we are saved by the'rule (4)
which gives a2 ® (a + S) = 0,

leaving the correct contribution
to J(P).
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We can now calculate the Jessen functional on the tetra­
hedron, cube etc., and use information about rational
dependence to see if the values are equal. The only
difference in the algebra with the additional rule a @ 'IT = 0
is that the fundamental theorem now reads:

If aI' an and 7T are rationally independent then

xl @ a l + ... + x n ® an = 0 only when all xi = O.

The unit cube has 12 edges of length 1 and angle 7T/2, hence

J(cube) 12 . 1 ® 7T 12

6 ® 7T

o.

We shall not worry about the edge length of the regular tetra­
hedron, however the edge angle a satisfies cos a = 1/3 since

the diagram shows

1/3.

hence

2/31

cos a = 1

sin a/2 = i/(~3/2) = I/V3

To show that the tetrahedron and cube have different J values
(and hence that they are not equidecomposable) it therefore
suffices to show that a is not a rational multiple of7T. Well
if it were,.

ma = n7T for some integers m, n

in which case cos ma = ±l. Let us compute the first few
values of cos ma:

cos a 1/3

cos 2a 2 cos2a - 1 = 2/9 - 1 -7/9

and in general we can use the identity

cos(m + l)a + cos(m - l)a = 2 cos ma cos a

to get

cos(m + l)a = 2/3 cos ma - cos(m - l)a

and hence derive successive values from previous values:
cos 3a = -23/27, cos 4a = 17/81, etc. We notice that the

results are fractions with denominators 3, 32 , 33, 34 , ...
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and numerators PI' P2 , PS' P4 ,' ... which have no factor 3.
This. fact is true for all m, for if

COS,ma P 13m
, cos(m - l)am

where Pm' Pm- l have no factor 3, then

2 m m-l
cos(m + l)a = 3 Pml3 - Pm- 1/3

2~m - 9Pm_l
3m+l

and we see that the numerator again has no factor 3, because
2Pm has no factor 3, hence leaves a remainder on division by 3,
whereas 9Pm_1 does not.

Thus the numerator of cos(m + l)a will never divide the

denominator 3
m

+
l , and so cos(m'+ l)a f,±l. The edge angle of

the tetrahedron is therefore rationally independent of n, and
hence the tetrahedron and cube are not equideGQmposable.

00000000000000000000000000

NEWTON'S APPLE

G C Smith, Monash University

Quite often a minor incident in the life of a great man
achieves such a notoriety that it is referred to in nearly all
later accounts of his life. I am thinking of the episodes of
Alfred and the burnt cakes, Galileo and the swinging light,
Washington and the cherry tree, and Newton and the apple. Those
incidents almost always illustrate a point of character or an
aspect of the thought of the person of whom it is told.

What interests me about such stories is whether they are
true or not or, put more precisely, whether or not there is
sufficient evidence to allow us to conclude that the story can
be regarded as history rather than myth.

The story of Newton's observation of the fall of an apple,
and the resulting speculation that the force of gravity which
caused the apple's fall might be the force that held the moon
in its orbit, is a good example of this type of anecdote. It
has a curious history, for the first major biographer of Newton,
D. Brewster, expressed considerable doubt on the truth of the
story; writing is 1855 he said:

'the apple is said to have fallen from
the tree at Woolsthorpe, and suggested to
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Newton the idea of gravity ... neither
Pemberton nor Whiston, who received from
Newton himself the History of his first
Ideas of Gravity, records the story of
the falling apple'.

Brewster's doubts have, I think, influenced quite a
number of later writers: often one finds modern books that
relate the story (or merely refer to it) in such a way as
to suggest doubt about its authenticity. Yet the evidence in
its favour is in fact very strong. As -the evidence is not at
all well known I thought readers of Function might be interested
to hear about it.

The best evidence would be a written account of the story
by Newton himself. However, no such direct account is known
to exist. But we do have several accounts by others who knew
either Newton or his close relatives, and these accounts were
published very soon after Newton's death.

The best such account is due to William Stukeley who
collected information on Newton's life with the object of
writing a biography of Newton. He met and talked with Newton
in 1726 when Ne~ton was in his 84th year. Stukeley's manuscript
biography of Newton was not printed until 1936. The relevant
part of Stukeley's biography is as follows:

tOn 15 April 1726 I paid a visit to
Sir Isaac at his lodgings in Orbels build­
ings in Kensington, dined with him and
spent the whole day with him, alone ....
After dinner, the weather being warm, we
went into the garden and drank thea, under
the shade of some appletrees, only he and
myself. Amidst other discourse, he told
me, he was just in the same Situation, as
when formerly, the notion of gravitation
came into his mind. It was occasion'd by
the fall of an apple, as he sat is a con­
templa.tive mood. Why should that apple
always descend perpendicularly to the
ground, thought he to him self. Why should
it not go ~ideways.or upwards, but constantly
to the earth's c~n~er? Assuredly, the reason
is, that the earth draws it. There must be
a drawing power in matter: and the sum of
the drawing power in the matter of the earth
must be in the earth's center, not in any
side of the earth. Therefore dos this apple
fall per~end~cularly, 6r towards the center.
If matter thus draws matter, it must be in
proportion of its quantity. Therefore the
apple draws the earth, as well as the earth
draws the apple. That there is a power, like
that'we here call gravity, which extends its
self thro' the universe ... '.
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This, then, comes from Newton via Stuke1ey, and is
conclusive provided we believe in Stukeley~s honesty; in
fact no one has ever doubted that Stuke1ey reported Newton
accurately.

Another early account of the story of the apple comes
from Voltaire. Voltaire was an anglophi1e - he held England
and its institutions in high regard. He also wrote a work
supporting the Newtonian way of thinking about science. He
spent over two years in England, between 1726 and 1729, but
did not meet Newton, who died in March 1727. However, it
appears that he did meet Newton's niece Catherine Conduitt
and her husband John. Catherine Conduitt acted as house-'
keeper to Newton in the· last few years of his life, and so
would probably know about his early life through his con­
versation. Voltaire gave three versions of the story - two
in different editions of his Lectures concerning the English
Nation; but the.earliest ~s contained in a work titled An
Essay upon the Civil Laws of France ... And also upon the
Epick Poetry of the European Nation from Homer down to Milton,
which was published in 1727. Voltaire wrote:

'Sir Isaac Newton walking in his
Gardens had the first ~hought of his
System of Gravitation, upon seeing an
Apple falling from a Tree'.

Stukeley and Voltaire give the best accounts of the
apple story. Other briefer accounts provide supporting
evidence. A man called Green mentioned the story in a long
Latin work called The Principles of the Philosophy of the
Expansive and Contractive Forces published in 1727. Also
Henry Pemberton, who knew Newton, and was the editor of the
third edition of the Principia, in 1728 gave an account of
Newton's early discoveries which starts:

'The first thoughts which gave rise
to his Principia, he had when he retired
from Cambridge in 1666 on account of the
Plague. As he sat alone in the garden,
he fell into speculation of the power of
gravity ... '.

The point of this is the mention of the garden; the rest of ,
the piece deals wholly with the discoveries themselves and not
with the circumstances surrounding them. One concludes that
this sole bit of descriptive detail was of some significance.

Thus the evidence for the truth of the apple story comes
from people who were in a position to hear it from Newton
directly, or at one remove from his relatives, and these
accounts were printed close to the lifetime of Newton. These
circumstances allow us to conclude that the story is history
rather than myth.

To conclude with a minor query that is rather puzzling:
why did Brewer doubt the story? For he knew - and used ­
Stukely's biographical notes.



MEAN, MODE AND MEDIAN
AS DESCRIPTIONS OF

FUNCTIONS BY CONSTANTS'

P D Finch, Monash University

I. INTRODUCTION

The mean, mode and median --are usually introduced into
statistics courses as quantities which describe the rough
location of a frequency distribution as distinct from its
spread about that location. Unfortunately the concept of
tflocation" 1's often left somewhat vague and the thoughtful
student is rightly puzzled by the fact that a given frequency
distribution might have as many as three separate locations.
The purpose of this article is to show how these matters can
be discussed in a precise though elementary way by means of
the, function concept. It is to be understood that all the
sets to be considered below are finite.

2. FUNCTIONS AND CONSTANTS

We recall that if X and Yare non-empty sets then a
function f: X + Y is a rule which associates with each
element x of X exactly one element y = f(x) of Y. The function
f is constant when f(x) is the same element of Y for each
element x of X. The figure below depicts the graph of two
functions mapping X = {l, 2, 3, 4, 5, 6, 7} into the set
Y ='{l, 2, 3}, viz. the constant function c(x) = 2 indicated
by the points marked on the broken line and the one given by
the rule

x

f(x)

I

3

2

1

3

2

4

1

5

2

6

3

7

2

which is indicated by the points marked on the unbroken line.

3

2

1

13
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and, in the expressions for ~3'

o(f(x), g(x»
0, otherwise

f(x) - g(x), if f(x) ~ g(x),

g(x) - f(x), if g(x) ~ f(x).
If(x) - g(x)1

1, if f(x) = g(x),

The problem to be discussed is the question of the extent
to which a given function f: X + Y can be adequately described
by one of the constant functions c k ' k = 1, 2, ... , n, it be-

ing supposed that we have in mind some numer~9al measure of
the discrepancy between two designated functfbns, f and g say.
We shall consider three such measures of discrepancy, viz.
~l' ~2 and ~3 as given Oy the expressions

~l(f, g) = [{f(x l ) - g(~1)}2 + {f(x2 ) - g(x2 )}2 + ...

-2 i... + {f(xN) - g(xN)} ]

~2Cf, g) "[{I - oCf(xl ), g(x l »} + {I - o(f(x2 ), g(x2 »} + ...

+ {I - o(f(xN), g(xN»}]

~3(f, g) [If(xl ) - g(xl)1 + If(x2 ) g(x2 )1 + ...

+ If(xN) - g(xN)I]

It is evident from this figure that the values of the
variable or non-constant function fluctuate about the value
of the constant one and that the straight broken line of
the latter provides a rough approximation to the fluctuating
unbroken line of the former. This fact suggests the general
question of to what extent a given non-constant function
can be approximated to or described by a constant function.
To simplify matters, fix the sets X and Y, suppose that
X = {xl' x 2 ' · .. , xN} has N elements, that y = {Y l , Y2 , ... , Yn }

consists of n real numbers and that Yl < Y2 < .•. < Yn .

There are now onlyn constant functions to be considered, viz.
the functions c k ' k 1, 2, ... , n, where, by definition,

ck(x) = Yk for each X in x.

3. PROXIMITY BETWEEN FUNCTIONS

where, in the expression for ~2' 0 is the so-called Kronecker

delta, that is to say

It should be noted that each of these measures satisfies
the metric axioms listed by Cameron on page 26 of Function,
Volume 1, Part 2. In particular each of them has the property
~(f, g) = ° if and only if f = g and the reader should take
time off to become convinced that there is an intuitive sense
in which each ~(f, g) becomes larger the greater the dis-
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crepancy between f and g. If f is a given function it seems
reasonable to describe f by the constant function c for which
!:l(f,. c) is a minimum, in that way we choose as a description
of f the constant function which is "closest" to f in the
sense of the discrepancy measure!:l. Of course we shall get
possibly different answers according as fj. is Ill' 112 or 11 3 and,

indeed, it is in that way that we are led to the mean, mode
and median; to see this we need to define those quantities
independently of the measures in question. We do so in the
next section.

4. MEANS~ MODES AND MEDIANS.

Let f: X + Y be a given function and for each Y in Y write
s(y) for the number of x in.X with f(x) = Y so that, in
particular, s(y) = 0 if and onli if there is no xin X with
f(x) = y and

S(Yl) + s(Y2) + ... + s(yn ) = N,

the number of elements in X. We say that the integer-valued
function S is the spectrum of the function f and when we wish
to draw att~ntion to its dependence on f we write it as sf.
For a constant function c with c(x) = Yk we have sc(Yk) = N

and sc(Y) = 0 for Y f Yk·

We write

-1N [f(x
l

) + f(x 2 ) + ... + f(x N)]

-1
N [yIs(Yl) + Y2 s (y 2 ) + ... + Yns(y n )]

and say that Yk in Y is an f-mean, or a mean of fi when there

is no other element of Y which is closer to f. An f-mean always
exists and there are at most two of them. If there is only one
f-mean it is that one of Yl , Y2' ... , Yn which is closest to 1·
There are two f-means when it happens that, for some k,
1 < k < n, 1 = (Yk + Yk+l)/2 in wh~ch case, of course, Yk and

Yk+l are both means of f. The more usual way of defining the

mean is to take it to be f but this is unsuitable for our
present purposes because we want our "mean" to be an element
of Y and 1 may not belong to Y.

An element y of Y is said to be a mode of f when

S(Y) ~ s(Yk)' for each k = 1, 2, ... , n.

There is always at least one mode but there may be more than
one, however if y' and y' t are both modes of f then
S (Y ') = S (y t , ) •

To introduce the concept of a median recall that
Yl < Y2 < ... < Yn' define Z to be the smallest integer,
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1 ~ Z ~ n, such that

S(Y l ) + s(y2 ) + ... + s(yZ) ~ N/2

and let u be the smallest integer such that

+ ...

Clearly Z ~ u. The medians of f are, by definition, the
elements YZ' YZ+ l ' ... , Yu· If Z = u there is only· one
median but if l < u there will be several of them and for
each median Yk < Yn one will have

s(y l ) + s(y 2 ) + ... + s(Yk) = N/2.

In particular, if u > Z + 1 then s(Yk) = 0 for· each
k =. Z + 1, ... , u - 1.

5. DESCRIPTION OF A FUNCTION BY A MEAN

Let f be a given function and consider the problem of
finding the constant funciion ok for which ~l(f, ok) is as

small as possible. Recalling that 0k(x) - Yk a straight­

forward calculation yields

222
~l(f, ok) = {f(x l ) - °k(x l )} + {f(x2 ) - °k(x2 )} +

2
+ {f(xN) - °k(xN)}

(Y
l

- Yk)2 s (y l ) + (Y 2 '- yk )2S(Y 2 ) + '"

+ (y - Yk)2 S(Y ).n n

Since

{(Yj - 1) + (1 y k )}2

- 2 - - 2
(Yj - f) + 2(Yj - f)(f - Yk) + (1 - Yk)

and

(Yl - !)s(Yl) + (Y2 - 1)s(y2 ) + ... + (Y n - !)s(Yn )

= yls(Yl) + Y2 s (Y2) + ... + yns(yn ) - !{s(Yl) + s(Y2) + ...

+ ... s(Yn )}

we obtain

N(t



> > Li(c Z_l ) > ~(cz),

f1(c
u

) ,

< < ~(cn) •
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Only the first term on the right-hand side of this expression
depends on the constant function c k and we see, therefore,

that to minimise ~l(fl' ok) we have to make ([ - Yk)2 as

small as possible, in other words we have to choose k so
that Yk is an f-mean.

6. DESCRIPTION OF A FUNCTION 'BY A MODE

Consider now the problem of finding the constant function
which minimises ~2(f, ok). Since

~2(f, ok) = N - s(Yk)

we see that we must make s(Yk) as big as possible, in other

words we have to choose k so that Yk is an f-mode.

7. DESCRIPTION OF A FUNCTION BY A MEDIAN

Finally, we determine th~ constant function ok which

minimises ~3(f, ok)· To do so we start with a straightforward

though tedious calculation yielding

~3(f, °k+l) - ~3(f~ ok) = 2(Yk+l - yk)[s(Y l ) + s(Y2) + ...

... + s(Yk)- N/2].

Recalling that Yl < Y2 < .' .. < Yn and, for notational con­

,venience, writing 6(ok) instead of 63 (f, ok) we find that if

Z and u are as defined in section 4, so that YZ' YZ+ l ' ... , Yu
are the medians of f, then we have

~(Cl) > ~(c2)

f1(c Z) ~(cZ+l)

~(cu) < ~(cu+l)

It is now obvious that the desired constant function ok' viz.

one which will minimise ~(ck) = ~3(f, ck)' corresponds to

choosing k so that Yk is an f-median.

8. CONCLUDING REMARKS

The upshot of the preceding discussion is that in seek­
ing the "best" constant approximation to a function we are
led to means, modes and medians according to the way we assess
what is deemed to be "best", t-hat is to say according as we
use ~l' ~2 or ~3 to measure discrepancy between functions.

It often happens, of course, that the mean, mode and median
all coincide. This is true, for example, of the function f
tabulated in section 2 where X = {I, 2, 3,4, 5,.6, 7} and
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Y {I, 2, 3}, the spectrum of the function in question being

8(1) = 2, 8(2) = 3 and 8(3) = 2.

Thus 2 is the mode, the median and also the mean. The
corresponding values of ~(f, e) are

e
l

e
2

e
3

~l(f, e) 3·32 2 3'74,

~2(f, e) 5 4 5

~3(f, e) 11 4 2

exhibiting the fact that e = e 2 minimises each of ~l(f, e),

~2(f, e) and ~3(f, e).

A more complicated situation is presented by the function
taking values in the set Y = {l~ 2, 3, 4, 5} with ~he spectrum

8(1) = 40, 8(2) = 11, s(3) = 3, s(4) = 1, 8(5) = 45

so that N, the number of elements in X is 100. In this case

8(1) + 2s(2) + 3s(3) + 48(4) + 58(5) = 300

and so the mean is 3. But the mode is clearly 5 and since

sell + 8(2) = 51 > 50

the median is at 2. The corresponding values of ~(f, e) are

This table illustrates that lll(f, e) is minimised by e = e 3
corresponding to the mean at 3, that ~2(f, e) is minimised by

e = e 5 ,corresponding to the mode 5 whereas ll3(f, e) is

minimised by e = e 2 corresponding to the median at 2.

In statistics~ of course, the function f pla~s a sub­
sidiary role inasmuch as attention is focused on its spectrum
sf and its spe~ctral density sf' viz. the normalised version

given by

~l (f, e)

ll2(f, e)

~3(f, e)

752

60

200

452

89

180

352

97

182

452

99

222

752

55

200
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which sp~cifies the relative frequency distribution under study.
In the statistical' context it is customary to refer to the mean,
mode and median of sf rather than to those of f itself as we

have done above.

When we have found the constant c which mlnlmlses the
expression 6(f, c) the minimum discrepancy so obtained can. be
regarded as the ~fspread" of the function f about that constant.
In the ease of Al we are led in that way to the standard

deviation as a measure of spread. The analogous "spreads f'
corresponding to 6 2 and 6 3 are less well-known but the student

will find it instructive to work them out in a few simple cases.

00 00 00 00 00 00 00 00 00··00

SOLUTION TO PROBLEM 1.2.6 (i.e. Problem 2.6 of part 2 of

volume 1)

This problem has generated great interest. Many readers
have written asking questions about it or offering comments or
partial solutions. The solution is {4, 13} and although several
correspondents found this, only one, Christopher Stuart, gave
all the arguments necessary to show that, as required, this is
the unique solution. David Dowe (Form 6, Geelong Grammar School)
Geoffrey J. Chappell (Grade 12, Kepnock High School, Bundaberg)
and Graham Farr (Form 6 (1977), Melbourne High School) each went
a long way towards a solution. The solution we print is except
for minor changes that of Christopher Stuart (15 Lois Street,
Ringwood East).

The problem is:

A person A is told the product xy and a
person B is told the sum x + y of two integers
x, y, where 2 ~ x, y ~ 200 [i.e. x and y each
lie between 2 and 200 inclusive]. A knows
that B knows the sum, and B knows that A knows
the product. The following dialogue develops:

1. A:
2. B:
3. A:
4. B:

I do not know {x, y}.
I could have told you so!
Now I know {x, y}.
So do I. .

What is {x, y}?

In 1742 a mathematician called Goldbach wrote. to
Leonhard Euler asking whether every even number (greater than
2) is the sum of two primes. For example, 4 = 2 + 2., 6 = 3 + 3,
8 = 5 + 3, 10 = 7 + 3, 12 = 7 + 5, ... , 80 = 7 + 73,
This question has not yet been answered. The result is nowadays
known as GoZdbach's Conjecture. [In the last decade Chinese
mathematicians have made significant advances in the attempt to
prove it.] For even numbers not greater than 400 which we are
dealing with the truth of the conjecture can be easily checked.
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From statement 1 by A, the product P (= xy) does not have
a unique factorization. Hence we conclude

(i) x and yare not eaoh prime and there is no prime p
suoh that {x~ y} = {p~ p2}.

Thus B can only make statement 2 if the sum S which he is
given satisfies

(ii) every pair of numbers x~ y (between 2 and 200~ of
oourse) suoh that x + y = S satisfies oondition (i).

In particular, from Goldbach's result, we can then conclude

(iii) S = 2 + b~ say~ where b is odd and is not prime.

Let us apply these results so far to the possibilities 4,
5, 6, .... , 50 for S. All even numbers are excluded by
Goldbach's result and, applying result (iii), we are left only
with the possibilities

S E {11,17,23,27,29,35,37,41,43;47}. (a)

Now we give stuart's arguments to show that we can assume
that S ~ 50. He offers two theorems and a lemma.

THEOREM 1 (Stuart). S < 103.

Proof. Suppose S ~ 103. If 103 ~ S ~ 301, then S
may be written as the sum x-+ y with x = 101 and y = S - 101
and with x, y between 2 and 200. But 101 is prime. Since any
multiple of 101 is bigger than 200, the factorization
101 x (S - 101) is the only permissible factorization open to
A. In view of statement 1 therefore we cannot have
103 ~ S ~ 301.

A similar argument, using the fact that 199 is prime,
disposes of the possibility that 201 < S ~ 400.

I

Lemma 1 (Stuart). Suppose that P 4pu where p is a
prime and p > 33. Then A oan make statements 1 and 3 (assuming
that B oan make statement 2).

Proof. Let u = rs. Then 4pr (or 4ps) cannot be one
of the factors x, y, since 4pr ~ 4p > 132 and then S ~ 103.
2pr cannot be a factor, for then S = 2pr + 2s is even. So the
only possibilities are x = pr, y = 4s, where r is odd. If
r ~ 3 then S ~ 3p + 4s >"3 x 33 + 4 = 103, which is. impossible.
Hence r = 1, and A knows that x = p and y = 4u and can make
statement 3.
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THEOREM 2 (Stuart). S < 51.

Proof. (This
statement 4 is used.)
we may write

S

proof will be the first place that
Suppose that S ~ 51. Since S is odd.

37 + (12 + 2t)

43 + (6 + 2t)

41 + (8 + 2t)

47 + (2 + 2t)

where t > O. Note that 37, 43, 41 and 47 are each prime
numbers ~ 33. If t is odd then 6 + 2t and 2 + 2t are divisible
by 4 whereas if t is even then 12 + 2t and 8 + 2t are divisible
by 4. In either event, it is possible to divide S into a sum
of a prime p and a number 4u, corresponding to a product P = 4pu,
in two different ways. For.either way A can make his statement
3. But B does not know which way, so B cannot make s~atement 4.

So we are now left solely with the possibilities listed
earlier in (a).

We can use the same procedures as were used to prove the
Theorem 2 to eliminate all remaining possibilities for S except
17.

Stuart gives another lemma of great help here.

LEMMA 2 (Stuart). Suppose that P = 2kp where k ~ 2
(because of statement 2) and p is a prime. Then, afte~ B has
made statement 2, A can make statement 3.

Proof. Since S is odd the only possibilities for x
and y·are 2 k and p.

C~ROLLARY. S cannot be written in two different ways as
a sum 2 + P where k ~ 2 and p is a prime.

Proof. For, if so, then each of these ways of
writing S would correspond to a choice of {x, y} which would
enable A to make statements 1 and 3; and B would thus be
unable to make statement 4.

Observe now that

11

23

27 47
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Hence, by the corollary, each of these is ruled out as
a value for S. Hence we now have

S E {17, 29, 4l}

S 29 is impossible

29 = 2 4 + 13 gives, by lemma 2, one possible pair
{16, l3} allowing statements 1 to 3 to be made.

29 = 4 + 25 gives another possible pair {4, 25}
allowing statements 1 to 3 to be made. For A then has the
product 100 which offers the possibilities {4, 25} and {20, 5},
since S. is odd. He can reject {20, 5}, for then
S = 35 = 2 + 23 and B would not be able to make statement 2.

Hence B cannot make statement 4.

S = 41 is impossible

41 = 2 2 + 37 gives the pair {4, 37} consistent with
statements 1 to 3.

41 = 16 + 25 gives the pair {16, 25} consistent with
statements 1 to 3. For from the product 16 x 25 only {16, 25}
and {SO, 5} give an odd value to S and SO + 5 = 2 + S3 is
inconsistent with B's statement 2, since 83 is prime.

Hence again if S = 41, B cannot make statement 4.

Hence we are left with the sole possibility S = 17. A
little calculation now gives that {4, l3} is the only solution.

00· 00 00 00 00 00 00 00 00 00 00 00 00

INFINITE NUMBERS I
Neil Williams, University of Queensland

This article is about giving meaning to the size, the
number of elements, of sets. ~In everyday life, if you want to
know how two collections compare in respect to the number of
things in each (for example, are there as many eggs in that
basket as there are candles on that cake) then you use the
counting numbers 0,1,2,3, ... to count up how many there are of
each, and from this you find your answer. Since in everyday
life, everything is finite, you have to count up only finitely
far, and this method (in. theory) always gives you the answer.
However, in mathematics, you want to count the number of
elements in various sets and there are many important sets which
have infinitely many members, for example Z+ = {1,2,3 ... } the
set of positive integers, Z = {... -2,-1,0,1,2, ... } the set of
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all integers, Q = {p/q; p,q E Z,q :f O} the set of rational
(fraction) numbers, and R the set of all real numbers. I shall
consider the question of finding a reasonable way to talk about
the size of infinite sets, so that "big" sets have "morel!
elements than "smaller" ones. In particular, are the' sets
z+ , Z , Q"R already mentioned all the same size, or are some of
them bigger than the others?

First, let us consider a way which it turns out isn't
suitable. There is an idea you might think of immediately: to
use the subset relation C (where A C B means that every member
of A is also a member of-B), so set-A is smaller than set B if
A ~ B and A f B. Th~s seems reasonable: if·A ~ B and A ! B
there are extra elements in B, over and above those in A, so in
a sense B -is bigger than A . So, for example, this would make
Z+ smaller than Z, since Z+ C Z and z+ ! Z. However, using
the subset relation is no sooner thought of than we realize
that it isn't what we want. Which of the sets {1,3,5,7 ... }
and {2,4,6,8, ... } of odd and of even positive integers would
be the larger of the two? Answer: neither. Since neither is
a subset of the other, we just can't compare them using c.
However, definitely one 6f the properties that any reaso~able

concept of si~e for sets should have is that given any two sets~

you always aan compare them - the one is larger than the other
(or they have the same size). Since the subset relation

" doesn't have this property, it is not the concept we are
looking for.

To gain inspiration towards a correct idea, let us go
backt6 basics in the comparison of size between two finite
collections. Suppose I have a bag of apples and a bag of
oranges in front of me, and I want to know if there are more
oranges than apples. One way of proceeding, rather than
directly counting up the number of oranges and the number of
apples, is the following. I put a hand in each bag, and draw
out one piece of fruit from each, and put these two pieces of
fruit down together ~n front of me. Then I reach back into
the bags and again draw out one piece of fruit from each, and
put these together in front of me too. And I keep doing this
until one of the)bags is emptied. If I run out of apples at
exactly the same stage as I run out of oranges, then I know
there must have been the same number of apples as of oranges.
If I run out of apples before I run out of oranges, theri there
were fewer apples than oranges. What I have been doing is
pairing off apples with oranges: at any stage, when I put the
apple and the orange down together in front of me, that apple
is paired with th~t orange. If the apples and the oranges can
be exactly paired off in this way, then there is the same
number of apples as of oranges; if whenever I try I run out
of apples first, then there are fewer apples than oranges.

This idea of pairing off is what turns out to be just
what we want when we talk about the size of mathematical sets.
We define two sets A and B to be of the same size if we can
pair off all the elements of A wi~h all the elements of B.
We say A is not larger than B if we can pair off all the
elements of A with elements of B, not necessarily using up all
the elements of B. And we say A is smaller than 'B if you can
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pair off all the elements of A with some of the elements of B,
but no matter how you try you can never use up all the elements
of B ..

Notice that these three definitions are connected in a
sensible way; for instance, A is not larger -than B if and only
if either A is smaller than B or A is of the same size as B.
One can show (though it is not easy) that it follows from these
definitions that if A is not larger than B and also B is not
larger than A then A and·B have the same size. Another
important fact is that this concept of size does have the
comparability property that the subset relation lacks: given
any two sets A and B either A and B have the same size or else
one is smaller than the other. At this stage, perhaps we
should also make this remark': if A is a subset of B then A is
not larger th~n B, for the matching of each a in A with itself,
thought of as an element of B, gives a pairing of all the
elements of A with some of the elements of B.

Let us look at a number of examoles. Consider
Z+ = {1,2,3, ... } and A = {2,3,4 ... }. ~Since Z+ has an extra
ele~ents over A, you mig~t think Z+ is bigger~ But riot with
this concept of size, for the diagram .

A 3, 4, 5,
t t t

3, 4,

n+1, ... }
t
n , ... }

show~ a pairing off between the elements of A and the elements
of Z , and so shows that A and Z+ are of the same size. A
similar result is true for all infinite sets: if you have an
infinite set and add to it an extra element, then the new set
is still the same size as the original. Suppose now we compare
Z+ with E = {2,4,6,8, ... }, the set of all even positive
integers. This time infinitely many numbers have been left
out (all the odd numbers), So surely E~will be smaller? But
.indeed not; the diagram

E .• {2, 4, 6, 8,.
t t t t

Z+ {I, 2, 3, 4,

2n, ... }

t
n, ... }

shows a palrlng between E and z+; so in fact E and z+ have the
same size. In a similar fashion, Z+ is the same size as Z,
as the following pairing shows:

Z

{I, 2, 3, 4, 5,

t t t t t
{a, 1,-1, 2,-2,

2n, 2n+l, ... }

t t
n, -n, ... }

A similar argument shows that Q+ (the set of positive fractions)
and Q are the same size.
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More complicated is the situation with z+ and Q+. Is Q+
larger? In fact it is not! To see this, start by writing ou~

a square array of all the fractions as follows. In the top
line, put all those with denom~nator 1 (i.e. 1/1, 2/1, 3/1, ... ),
in the second line all those with denominator 2, in the third
line all those with denominator 3, and so on, as shown.

1 2 3 4' 5
1 I T 1 I

1 2 3 4 5
2 2 "2 2, 2

1 2 3 4 5
3" "3 "3 3" 3

1 2 3 4 5
4" 4" 4" 4" 4"

This lists all the membeis of Q+ (indeed, each one infinitely
often, since e.g. 2/1 = 4/2 = 6/3 = ... ). Now th~nk of walking
along the following zig-zag path through the array:

•

•
•

• • •
• •

As you go, count the different fractions you meet. So you
count: one for 1/1, two for 2/1, three for 1/2, four for 4/1,
(don't count 2/2 since 2/2 = 1/1 and you have already met 1/1)
five for 1/3, ... (the next one you don't count is 4/2 = 2/1).
This sets up the pairing

Z+ {I, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, ... }
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~

Q+ 1 2 1 3 1 4 3 2 1 5 1 ... }{I' I' 2' I' 3' I' 2' 3' 4' I' 5'

which shows that z+ and Q+ are the same size.

It is certainly surprising, at first sight, that there
are the "same number" of positive integers as there are positive
rational numbers. Are all infinite sets going to turn out, with
the definition of size, or number, that we have chosen, to be
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of the same size? Fortunately the answer turns out to be no.
In the next issue we shall consider, as already promised, the
size of the set of real numbers and show that there are "more"
real numbers than there are rational numbers.

Interested readers may consult the classical

Bertrand Russell, An Introduction to MathematicaZ PhiZosophy~
1919, or for a modern version, the small paperback.

S. Swierczkowski, Sets and Numbers~ Routledge and Kegan Paul,
1972.

00000000000000000000000000

HOW LONG IS A STRAIGHT LINE?
J C Barton, University of Melbourne

Let Xl denote ·the "curve tt ACIB consisting
straight-line segments AC I and C]B at right
angles to each other and of equal" lengths.
If AB is of unit length, then AC I has
length !v2; so Xl has length Zl = v2.
The curve consists of two sides of the
triangle ACIB with base AB and with
height!. If k is any positive
number, then (4k)0 = 1 = kO = 2°.
Hence we can say that Xl is a curve
consisting of the sides, excluding
the base, of 2° tiiangles A

of height tk o

with length Zl = VI + (4k)0.

of the two

B.

B, but

CI1
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

/
/

And so, on.

Form X2 , in a similar fashion, connecting A and
now consisting of the sides, excluding
the bases, of 2 2 equal isosceles triangles

of height !k
with length Z2 = VI + (4k)~.

Continuing thUS, (the reader can
supply the appropriate diagram), let
X3 be the curve on the same base, with
2 4 triangles, each of hei~ht !k 2

, whose
length is Z3 = vCl + (4k) ).

It may be checked that the length
l is the length of the straight line
s~gment AC obtained by extending the
side of a triangle through A until it
meets the perpendicular to AB at C.

A
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Knis the curve (i~ag~nation.now, rather than a diagrrm),
on the same base, with 2 n- triangles, each of height ikn - ,
and total length

BA

Now let the constant k be chosen so that 0 < k < 1 and
4k > 1, more succinctly i < k < 1. For example, k = i will do
nicely. Let n tend to infinity, and denote the limit of K by
K oo ' whose graph is shown. Its n
length, naturally, is

lim Z . it?n+oo n = 00, or 1S

00000000000000000000000000

HARMONIC PROGRESSIONS

Glen Merlo, Taylor's College

We are very familiar with the arithmet1c and geometric
progressions (or sequences). There is another, closely allied,
type of progression that is called harmonic.

The sequence of non-zero numbers p~ q~ r~ s~ ••. ~ is
called a harmonic progression if and only if the sequence
l/p, l/q, l/r, l/s, '.', is an arithmetic progression.

Since every arithmetic progression takes the form
a, a + d, a + 2d, a + 3d, "', it is clear that every harmonic
progression will take the form l/a, l/(a + d), l/(a + 2d),
l/(a + 3d), ... , where in the general term H

n
= l/(a + (n-l)d).

Three (or more) numbers a, b, c, ( ... ), say, which are
successive terms in some harmonic progression are said to be
in harmonic progression; similarly the phrases in arithmetic
progression and in geometric 'progression are defined in relation
to arithmetic and geometric progressions, respectively.

When a, b, c are in harmonic progression then b is called
the harmonic mean of a and c. In fact a and c then determine
b. To see this~ proceed as follows. By definition, since
a, b, c are in harmonic progression, l/a, l/b, l/c are in
arithmetic progression. Thus

1:. = i(1:. + 1:.) .
b a c '

Hence 2ac/(a +c)is the harmonic mean between a and c.

In recent issues of Function many situations involving
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arithmetic and geanetric progressions have arisen and
associated problems have been posed. Here are some on
harmonic progressions:

1. If a, b, c, d are in arithmetic progression, show
that

( i) (b + C + d), (a + d + a), (d + a + b), (a + b + a) are
also in arithmetic progression;

(ii) bcd, cda, dab, abc, are in harmonic progression.

2. If the sum of four numbers
in arithmetic progression is 32 and
the harmonic mean of the second and
third is 7!, find the numbers.

3. In a triangle with base of length
a and height h inscribe a square on
the base. Let x be the length of
the side of the square. Show that
2x is the harmonic mean of a and h.

a

4. Suppose a man travels from A to B at speed u and
returns from B to A at speed v. Show that his average speed
for the ~otal journey is the harmonic mean of u and v.

00000000000000000000000000

SOLUTION TO PROBLEM 1.5.3 (Solution provided by

Geoffrey J. Chappell, Kepnoch High School, Bundaberg)

Theorem 1. If S is a factor of lOX - 1 then 10x/ S must
leave a remainder of 1. This is equivalent to saying that
liS has a repeating group of x digits.

Example: 102 - 1 = 32 . 11.· ~ has the repeating group
133 and 11' the group 09, each of two digits.

Theorem 2. If we define kn as the n-th digit from the

left of a number K and if kn + kn+a = 9 then K has lOa - 1 as

a factor. If a is odd, the other factor is formed by taking
the first a digits and adding 1. If a is even, we take the
first (a - 1) digits of K and add 1. (Problem: prove this!)

Example: 142 857. 1 + 8

a = 3. 142 857 = (103 - l)y.
digits are 142. So y = 143.

9, 4 + 5 = 9, 2 + 7 = 9 so

a is odd and the first three

Using these theorems we can factor the number in
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Problem 5.3. Theorem 2 is used first.

5 679 431 432 056 743 205 685 679 432

56 794 314 320 568 · (1014 - 1) . .. ( 1 )

5 6.79 432' (10 7 - 1) . (1014 - 1)

568 (104 _1)(107 - ,1)(1014 - 1)

568 (102 1)(102 + 1)(107 - 1)2(107 + 1)

since 102k - 1 = (10 k - l)(lOk + 1).

Using Theo.rem 1, 102 - 1 = 32 . '11, 107 - 1 = 32 . 239 . 4649 since
the primes 3239 and 4649 all have repeating groups of seven
digits, (3 333333, 0 041 841, and 0 002 151' respectively).

568 = 2 3 · 71. 102 + 1 = 101 is prime. Any number of the

form 102b+l + 1 has 11 as a factor and if b = 3, the other
prime factor is 909 091.

Numbers of the form lOX ± 1 are quite easy to factor, as
shown and so the given number, using these factors, is equal to

2 3 . '36 · 112 . 71 . 101 . 2392 . 46492 · 909 091.

Isn't it interesting that the chance of selecting a 28­
digit number such that Theorem 2 may be applied as in (1) would

give rise to odds of almost 1014 to 1 against such a number
being chosen. The chances that Theorem 2 can be applied three
times must be very small indeed - coincidence?

00000000000000000000000000

LETTER FROM ALASDAIR MACANDREW J FORM 6 (1977)J
MELBOURNE HIGH SCHOOL

A problem mentioned in the article "Louis Pasa" in the
first issue of Function (page 4), given by Erdos to Pasa is:

Prove that ~ ~(.) is irrational, where wei) is the
i=l w 1.,.

lowest common multiple of the integers 1, 2, 3, ... , i.

My solution is this:

1
I: wei) is rational, equal

i=l
Suppose on the contrary that

to E, say, and let
q

1 1 1 1 1 s = E.
w(l) + w(2) + w(3) + w(4) + ... + w(n)" + wen + 1) q'

w( n) . p
q

we can choose n to be as ~arge as we please, and of course swill
depend on n. Suppose that n > q and then multiply both sides of
the above equation by wen). We get

~ +~ +~ + ... + wen) + w(n)s
w(l) w(2) w(3) wen) wen + 1)
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Now, if x < n, then wen) = 0 (mod w(x)). And as n > q, then
wen) = 0 (mod q). So wen) • p/q is an integer, and

wen) + wen) + wen) + ... + wen) is an integer. But wen) . E:
w(l) w(2) w(3) wen) . wen + 1)

is not an integer for, with no loss of generality, I have taken
E:: 0 < E: < 1. Thus, starting with the assumption that our number
was not irrational, we conclude that an integer is equal to a
non-integer. Therefore, by reductio ad abs~rdum, we conclude
that our number is irrational.

00

LETTER FROM GEOFFREY J. CHAPPELL} GRADE 12
KEPNOCK HIGH SCHOOL} BUNDABERG

I have recently come across several interesting long
divisions in which one or no figures are given:

1. xx 8xx
xxxlxxxxxxxx

xxx
xxxx

xxx
xxxx
xxxx

2. x7xxx
xxx I xxxxxxxx

xxxx .
xxx
xxx
xxxx

xxx
xxxx
xxxx

These each have one given number and are very similar. The
first is the easier to solve (and the shortest).

1. 80809
124110020316

992
1003

992
--rI16

1116

Problem 1: In long division, when two digits are brought
down instead of one, there must be a zero in the quotient. The
quotient is therefore x080x. When the divisor is multiplied by
the quotient's last digit, the product is a 4-digit number. The
quotient's last digit is a nine because eight times the divisor
is a three-digit number. The divisor must be less than 125
because eight times 125 is a four-digit number. The quotient's
first digit is larger than~7, because 7 times a divisor less
than 125 would give a product that would leave more than two
digits after is was subtracted from the first four digits in
the dividend. The first digit cannot be 9 (which gives a 4­
digit number when the divisor is multiplied by it) so it must

.be 8. The quotient is therefore 80809. Since 123 x 80809 is
a seven-digit number and the dividend has eight digits, the
divisor is less than 125 but more than 123, i~e. the divisor
is 124. The division can now be reconstructed.
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Problem 2: A solution is left to the reader.

Problem 3: Find the numbers for

xxxx·xxxx
xxxlxxxxxx

xxx
xxx
xxx

xxx
xxx

xxx
xxx

xxxx
xxxx

I have also found problems in which the nine digits, 1-9
have to be arranged to suit certain conditions:

Problem 4: Find the number which, together with its square,
shall contain all the nine digits once only, the zero disallowed.

Problem 5: Using the nine digits once only, can you find
prime numbers that will add up to the smallest sum possible.
Example: A sum of 450 -

61
283

47 This sum can be reduced much
59 further.

450

Solution: The 4, 6, 8 must come in the tens place and the
2 and 5 can only appear in the units place if alone. The
rest is easy:

47 or 43 or some similar arrangement
61 61
89 89

2 2 The minimum sum is 207.
3 5
5 7

207 207
00 00 00

"And as for Mixed Mathematics, I may only make this
prediction, that there cannot fail to be more kinds of
them, as nature grows further disclosed. tI

Francis Bacon
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PROBLEM 1.1
We have a pack of cards, an even number c of them. By

a "shuffle" we shall mean that we divide the pack into a top
half and a bottom half, then put the pack back together again
by alternately taking one card from each half starting with
the bottom half. For instance, if the cards were initially
1, 2, 3, 4, after one shuffle they would become 3, 1, 4, 2.
How many shuffles does it take for the cards to return to
their original position?

PROBLEM 1.2
I have the following options of depositing $100 for one

year. The bank will give me $4 interest" at the end of the
year. A Housing Co-operative will give me interest at the
rate of 2% per half-year (compound, so it pays interest in
the second half also on the first half's interest)~ A Credit
Union will give me interest at the rate 1/3% p~r month,
compound. A friend says he will give me interest equivalent
to the 4% per annum rate, but compounding every instant!
Which should I choose, and how much interes~ do I g~t?

PROBLEM 1.3
Is 22/2/2022 a Twosday (Tuesday)? How about 2/2/2202?

(See Function (1977), Volume 1, Part 1, pp 19-23.)

PROBLEM 1.4
We construct a sequence aI' a2 , a 3 , ... by the following

method. Choose a l = n, where n is any positive integer. If

n is odd, choose a 2 = 3n + 1. If n is even, choose a 2 = n/2.

Repeat this construction for a
3

: if a
2

is odd, choose

a 3 = 3a2 + 1; if a 2 is even, choose a 3 = a 2 /2. Similarly for

a 4 , a
5

, etc.

[Examples: (i) 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2,
1, ...

(ii) 6, 3, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, .]

Use a simple computer (or calculator) program to $how that if
you start with any integer up to 1000 then the sequence
eventually ends periodically .... 4, 2, 1, 4, 2, 1, ... .
Can you prove anything in general along these lines? [Actually,
not too much is known about such sequences.]

00000000000000000000000000
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