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We thank the Editor of Th~ Age for p~rmission to re­
produce one of their letters on page 9. We thank
Geoffrey Chappell for proving that part (i) of Problem
2.5 was wrong (see page 27). 'We thank John Taylor for
permission to reproduce his article from Student Mathematics.
Student Mathematics is a Canadian magazine for schools,
published once a year. The address to write to if you want
to buy it is at the foot of page 6. We thank Michael Eliott
for the front cover picture which he devised and' made and also
for two other pictures of his reproduced on page 2.

We have received an increasing amount of correspondence
and we hope the increase continues. Let us have contributions.
Let us know subjects on which you would like articles.
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THE FRON·T COVER

by J. O. Murphy, Monash University

The computer generated design printed on the'front cover
of this issue of Function was produced by Mich~el Eliott, a
fourth form student at Scotch College, Melbourne. Elements
from the character set' {*./+-,IW3} have been used to produce
this graphic output on the line printer using A type format.
The basic geometric shape, in this case part of the curve'

x = 10 sin(lb), is determined by the statemeftt line labelled

0010 (Z=SIN(Y/lO.)*lO.) in the FORTRAN source program
reproduced on page 31.

Once the geometry of the design has been decided the
pattern is first established in the second quadrant and then
extended to the other three quadrants by reflection about the
coordinate axes. On the y axis one line represents one unit,
and one character (note the characters are equally spaced)
represents one unit on the x'axis. Within each quadrant the
different shading on a particular horizontal line (lines are
printed only at integral values of y, as stated above) is
obtained from the expression

x coordinate = [p x f(Y)], 1 < P < 8,

each value of p identifying a member of the character set
defined by the array L(I) (see the program), [ ] meaning

integral value of, and f(y) standing for 10 Sin(l~)' Any

remaining lo~ations on the line are then filled by the *
character.

Some other possible designs are ~llustrated below.

2



and LAW

Eggleston

.University

MATHEMATICS

by Sir Richard

Monash

Anyone who has to do with the law needs a knowledge of
ordinary m~thematical procedures~ A'jury of four ~n a Victorian
country town once gave a very generous verdict, and-the solicitor
for one of the parties, being naturally curious as to how it was
arrived at, took the opportunity of asking one of the jurors how
they arrived at the verdict. He said they had found it difficult,
but they had 'finally decided that each should write down on a
piece of paper the amount that he thought should be awarded.
Then he said, "We added them up My God, we forgot to divide
by four!"

The earliest case, so far as I know, in which a mathematical
formula was of significance was tn 1663. A man had agreed to buy
a horse, the price being calculated as follows: one barleycorn
for the first nail in his shoes, two for the second, four for the
third, and so on for the 32 nails. When he discovered that he
was going to have to provide five hundred quarters of barley (How
much was barley in 1663? Wheat was 36s. a quarter in 1780 when
the first official records of prices were kept in Britain.) he
tried to get out of his contract. The Court took a kindly view,
the trial judge directing the jury to give the plaintiff the
value of the horse, which they assessed at £8.

Forty years later in 1705, another defendant was in Court,
having fallen for a similar trick. This time he had agreed to
pay the plaintiff, in return for half a crown down, and a further
£4.l7.6.to be paid on completion of the contract,to deliver to
the plaintiff a grain of rye on the following Monday, two grains
the next Monday. and so on for a year, doubling up each week. The
defendant's counsel tried to argue that the contract was impossible
to perform, as there was not so much rye in all the world. Chief
Justice Holt pointed out that the contract as pleaded only required
delivery every second Monday, which would presumably have required
something l~ss than the 500 qrs. of barley in the earlier case.
Actually, this was probably said tongue in cheek. In those days
the parties had to use Latin for their written pleadings, and the
plaintiff's counsel used the phrase "quolibet alio die Lunae"
which literally translated means "every other Monday", but the
Latin phrase would not have been intended to have the same meaning
as in colloquial English. In the end the defendant, seeing that
he was not getting very far, offered to pay the half crown and
the plaintiff's costs, and this was accepted. Counsel during
argument in that case gave as an example of a contract that is
obviously impossible of performance: "To go to Rome in a day".
In more recent times "to make a journey to the moon" has been

3



4

chosen as an example, but this too has now to be discarded.

Geometrical progressions play quite a part in legal­
problems. The most familiar is the calculation of compound
interest and its variants. Most people are familiar with the
basic idea that money lel;lt at compound interest mounts up
much faster than at simple interest. It doubles in 14 years
at 5%, in 10 years at 7% and in 7 years at 10%. In each case
it is a little longer, but these are good working figures to
keep in one's head. Sometimes the question is as to the value
of a reversion, that is to say a right to property of which
the owner can only obtain possession on the death of a life
tenant. Suppose a testator leaves a sum of $10,000 on trust
to pay the income to A during his life and on his death to
pay the capital to B. What is the present value of B's
interest? This depends on what rate of interest the fund
might be expected to earn, and on how long A is likely to
live. If A's expectation of life is 14 years and the rate of
interest is 5%, the present value of B's inte~est will be
approximately $5,000 since $5,000 invested now at 5% compound
would amoun t to $10, 000 in fourteen years. In other cases .a
testator has directed his estate to be sold and the income
given to one person, and the reversion to another. What do
you do if a valuable work of art has to be retained for some
years before a buyer has to be found? More important, how do
you assess the value to an injured plaintiff of the loss of
his earnings for the rest of his working life? In such a case
you are really taking the present value of each of a series of
payments, and adding them all together. There are of course
tables available to save the lengthy calculations involved,
but the neglect of the principle itself may have unexpected
consequences. In the 1830's there was a wave of law reform in
Britain. One step was to abolish some of the sinecures which
were in the gift of the Lord Chancellor. As a first step
provision was made-for the Lord Chancellor to receive a pension
of £5,000 a year, without which the reforms had no chance of
success. Then it was provided that the officials of the Six
Clerks'Office (including also the Sixty Clerks and the Waiting
Clerks) should each be paid the net annual value of their fees
and emoluments. This was taken to mean that each could have a
lump sum equal to the annual value multiplied by the number of
years of his expectation of life. The annual amount was to. be
the average of the last three years - greatly inflated by the
recent efforts of two Vice-Chancellors to reduce arrears of
work in the Court of Chancery. The top scorer received
£214,768.9.10, and the next £163,575.11.10. The total for 29
persons was £1,358,424.3.5i. As few of these people did any
work except to meet regularly for dinner and to divide up the
takings, this must be regarded as having been a very generous
settlement.

Reference to expectations of life leads to the mention of
probabilities, and actuarial calculations. Of course, the
mathematics of probability can become very complicated, and it
is unwise for a lawyer to try to work these things out for
himself, but he should be able to recognise the existence of
the problem. Probability questions arise in many branches of
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of the law, but not least in the assessment of evidence.
Fingerprint evidence ,. for example, depends on the probabili ty
of two persons having the same combinations of characteristics
in their prints. As Sir LeG Cussen pointed out in'19l2, an
expert cannot say that no two persons can have the same finger­
prints. He can only say that it is highly improbable. But
the degree of improbability is very high, if you have a complete
print. Galton put the odds against a random selection of a
print corresponding with a given print as one in.64 000 000 000.
But of course, the fingerprint people cannot often get a perfect
print at the scene of the crime, and in such cases the odds may
be very much less. Moreover, these odds relate to a random
selection. If a matching print is found as a result of an ex­
tensive search the odds may be very much shorter.

A very interesting case on probabilities was the taxation
case referred to by Dr G.A. Watterson in the February 1977 issue
of Function [po 7], in which the probability of two sets of
bonds matching in all their known characteristics was in question.
Incidentally, that case was of a kind that demands a particular
kind of mathematical technique. "Betterment" cases (as they' are
called) are based on the idea that if a man cannot tell you how
much he has earned, you can find out .by making a list of his
assets at the beginning and the end of the year, and adding on
to any increase the amount he is assumed to have spent during
the year for living expenses, or for any other item which will
not be reflected in an increase in his assets. Put that way,
it sounds simple, but in fact it is much more complicated.
Capital gains have to be deducted and capital losses added on.
Legacies and gifts to the taxpayer have to be deducted. The
result is a fiendishly complicated experience in which you feel
that you are doing all your arithmetic standing on your head.
For my part, one betterment case in a lifetime is enough.

One could go on forsorne time listing the kinds of cases
in which a knowledge of mathematics is a help. The industrial'
field, and now Trade Practices cases and cases before the Prices
Justification Tribunal, involve an ability to work with stat­
istics, calculations pf movements in costs and profit margins
and the like. In the 40-hour Week Case, an engineer employed
by a public utility said that if working hours were reduced
from 44 to 40 his labour costs would increase by 10%, and
material costs by 6%, a total cost increase of 16%1 The fallacy
in this case is obvious, but a lawyer has to be prepared to
expose more subtle fallacies, especially in dealing with
statistics. The growing use of computers is going to involve
lawyers in some understanding of the way in which computers
operate. The increasing importance of a knowledge of company
accounting need hardly be stressed.

Unfortunately, our education system tends to draw off
students with"a mathematical bent at an early age. If they
show any promise in this field, they are' encouraged to pursue
scientific subjects, and by the time they reach Higher School
Certificate level they are irrevocably committed to courses
which make it difficult for them to shift back to the humanities.
In the result, the best law students are often students of great
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ability in the humanities but no mathematical aptitude what­ever. I do not mean to say that in order to cope with thekind of problem I have been discussing, it is necessary tohave been trained to a high level in mathematical theory. Itis however, an immense advantage to be able to grasp math­ematical concepts, and above all, not to be frightened bythem.

00 ClOClO ClOClOClOOO ClOClO ClOClOClOClO

A MATHEMATICAL EQUATION IN LEGAL LANGUAGE

From the Income Tax Assessment Act Section 67 (1):"

Subject to this section, so much of the Bxpenditureincurred by a taxpayer in borrowing money us~d by him for thepurpose of. producing assessable income as bears to the wholeof that expendit~re the same proportion as the part of theperiod for which the money was borrowed that is in the yearof income bears to the whole of that period shall be an allow­able deduction.

ClO ClO ClO

PROBLEM 3.1.
Three men go on a fislling expedition. On the first daythey catch a certain amount·of fish and without cooking any ­being tired - they all camp down for the night.
During the night one man awakes and decides to go home.Without waking the others he makes 3 equal shares of the fishto take his share: However he ,finds 2 fish left over so heputs these 2 together with his share and takes them home.
A little while later another awakes and also decides togo home. He too makes 3 shares of what is left, finds 2 leftover, takes these and his share and leaves.
The last man to go also makes 3 shares, finds 2 left over,takes these 2 and his share of fish and leaves.
How many fish did they catch?

Generalize this problem so as to answer the samequestion but now for M men, with a remainder of N(O ~ N < M)fish left over when each man in turn takes his share.

Submitted by Michael Moses, Science II, Monash
ClO ClO co

Student Mathematics, Room 373, College of Education,371 Bloor Street West, Toronto 181, Ontario, Canada.'(See page 1.)



SUMS OF SQUARES t

by John Taylor

U"niversity of British Columbia

Figure 1

Given Figure 1 I was asked, "How many squares?" Like most
people I answered, "Sixteen, - no therefre more!" Further

counting yielded 1 2 + 2 2 + 32 + 4 2 squares altogether (do you
agree?). I answered the same question for a 5 by 5 square

(this gave 1 2 + 22 + 32 + 4 2 + 52) and for a 3 by 3 square

(this gave 1 2 + 22 + 32 ), so it became apparent that there are

12 + 22 + 32 + ... + n 2 squares in an n by n square of this
type.

I decided to use this fact to get the formula for the sum
of the first n squares; let's call this Sn. Knowing that a

square is uniquely determined by its diagonal, I drew all the
diagonals I could in one direction only (Figure 2) and counted
the number of squares that belonged to each diagonal. "For
instance, on the longest diagonal you see 1 + 2 + 3 + 4 + 5.
This is because there are 5 unit squares with corners on this
diagonal, 4 squares of side 2, 3 squares of side 3, and so on.

1+2+3+4+5

1+2+3 +4

1+2
1 +2

'k--oJIr---..JIl~Ik--.r---t..1+ 2 + 3

1+2+3+4

F.igure 2

tFrom Student Mathematics, 1972, page 4.

7
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Since this method counted aZZ the squares and ea~h square
only once, I knew that 8 5 was the sum of all the nu~bers

written on the diagonals_

8 = 1 +5

1 + 2 +

1 + 2 + 3 +

1 + 2 + 3 + 4 +

1 + 2 + 3 + 4 + 5 +

1 + 2 + 3 + 4 +

I + 2 + 3 +

1 + 2 +

1.

Since this pattern looked incomplete, I completed it as in
Figure 3:

1 + 2 + 3 + 4 + 5+

1 + 2 + 3 + 4 + 5+

1 + 2 + 3 + 4 + 5+

1 + 2 + 3 + 4 + 5+

1 + 2 + 3 + 4 of 5+

1 + 2 + 3 + 4 + 5

I + 2 + 3 + 4 5+

1 + 2 + 3 4 + 5+

1 + 2 3 + 4 + 5+

I T 2 + 3 + 4 + 5+

1 + 2 + 3 + 4 + 5 •

F~gure 3

Now, looking at the two new triangular sections, I noticed
that in each I had brought in f~ve5ts, four 4's, three 3's,

two 2's, and one 1, with a total of 52 + 4 2 + 32 + 2 2 + 12 ,
which is exactly 8 5 - So the sum of all the numbers in Figure 3

must be just 385 - As all the rows are identical it follows that
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385 = II x (1 + 2 + 3 + 4 + 5).

Let's turn to the general case. For an n by n square, the
same procedure will give

38n (2n + 1) (1 + 2 + 3 + ... + n).

As in 1 + 2 + 3 + + n n(n + 1)/2, we obtain

8 n n(n + 1)(2n + 1)/6.

00 00 00 00 00 00 00 00 00 .00 00

HEADS I WIN, TAILS YOU LOSE

by G. A. Watterson, Monash Univers"ity

First, you may like to check out the statement made by
the writer of a letter to "The Age" on 4th June 1977.

Punter's dream

SIR, - According to Michelle Grattan's article
("The Age", 30/5) on the "Labor Party leadership,
the Tasmanian Liberal MHR, Michael Hodgson,
would become destitute very quickly if h~ was
a bookmaker.

His odds of 5/2 "on" for Mr Whitlam and
7/2 "against" for MrHayden were a punter's
dream. Yoti could put $70 on MrWhitlam and
$22 on Mr Hayden and still win money no matter
who won the leadership contest.

If .this is how Liberal politicians do
their sums then how do they get on when the
mathematical problem is Australia's economy?

KEN HOLMAN (Rosanna).

Now for some mathematics!

When a contest occurs between two people A and B, suppose
that one of them must win (i.e. there are no ties) and that a
bookmaker offers odds of a : I against A winning and b : ~

against B winning. [For ~nstance, odds 7 : 2 against can be

expressed as ~ : I against, while odds 5 : 2 on are equivalent
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to ~ : 1 against.]

If you invest an amount $x in betting that A will win
and an amount $y in betting that B will win, can you be sure
that you will win some money no matter whether A or B wins
the contest? Let us see.

If A wins the contest, you get back your $x, and you also
make a net profit of $p say, where

P = xa - y, (1)

that is, you get your winnings on A but lose your investment
on B. Your profit, if negative, would really be a loss, of
course. Similarly, if B wins, you make a profit $Q, where

Q = yb - x. (2)

Your possible profits will both be posit~ve, ~.e. p > 0 and

Q > 0, provided that in (1), xa -- y > 0, Le. ~ >~, and in

(2), thatyb - x > 0, i.e. ~ < b. There is no danger iny
dividing by y here; y cannot be 0 and still yield a positive
profit if B wins.

The bookmaker would therefore be silly if he offered odds

so that you could choose a number ~ greater than 1 and lessy a
than b. He can prevent this by making

b ~ 1a'
or equivalently,

1 - ab ~ o. ( 3)

The odds mentioned in the Age letter had a = ~ and b =~, and

then 1 - ab = 1 - i = ~. Thus (3) is false. You could bet

$x on Mr Whitlam winn~ng and $y on Mr Hayden winning and,

provided you made ~ lie between 1 = ~ and b = ~, you would be

sure of winning. ~r Holman Sugg~sted taking ~ = lQ which does,y 22
indeed, lie between ~ and ~.

Let us now convert the problem into probabilities. If
the bookmaker says the odds against A winning are a : 1, he
means that A has a "probability" of winning the contest equal

to a ~ l' Similarly, b : 1 against B means that B has a

~fprobabili ty" of b ~ 1 of winning the contest. Of course, as

ei ther A or B must win, these two flprobab.ilities" should add
to 1. But in fact,



1 1
a+T + b+l

a + 1 - a + 1
a+l b··+l

a 1
1 a+T + b+T

1 - ab
1 + (a + l)(b + 1) ·
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So, if the bookmaker is not silly, he will offer you odds which
correspond to "probabilities" adding up to 1 or more, because if
(3) is true, the right hand side of (4) is 1 or more.

If you extend this to a contest, say a horse race, having
more than two contestants, you find that if you convert a
sensible bookmaker's odds into "probabilities'~, these "probab­
ilities" add up to 1 or more. In fact, at the horse races, the
"probabilities" add up to about 1·1 or so; check in Monday's
paper! The more the "probabilities" exceed 1, the more chance
the bookmaker has of winning, no matter which horse wins.

00000000000000000000000000

MORE ON CRICKET TEAMS

In Part 1 of Function, on page 8, we quoted the Melbourne
"Age" announcement of the winner of its Centenary Test cricket
competition. The number of ways that twelve players can be
chosen from 30 candidates, eleven in batting order and one as
twelfth man, is

30 x 29 x 28 x 27 x 26 x 25 x 24 x 23 x 22 x 21 x 20 x 19.

The number of ways that the captain and vice captain can be
chosen from the eleven actually in the team is

11 x 10.

Thus, the total number of different possible sensible entries
in the competition is

30 x 29 x ••• x 20 x 19 x 11 x 10 ~ 4 557 300 000 000 000 000.

This is 10 times the figure the "Age" announced.

Any attempt to convert this calculation into a "probability
of only one reader filling the requirements" is doomed to failure,
of course. The possible choices of team are not equally likely
(who would want eleven bowlers?), we do not know how' many persons
put in entries nor how many different entries were made per person.
Another reader turned the tables. He wrote that the fact that
only two people (Ian Johnson and the winner) selected the same
team in order proved that ":l3oth of them are pretty poor judges"!



-SRINIVASA

by Liz Sonenberg,

RAMANUJAN

Monash University

In December 1887 a boy was born in India who became a most
extraordinary mathematician. He had only a limited formal
education and had, for the most part of his life, no access to
books or to people who could tell him about the work that other
mathematicians were doing at the time. Desp~~e these handicaps
he was able to develop an enormous amount of 'Corigina1 mathematics.
In this article we take a brief look at this extraordinary man.
The information contained here comes from two obituary notices ­
one by G.H. Hardy, the other by Seshu Aiyar and Ramachandra Rao.
These notices have been published together with the collected
works of Ramanujan.

Srinivasa Ramanujan was born on the 22nd December 1887, in the
Tanjore district of the Madras presidency. He first went to
school at the age of five and before he was seven won a scholar­
ship to another school. Quiet and meditative, Ramanujan was
very fond of numerical calculations and had an unusual memory
for numbers.

When he was 15, a friend obtained for him (from the library
of the local government college) a copy of a book titled "Synopsis
of Pure Mathematics". This book summarised some 6000 theorems of
algebra, trigonometry, calculus and analytic geometry, generally
without detailed proofs. For-the most part the mathematical
knowledge contained in it went no further than that of the 1860's,
but it was this book that awakened Ramanujan's genius. He set
himself at once to establishing its formulae. ' As he had no other
books, each solution was for him a piece of original research. He
first-devised methods for constructing magic squares, then
branched off to geometry and after that to algebra. According
to Seshu Aiyar and Ramachandra Ra~, who were two of Ramanujan's
closest friends in India, Ramanujan used to say that the goddess
of Namakkal inspired him with the formulae in dreams. It is a
remarkable fact that, on rising from bed, he would frequently
note down results and verify them, though he was not always able
to supply a rigorous proof. This pattern repeated itself through­
out his life.

At 16 he passed his matriculation examination to the
Government College at Kumbakonam and won a scholarship. By this
time he was so absorbed in his study of mathematics that he used
to take no notice of what was happening in his other classes.
This neglect of his other subjects resulted in failure in his
examinations and he lost his scholar~hip. He then left Kumbakonam
and went to Madras where he presented himself for another exam-

12
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ination but failed and never tried again. Afterwards. he had
no very definite occ~pation till 1909, but continued working
at mathematics in his own way. In 1909 he married and it
became necessary for him to find some permanent employment.
In the course of his search fo~ work he was given a letter of
recommendation to Ramachandra. Rao who was then Collector at
Melore, a small town 80 miles north of Madras. Ramachandra
was himself a lover of mathematics and although at first he
could not understand the mathematics that Ramanujan had
developed on his own, he could sense that here was a man
worthy of support. To allow Ramanujan time to do his math­
ematics, Ramachandra undertook to pay his expenses for a time.
Meanwhile Ramanujan made other, unsuccesstul, attempts to
obtain a scholarship and being unwilling to be supported by
anyone for any length of time, he accepted a minor appointment
in the office of the Madras Port Trust.

But Ramanujan never slackened his work in mathematics.
His earliest published works appeared in 1911 in the Journal
of the Indian Mathematical Society when he was 23. By then
he had made contact with other mathematicians in Madras and,
on their sugges~ion, began corresponding with the eminent
British mathematicianG.H. Hardy who was then a fellow of
Trinity College, Cambridge. Hardy was immediately impressed
by Ramanujan's knowledge and expertise. Some of the results
that Ramanujan communicated in his letters were already known
to HardY,having been discovered by other mathematicians, but
many of the formulae defeated Hardy completely - he had never
seen anything like them before.

In one of Ramanujan's early papers (published in 1914)
there appears a very striking collection of approximations
to TI. For example he gives

~~ _ 1~ : ~~~ = 3-14 159 265 380 --- which is correct to 9

decimal places, and (92 + ~~2)i 3·14 159 265 262 ... which

is correct to 8 decimal places. Other more complicated formulae
in his paper are correct to as many as 31 decimal places. .

In an earlier paper Ramanujan gives a geometrical con~

struction which yields ii~, another approximation to TI. We

reproduce Ramanujan's paper at the end of this article.

Ramanujan's mathematical interests were very specific.
He was interested in numbers, in algebraic formulae, and in
transformations of infinite series. He did not care about
the possible 'usefulness' of his mathematical work in other
disciplines. His'intuit~on was most at ease in the bewilder­
ing complexities of the number system. Numbers were his
friends; in the simplest array o~ digits he detected wonderful
properties and relationships which escaped the notice of even
the most gifted mathematicians. However Hardy, who probably
knew more of Ramanujan than anyone else, points out that his
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ideas as to what constituted a mathematical proof were of the
most shadowy description. All his results, new or. old, right
or wrong, had been arrived at by a process of mingled argument,
intuition, and induction, of which he was entirely unable to
give an adequately coherent account. Because of this, along
with his numerous brilliant successes he had some spectacular
failures.- notably his work on prime numbers (to which he
attached a great importance) was definitely wrong. This was
explained to him only later when he was in England.

In May of 1913, because of the help of many friends,
Ramanujan was able to give up his clerical post in the Madras
Port Trust to take up a special scholarship. Hardy had made
efforts from the first to bring Ramanujan to Cambridge. The
way seemed to be open, but Ramanujan refused at first to go
because of caste prejudice and lack of his mother's consent.

"This consent", wrote Hardy in his obituary of Ramanujan,
"was at last got very easily in an unexpected? manner. For one
morning his mother announced that she had had a dream on the
previous night, in which she saw her son seated in a big hall
amidst a group of Europeans, and that the goddess Namagiri had
commanded her not to stand in the way of her son fUlfilling his
life's purpose."

When Ramanujan finally came to Cambridge he had a scholar­
ship from Madras of £250, of which £50 was allotted to the
support of his family in India, and an allowance of £60 from
Trinity College.

In England Ramanujan continued working on his own math­
ematical ideas. He conveyed to the mathematicians there the
developments he had achieved and in turn he was able to learn
of the work of other mathematicians - thus filling in some of
the enormous gaps in his overall mathematical knowledge. In
1917 he fell ill, probably with tuberculosis, and went to a
nursing home in Cambridge. After this, he was never out of
ped for any length of time. However he continued working and
in the last three years of his life he discovered some of his
most beautiful theorems. Early in 1919 he returned home to
India and died there the following year when only 33 years old.

For an evaluation of Ramanujan's work in mathematics we
again quote from Hardy. "I have often been asked whether
Ramanujan ha~ any special secret; whether his methods differed
in kind from those of other mathematicians; whether there was
anything really abnormal in his mode of thought. I cannot
answer these questions with any confidence or conviction; but
I do not believe it. My belief is that all mathematicians
think, at bottom, in the same kind of way, and that Ramanuj~n

was no exception. He had, of course, an extraordinary memory.
He could remember the idiosyncrasies ot numbers in an almost
uncanny way. It was Mr Littlewood (I believe) who remarked
that 'every positive integer was one of his personal friends'.
I remember once going to see him when he was lying ill at
Putney. I had ridden in taxi-cab No. 1729, and remarked that
the number seemed to me a rather dull one, and that I hoped
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it was' not an unfavourable omen. f No', he replied, , it is a
very interesting number; it is the smallest number expressible
as a sum of cubes in two different ways' .tt

Hardy concluded his obituary notice in the following' way:

"It is often said that it is much more difficult now for
a mathematician to be original than it was in the great days
when the foundations of modern analysis were laid; and no doubt
in a measure it is true. Opinions may differ as to the importance
of Ramanujan's work, the kind of standard by which is should be
judged, and the influence which it is likely to have on the
mathematics of the future. It has not the simplicity and in­
evitableness of the greatest work; it would be greater if it
were less strange. One gift it has which no-one can deny ­
profound and invincible originality. He would probably have
been a greater mathematician if he had been caught and tamed
a little in his youth; he would have discovered more that was
new, and that, no doubt, of greater importance. On the other
hand he would have been less of a Ramanujan, and more of a
European professor and the loss might have been greater than
the gain."

However, in a lecture delivered at the Harvard Tercentenary
Conference of Arts and Sciences in 1936, Hardy, in reviewing his
earlier writings about Ramanujan, makes the following further
comment:

"I have been looking again through what I wrote about
Ramanuj an sixteen years ago, and, 'al though I know his work a
good deal better now than I did then, and can think about him
more dispassionately, I do not find a great deal which I should
particularly want to alter. But there is One sentence which
now seems indefensible. I wrote ..... (Hardy repeats the last
paragraph of the obituary) ..... , and I stand by that except
for the last sentence, which is quite ridiculous sentimentalism.
There was no gain at all when the College at Kumbakonam rejected
the one great man they had ever possessed, and the loss was
irreparable; it is the worst ~nstance that I kqow of the damage
that can be done by ·an inefficient and inelastic educational
system. So little was wanted, £60 a year for five years,
occasional contact With almost anyone who had real knowledge
and a little imagination, for the world to have gained another
of its greatest mathematicians." .

00 00

On the next page we reproduce a paper of Ramanujan giving
a remarkable construction for (an'approximation to) n. The

first step in the argument, claiming that RS2 = (5/36)d2 ,

follows from the fact that RS = QT and QT2
= PT . TR

(=(5/6)d.(1/6)d). This latter equation holds because triangles
QTR and PTQ are similar.

00000000000000000000000000



SQUARING THE CIRCLE

by S. Rama"nujan

Let PQR be a circle with centre 0, of which a diameter is
PRo Bisect PO at H and let T b~ the point of trisection of OR
nearer R. Draw TQ perpendicular to PR ana place the chord
BS TQ.

Join PS, and draw OM and ~N paralle~ to RS. Place a chord
PK = PM, and draw the tangent PL = MN. Join RL, RX and KL. Cut
off RC = RH. Draw CD parallel to KL, meeting RL at D.

Then the square on ED will be equal to t:ge circle PQR
approximately.

For

where d is the diameter of the circle.

Therefore

and

But PL and PK are equal to MN and PM respectively.

2 31 2 2 31 2
Therefore PX = l44d , and PL = 324d .

Hence BX2 PR 2 Px 2 = 113d2
144 '

RL 2 PR 2 + PL 2 355d2
324

Pl'-----+---~------II.-____:::III R

L

t (JoUPnal of the Indian Mathematical Soaiety I v, 1913, p. 132)
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and

But RK
RL

RC
BD

BC

3 1113
"2 '\J 355'
-1 d "
4 ·
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Therefore RD = %~ i~~ = pITT, very nearly.

Note. If the area of the circle be 140 000 square miles,
then RD is greater than the true length by about an inch.

(X) (X) (X) (X) (X) (X) (X) 00 00 (X) (X) (X) (X)

MORE ABOUT 1T

by A. J. van der Poortent
University of New South Wales

It is easy to check the identity
4 4

x (1 - x) = x 6 4x5 + 5x4- _ 4x2 + 4 4__~
1 + x 2 1 + x 2 .

But the left side is clearly positive for all x between 0 and
1, so that the area under this curve, between x = 0 and x = 1
is positive:

J
l 4 4

x (1 - x) dx > O.
o 1 + x 2

Using the identity, this area is alsor 6 4x5 + 5x4 4x 2 + 4)dx 4t 1 dx)(x 20 o 1 + x
1 4 5 4 4 -1 1
'7 - 6 + 5 - "3 + - 4[Tan 'x]O

227 - 1T.

As this is positive, we have proved that 1T < 2~.

[Note: The fact that "1/(1 + x 2 ) has antiderivative Tan-Ix
can be proved by differentiating both sides of the identity

tan(Tan-1x) = x.]

t
A.J. van der Poorten showed me the above several years ago. I hope he

forgives me for communicating it to Funation; I wanted it to appear in
more permanent form than on a slip of paper in my wallet!

G.A. Watterson

0000 (X) 00 (X) (X) 00 (X) (X) (X) 00 (X) (X)



THE MAGIC HEXAGON

by M. A. B. Deakin, Monash University

4 9 2

3 5 7

8 1 6

Many readers will be familiar with the magic squares ­
arrangements like that shown in
Figure 1. The nine (in this
case) small squares form a
larger square with the property
that for each row, each column
and both diagonals, the sum of
the numbers involved is 15.

Another feature in this
arrangement is the use of each
of the consecutive numbers one
to nine exactly once. Figure 1

t Made in 1514. On display at the British Museum~
18

You might like to try your own hand exploring this area.
For a start, calculate what the sum of the numbers should be
in a 5 x 5 square, and an n x n square.

Figure 2

There are other magic squares. A 4 x 4 square is
depicted in Durer's famous engraving MeZencoZia I. tHere
the numbers 1 to 16 are arranged in such a way that each
row, column or diagonal sums to 34.

Apparently more complicated
than the magic squares are the
magic hexagons. Regular hexagons
pack neatly as in Figure 2. Here
19 small hexagonal cells are
placed together to form a shape
whi'ch, while not a hexagon, has
the same six-sided symmetry as
a hexagon. By a slight, but
allowable, misuse of language,

The study of such magic squares can hardly be said to
be a major t~eme of mathematics, but it is an interesting
and widely known recreational topic.

o

It becomes. more and
more complicated as the size of the square is increa"sed, and
much remains to be discovered, even for relatively small
squares. Often amateurs surprise professional mathematicians
by finding previously unknown results.
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this figure is referred to as a hexagon: in this case a
hexagon of order three, as there are three cells on each
side. '

If we examine the structure of the hexagon in Figure 2',
we see that there are 5 horizontal rows of cells, 5 rows
slanting from top left to bottom right of the page and 5
slanting from top right to bottom left. There are 19 cells
in all arranged in, a total of 15 rows.

The problem is to arrange the numbers 1 to 19 in the
cells of Figure 2 so that the sum along each row is the same
as the sum along every other row. We're not asking you to
do this (for reasons which will become obvious), but you
could try to see why each row must add up to 38.

The answer to the arrangement problem is usually attributed
to Clifford Adams, an amateur mathematician who may be said,
without exaggeration, to have devoted half a lifetime to its
solution. .

Adams, a railway clerk, began his search in 1910. He had
a set of hexagonal ceramic tiles specially made, each bearing
a number from 1 to 19, and, used these in an experimental
effort of mammoth proportions. (Disregarding the different
points of view achieved by rotations and reflections, how
many combinations are there?)

His spare time was devoted to this problem for 47 years.
He finally found a solution while convalescing following an
operation'and jotted it down on a piece of paper. When he
returned home, however, he found that he had mislaid the
solution.

It attests to his determination that for five years, he
continued {he had by then retired) his efforts to reconstruct
the solution. He never succeeded. Instead, he had the good
luck to locate "the missing piece of paper.

He forwarded a co~y to Martin Gardner, the Scientific
American columnist, in December 1962. (If you don't know
Gardner's columns and the Problem Books he compiles from them,
you have a treat in store.)

Let Gardner now take up the story:

"When I received this hexagon from Adams, I was only
mildly impressed. I assumed that there was probably an
extensive literature on magic hexagons and that Adams had
simply discovered one of the hundreds of order-3 patterns.
To my surprise a search of the literature disclosed not a
single magic hexagon. I knew that there were 880 ~ifferent

varieties of magic squares of order 4, and that order-5
magic squares ... [had not then] ... been enumerated because
their number runs into millions.' I t seemed strange that no­
thing on m'agic hexagons should have been published."
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Gardner contacted Charles W. Trigg, a United States
mathematician with a wide reputation in the area of comb­
inatorics (the branch of mathematics involved) and asked
for his opinion. Trigg took a month to reply, but the
answer was worth waiting for:

Apart from trivial alterations caused by rotation or
reflection, Adams' magic hexagon was the only one that could
exist.

Well, not quite. There is one other. Here it is: C!)
This is so trivial that we don't count it. It is easy to
see also that there is no magic
hexagon of order 2. Suppose we c@ab,
have an order-2 hexagon as shown
in Figure 3. The numbers one to
seven must be arranged in the
cells so that nine different
sets of numbers all add up to Fig4re 3
the same figure. Suppose the
top entries are a and b, as shown. Then all- rows must add
up to a + b, whatever that may be. But now what are we to
put in the far left cell? We have:

a + x = a + b

so that

x= b,

and the number b is used twice, which is against the rules.

(An alternative impossibility p~oof notices that the row
sum must be 28/3. Can you produce this proof?)

Two more things remain to be proved in order to show
that Trigg's theorem (if we may so term the uniqueness claim)
is true. We need to be assured that:

(1) There is no'magic hexagon of order n, if n > 3.
f'

(2) Among all the (how many did you get?) possibilities
of order ,3, only one is 'magic.

At first sight, we would, think that the first statement,
which comprises infinitely many cases, would be harder to prove
than the second. In point of fact, this is not the difficult
part. The proof is a little long to include in this article,
and contains some ideas that will be new to, but not above the
capabilities of, the readers of Function.' Interested readers
will find it on pages 71-73 of Ross Honsberger's Mathematical
Gems. (A more cryptic account is given by Martin Gardner,
Scientific American, August 1963, p. 116.)

It remained to Trigg to show that of all the (?)
possibilities of order 3, only one was magic. This he
accomplished in a proof that, on Gardner's account,
" ..... used a ream and a half [750 pages] of sheets on which
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the cell pattern had been reproduced six times", i.e. the
"answer was obtained by comb;ining brute force ..... with
clever short cuts".

That short cuts were necessary may be seen easily enough.
There are (?) possible combinations, of which Trigg needed
to discuss only 6 x 750.

The case is somewhat reminiscent of that discussed by
John Stillwell in the first issue of Function. In discussing
the four colour problem, he referred to the Haken-Appel
solution as "a barbarous way to do mathematics", and our
editorial indicated that some check was necessary before the
result could be unprovisionally accepted.

Trigg's theorem provides a similar case. The result is
not important enough for anyone to pay for its publication.
It is no slight on Gardner to say that he probably did not
check all the·details. Are we then to hold Trigg's theorem
unproved, or only probably right?

In this case, the answer is "no". The' result was proved
independently by Frank Allaire (in 1969). Allaire was then
a secdnd-year student at the University of Toronto. Using an
elegant computer programme, Allaire reduced the problem to 70
cases (each involving many sub-cases) and confirmed Trigg's
theorem in 17 seconds of computer time. Enough of his metho"d
is now public (see, e.g., pp. 73-76 of Mathematical Gems) that
any bright young mathematician with a flair for combinatorics
and computing can check the result.

Trigg and Allaire thus not only duplicated the result of
Adams' search, but extended it. Trigg (without a computer by
the way) did more in a month than Adams achieved in 47 years.
However, just as Allaire knew from Trigg's work what he had
to aim for, so Trigg knew from Adams' more pioneering efforts
where he wa's g9ing. (Trigg ,'s "clever short cuts", the resul t
of a well-practised mathematical mind, had much to do with
this also.) Did Adams hi.mself have some guiding star? It
appears now that he may have done. Gardner more recently (in
University of Chicago Magazine, Spring, 19.75)" shows a picture
of a puzzle incorporating the magic hexagon. This was patented
in 1896 by William Radcliffe, a schoolteacher on the Isle of
Man. Was Adams influenced by a (possibly subconscious) memory
of Radcliffe's puzzle?

Two other possible discoverers exist, although they too
may owe a debt to Radcliffe. An unpublished manuscript from
wartime Germany (1940) contains the result. The author is
Martin KUhl of Hanover.

More i~onically, a lotof the time Adams was agonls1ng
over his lost paper, the result was in print, widely dist­
'ributed, but unrecognized. It is publis~ed, as a'diagram,
with no words at all, in Mathematical Gazette (1958), p. 291.
The author of the strangely silent article'was Tom Vickers.
Perhaps the reason that Vickers' result was overlooked is
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the one which will strike a:ny reader who cares to look it up.
Visually, it's quite different from Figure 2. (For a start,
it's a hexagon and not just a courtesy hexagon.)

Another reason is more subtle, but perhaps more important.
Vickers' paper was overlooked, just as Adams' paper was almost
dismissed by Gardner. Both were seen at first as quaint
numerical curiosities. These are not, as such, of great
mathematical interest. They merit attention, howev~r, when
we can say something truly surprising about them - when we
"embed" them in deeper, more general, results. r:fhis is what
Trigg did in this instance. Once he had done that, people
took notice.

At the beginning of this article, I referred to magic
hexagons as being "apparently more complicated than magic
squares". They are not really more complicated, ,however.
There is only' one of them. Meanwhile, results on magic squares
proliferate and we have no comprehensive fra3!i1ework in which to
place them. Provision of such frameworks is what mathematics
is about.

Here are two problems to consider:

(a) Equilateral triangles can fit together to form larger
equilateral triangles; .small squares combine into'
larger squares; regular hexagons interlock to make
up "hexagons". No other regular plane figures can
do this. Why not?

(b) We have talked of magic hexagons and magic squares.
What of magic triangles?

P.s. You didn't really' think I was condemning you to 47 years'
hard labour, did you? Here is the magic hexagon:

00000000000000000000000000



TZIAN - SHI - ZI -

Tzian-Shi-Zitis a Chinese game. Two piles of objects,
for instance stones are prepared. The game is played by two
persons. Each of-them has to take alternately at least one
stone. At each turn a player may take any number of stones
from one pile, but if he wishes to take stones from both
piles he has to take the same number of stones from each pile.
The player who takes the last stone wins.

Let us write (a, b) to denote that there are a stones
in one pile and b stones in the other. We shall assume that
a ~ b. It is obvious that in the cases (0, 1) and (n, n) the
player who makes the next move can win. In the case (1, 2)
the player whose turn it is to play loses the game. This
can be verified by considering all possible cases. Let us
call the pair (1, 2) an S-L pair (starter-loses). On the
other hand in the case (1, n) with n ~ 3, the starting player
may win by taking n -2 stones from the second pile and
leaving the combination (1, 2) for his opponent. The question
is how to find all possible S-L combinations. If a player
knows them, then with each of his moves he should try to leave
for his opponent an 8-L combination and thus win the game-.

It is obvious that no pair (2, b), b ~ 2 is an S-L
combination., Indeed here the starting player takes b - 1
stones and wins the game. On the other hand the pair (3, 5)
is an S-L combination. The starting player A cannot leave
his opponent the combination (2,- 1), so if he takes at least
one stone from the first pile, his opponent B will win the game.

In the remaining cases player B should move as follows

A
B

where in the top row the combination left after A's move is
shown and in the bottom row B's move is described in the same
way.

PROBLEM (Solutions invited please)

Can you find a rule to' obtain all possible S-L pairs?
(There are infinitely many S-L pairs~) Try, then, to prove
that if a player A faces a pair which not an S-L pair then
he can make a move in such a way that his opponent will face
an 8-L pair.

t Count stones small
000000000000000000 0000
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A NOTE ON CALENDARS
by Mark M'ichell, Lynwood Avenue, East Ringwood

In the first issue of Function, in an article called
'A Perpetual Calendar', a formula was given ,which enables you
to work out on which day of the week a given date falls. Here
we use the formula to work out which days of the week can occur
as the first day of a century.

The formula we use comes from the bottom of page 22 in the
first issue of Function. We are interested in day 1 of month 1
(i.e. January) of year J x 100. The given formula sayS that for
this date

x = 1 + [26(13 + 1)] + 99 + [99} + [~] - 2(J - 1) - 1
- . 10 4 4

where x is the day of the week on ,which the given date falls,
so that Sunday is day 0, Monday is day 1 etc. (The meaning of
= and [ ] is explained in 'A Perpetual Calendar': a = b means
that a - b is divisible by 7; [a] denotes the integral part of c.)

After some calculation we get

x = .161 + ['J - 1] - 2J.
4

Using the rule for calculating with residues which was
worked out in 'A Perpetual Calendar', we have, since 161 is a
multiple of 7,

x _ [J 4 1] - 2J . (1)

Let us look at a couple of particular dates and work out
x. For example 1st January 2000 and 1st January 2400.

If J = 20 then from formula (1) we have x = [l~] - 40

= 4 '- 40 = -36. Using the rule worked out in 'A Perpetual
Calendar' (extended so as to apply to negative numbers also)
we obtain -36 = 6, since the difference 6 - (-36) = 42 is a
multiple of 7. Thus x = 6, i.e. January 1st 2000 will be a
Saturday.

If J = 24 then from (1) we have x = [2~] - 48 = -43. As

6'- (-43) = 49 is a multiple of 7 we obtain -43 = 6 and so
x = 6, i.e. January 1st 2400 will be a Saturday also.

24
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Similar calculations give the fol~owing table

Century

21st (i.e. 2000)
22nd
23rd
24th
25th
26th
27th
28th

First day of Century

Saturday
Friday
Wednesday
Monday
Saturday
Friday
Wednesday
Monday

Th~s suggests that Sunday, Tuesday and Thursday never
occur as the first day of a century. Can we prove it?

Let F(J) pL..=-l] - 2J. Then4

F(J + 4) [(J + 4) - 1] - 2(J + 4)4

[J - 1 1] 2J 8--4- +

[~] + 1 2J 84

[~] 2J - 74

Thus F(J + 4) - F(J) = -7 so that F(J) = F(J + 4). This says
that every four centuries the same day occurs at the beginning
of the century. Thus the four days worked out above (Monday,
Wednesday, Friday, and Saturday) are the only days that will
occur as the first day of the century.

co coco coco co co coco coco coco

SOLUTION TO PROBLEM 1.1.
To solve this problem we have to find how often the thir­

teenth falls on each day of the week. From the article fA
Perpetual Calendar'by Dr E.A. Sonenberg, in Part 1 of Function
we know that the whole calendar repeats itself every 400 years.
Using the formulae given in that article we calculate (the
calculation is a little long) that, in any 400-year period, for
example from January 1st 1600 to December 31st 1999, inclusive,
the 13th of the month falls on each day with the frequencies
given in the following table:

Sun Man Tues Wed Thur Fri Sat

687 685 685 687 684 688 684 .

So the 13th does indeed fallon a Friday more frequently than
it falls on any other single day of the week.



THE GAME OF 81M

The game of 81M is played by two players each with a
coloured pencil. Start with six points drawn on a piece of
paper as follows

• •
• •

• •
Each player in turn draws a line joining a pair of the points.
The first player 'to form a complete triangle Df his own colour,
loses. (Only triangles with all vertices on the six starting
points are considered and no pair of points may be used more
than once.) The object of the game is not to form such a
triangle yourself and to force your opponent to do so.

Since at each turn one pair of points is 'used up' and

there are only (~) = ~ = i = 15 different pair~ of points, each

game is quite short. Further, unlike the game of noughts and
crosses for example, it seems quite difficult to find good
strategies. Also as we explain below it can be shown that a
drawn game is impossible. These two things make the game of
SIM quite a good time-waster.

We show that a drawn game is impossible by showing that
if all fifteen lines are drawn in with two colours (say red and
blue) then there must be a triangle in one of the colour~. For
consider anyone point, P say, of the six points after all 15
lines have been drawn In. Since five lines originate at P (one
going to each of the other given points), at least thre~ of
these lines must be of the ,same colour. Notice that we can't
say which of the two colours it is~ only that these lines have
the same colour. Let us suppose that it is the colour blue.
(We could give a similar argument starting with the colour red.)
Let us give names to three of the lines from P which have the
colour blue - PQ, PR, and PS say. If QR is blue then PQR is a
blue triangle .. Similarly, if either of RS or SQ is blue, we
can find a blue triangle. But if none ofQR, RS, or SQ is blue
then they must all be red, i.e. QRS is a red triangle. Thus
,as required there is always a triangle in one of the two colours.

000000000000000000000000

"AhI'why, ye Gods, should two and two make four?"

Alexander Pope: The Dunciad
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SOLUTION TO PROBLEM 2.4.
"The one on the left can't be Tom because Tom always tells

the truth and if he was Tom he .would be saying I'~ Tom and ·he
is saying The guy in the middle is Tom. The one in the middle
can't be Tom either because he is saying I'm Dick and.Tom
always tells the truth. So the one on the right must be Tom.

Tom is saying the guy in the middle is Harry. so he must
be because Tom always tells the truth so the one on the left
must be Dick!"

Solution by Gay Deakin, Grade 4, Blackburn Lake State
School. Also solved, by a different argument, by Julie Deakin,
Grade 6, of the same school.

SOLUTION TO PROBLEM 2.5.
For the general case:

ana n_1 ... a 3a2al aO x h/k = aOanan _1 ..• a 3a 2a l .

Then a (hlO n - kIOn-l) + a (hlOn- 1 - kIOn- 2 ) +
n , n-l

2 n... + a2(hlO - klO) + al(hlO - k) + aO(h - 10 x k) = O.

Since hlO i - klOi - l = h x 10 x 10i-l - k x 10i - l = (10h _ k)IOi-1

n n-I n 2we have aO(klO - h) = (IOh - k)(anl0 + an_IIO - + •..

+ a 3102 + a 210 + a l ) = (10h - k)x, say. (1)

i) !!:.. = 3
k "2

Equation (1) here gives ao(2 x IOn 3) = 28x. However 2 x IOn - 3

is never divisible by 28, but when n = 5 + 6p, for p ~ 0, an

n 28integer, 2 x 10 - 3 is divisible by 7 ~ so :if we let a O = 4,

then 4(2 x IOn - 3) = 28x, i.e. 2 x IOn - 3 = 7x.

For n 5, x 28 571, for n = 11, x = 28 571 428 571. Since .

ao = 4, solutions to the problem are

285 714 x ~ = 428 571

and 285 714 285 714 x ~ = 428 571 428 571.

Also a
O

8, provides an additi~nal set of solutions

571 428 x ~ =' 857 142 etc.



28

.. ) h 7
11 k = "4

Equation (1) now gives

naO(4 x 10 - 7) = 66x. (2)

If we divide 4 x 10~ - 7 by 66 we find that we get a remainder
63 when n is even (note -.3 = (-1) x 66 + 63) and a remainder
33 when n is odd. Hence equation (2) has solutions if a O is

even and n is odd. Taking aO = 2, 4, 6, 8 in turn, with n = 1

we therefore get solutions

12, 24, 36, 48;

with n - 3, we get

1212, 2424, 3636, 4848;

and so on.

The above solution is by Mr G.J. Chappell of "Bethany",
Rubyanna Road, Bundaberg, Queensland. Mr Chappell politely
does not point out that we made a mistake in (i) where we
stated that no solution was possible."

SOLUTION TO PROBLEM 1.2. (Fibonacci's problem.)

Fibonacci) is i~. It mayThe answer ( found by Leonardo

be checked that

(41)2 + 512
and

(41)2 512

SOLUTION TO PROBLEM 1.6.
.No two statements can be simultaneously correct, for the

mth statement requires that precisely m of the statements are
incorrect. Hence at least 99 of the statements must be incorrect.
If all 100 statements were incorrect then the 100th statement
would be correct, a contradiction. Hence precisely 99 state­
ments are incorrect. Thus the 99th statement is the only correct
statement.

SOLUTION TO PROBLEM IJ5.
Yes, the statement that the New Zealand dollar has been

revalued by 12·7% in comparison with the Australian dollar,
is correct.

Suppose that, before the devaluations, one New Zealand
dollar costs k Australian dollars. When Australia devalues
by 17i% each Australian dollar is then worth 82i% of what it
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100was'worth before devaluation. It thus takes 82i of the new

dollars to buy what one of the old dollars bought. Hence in
devalued Australian dollars, one New Zealand dollar now

100
costs (k x 82i) dollars.

. 93
When New Zealand devalues by 7% it only costs 100 of the

previous cost to buy a devalued New Zealand dollar. Hence the
. 93' '100

cost of the devalued New Zealand dollar lS 100 x 82t x k

devalued dollars.

S . 93 .100 112·72
lnce 100 x 82i = 100

the number of Australian q,qllars now required to buy a
New Zealand dollar is 12.72%, i.e. approximately 12·7% more
than before the devaluations took place.

Notice that the result of the calculation is unaffected
by the order in which the devaluations take place. If
New Zealand's devaluation took place first and was then
followed by Australia's then the new cost of one New Zealand

100 ,93 .
dollar would be 82t x 100 x k Australlan dollars.

PROBLEM 3.2.
How could a car make the

skid marks as indicated on
the sign?

PROBLEM 3.3.
Show that, for all integers a, b, ab(a 2 - b 2 ).(a 2 + b 2 )

has 30 as a factor.

Submitted by Rob Saunders, Rusden State College

PROBLEM 3.4.
A large textbook has every page numbered-. The printer

used 1890 digits to number the pages. How many pages were
there?
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PROBLEM 3.5.
A die is thrown until a 6 is obtained. What is the

probability that 5 was not thrown, meanwhile?

PROBLEM 3.6.
IIf a record is played at 3~ r.p.m., and three musical

notes are heard, namely middle C, E and G, what will the
three notes be if

(i) the same record is played at 45 r.p.m.,

(ii) it is played at ~8 r.p.m.?

Submitted by Andrew Fortune, Arts II, Monash

PROBLEM 3.7.
Of three prisoners, Mark, Luke and John, two are to be

executed, but Mark does not know which. He therefore asks
the jailer 'Since either Luke or John are certainly going to
be executed, you will give me no information about my own
chances if you give me the name of one man, either Luke or
John, who is going to be executed.' Accepting this argument,
the jailer truthfully replied 'Luke will be executed' .
Thereupon, Mark felt happier because before the jailer replied
his own chances of execution were 2/3, but afterwards there are
only two people, himself and John, who could be the one not to
be executed, and so his chance of execution is only i.

Is Mark right to feel happier?

0000000000000000

A FACT

Think of a word, for example, Llanfairpwllgwyngyllgogery­
chwyrndrobwllllantysiliogogogoch, the name of the well-known
Welsh town. Count the number of letters in the word, in our
case fifty eight. Now count the number of letters in the
words fifty eight. We get ten. Now count the number of
letters in the word ten. We get three. Count the number of
letters in three. Answer fiv~. Count the number of letters
in five. Answer four. Count the number of letters in four.
Answer four. And so on.

This process, whatever word we start with always
terminates with fours.

Submitted by Cynthia Kelly, Science III, Monash



PROGRAM FOR FRONT COVER
by -Michael Eliott,' 4th "Form, Scotch College

BaB 1 l) I f1 EN S.l 0H I( ( 1BB ) J L ( 2 B ) , x( 4B )
B BB 2 DHTAL ( 1 ) J L <: 2 ) ,L ( 3) .I 1 H . , 1HI.. 1 H I /
aBSJ- DATA L(4) .. L(S),L(6) 11H+,lH3/1H- /,,(/36./
BBe4 DATA L(7),L(S),L(<),Jl 11HW,lHJ,lH*,Sl
BBBS J2=2B+Jl
BBB6 X(J2+1)=lBl.
BBB? PRINT 6
aaBa 6 FORMAT( IH 1 )
BBB9 DO 7 H=1/73
BBlB '3 Z=SIH(Y/IB. )*1B.
131311 DO 1 1=1,J1
8B12 "1=1
BB13 1 X( I )=58. -\,1,1(2
B814 1)0 2 1=21) J2
BB15 W=I-2B
8B16 2 X( I )=5B. +ld*Z
Ba17 J=Jl
B918 M=Jl
B B 19 fiO 4 1= 1, 5 B
BB2B A= I
3821 5 IF(A.LE.X(J)GO TO 4
BB23 IF(J.LE.l) J=22
8B25 J=.j-1
9826 33 11=11-1
BB27 GO TO 5
8828 4 K( I )=L( M+l)
3829 "=B
BB3B J=21
Ra31 DO 11 I=51JIBB
BB32 8=1
8B33 22 IF(B.·LT.X(J»GO TO 11
BB35 J=J+l
9B36 M=I1+1
9B37 GO TO 22
BB38 11 K(I)=L<M+l)
BB39 PRI~T 3,K
8B4B 3 FORMAT(lX,12B(Al»
8B41 IF(H.LT.37)GO TO 7
0843 Y=Y+2.
8844 7 Y=Y-l.
aB45 PRINT'
8946 STOP
BB47 END

TOTAL ERRORS BBBB

T I ME = 16
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Angling may be said to be so like the mathematics, that
it can never be fully learnt.

Izaak Walton: The Compleat Angler, 1655

I have yet to see any problem, however~omplicatedwhich,
when looked at the right way, did not become still more
complicated.

Paul Anderson

In the beginning of algebra, even the most intelligent
child finds, as a rule, very great difficulty. The use of
letters is a mystery, which seems to have no purpose except
mystification. It is almost impossible, at first, not to
think that every letter stands for some particular number,
if only the teacher would reveal what number it stands for.
The fact is, that in algebra the mind is first taught to
consider general truths, truths which are not asserted to
hold only of this or that particular thing, but of anyone
of a whole group of things. It is in the power of under­
standing and discovering such truths that the mastery of the
intellect over the whole world of things actual and possible
resides; and ability to deal with the general as such is
one of the gifts that a mathematical education should bestow.

Bertrand Russell: The Study of
Mathematics, 1902
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